
1

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

Master/Slave Speculative Parallelization with Distilled Pr ograms

Craig B. Zilles and Gurindar S. Sohi
[zilles, sohi]@cs.wisc.edu

Abstract
Speculative multithreadingholds the potential to substantiallyimprove the executionperformanceof

sequentialprogramsby leveraging the resourcesof multiple execution contexts (e.g., processorsor
threads).For unstructurednon-numericprograms,the three key challengesof parallelizationare (1)
predictingthe sequenceof tasks(i.e., groupsof instructions)that correspondsto the correctsequential
executionof the program,(2) providing eachtask with the valuesit needsto execute(i.e., its live-in
values), and (3) tolerating the communication latency between processors.

To overcomethesechallenges,we proposea new executionmodelthatdiffersfrom previousspeculative
multithreadingmodelsbecauseof its master/slave nature.In this model, one execution context—the
master—executesa speculative approximationof the original program—thedistilled program—that
allows it to anticipatefuture control- and data-flow and explicitly orchestratethe parallel execution.
Becausethecontrol flow in the two programsroughlycorresponds,themastercanaccuratelypredictthe
sequenceof tasksby mappingits programcounter(PC) in the distilled programto a taskstartPC in the
original program.Furthermore,speculative state (e.g., register and memory values)generatedby the
executionof thedistilledprogramservesaspredictedlive-invaluesfor thetasks.Thesepredictionsreduce
the impact of communication latency on execution performance.

We presentan analyticalmodel that shows that, if predictionsmadeby the masterare accurate,the
executionperformancecloselytracksthatof thedistilledprogram.Thedistilledprogramcanexecutefaster
than the original programfor two reasons:(1) it generatesonly a subsetof the stategeneratedby the
original program,and (2) it neednot perform the predictableportion of the computation,becausethe
predictionswill be verified by the parallelizedexecutionof the original program.We performan initial
explorationof thepotentialof distilled programs,showing thatdynamicinstructioncountcanbereduced
significantly with minimal impact on accuracy.

1 Introduction

Most microprocessorvendorsareshippingor have announcedproductsthatexploit explicit thread-level

parallelismat the chip level either throughchip multiprocessing(CMP) or simultaneousmultithreading

(SMT). Thesearchitecturesarecompellingbecausethey enableefficientutilizationof largetransistorbud-

gets—evenin thepresenceof increasingwire delay—formulti-threadedor multi-programmedworkloads.

Althoughwe expecttheavailability of theseprocessorsto encouragesomeprogrammersto explicitly par-

allelize their programs,anecdotalevidencethat many softwarevendorsship un-optimizedbinariessug-

geststhatmany programmerscannotjustify (eitherto themselvesor their employers)theadditionaleffort

of correctlyparallelizingtheir code.As aresulttherewill remainanopportunityfor “transparent”parallel-

ization.

Parallelizationwithout programmerintervention can be achieved by analyzingthe program’s depen-

dences,partitioning the programinto independentsubsets,and insertingthe necessarysynchronization.

For non-numericprograms,a completedependenceanalysisis difficult. As a result, parallelizationfor

theseprogramsis greatlyfacilitatedby speculatingin thepresenceof ambiguousdependencesandprovid-

2

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

ing hardwaresupportfor detectionof and recovery from actionsthat violate the orderingdictatedby a

sequential execution.

In this paper, we presenta new speculative parallelizationexecutionmodel basedon a master/slave

architecture.Our new executionmodelis motivatedby the repetitionandpredictabilityexhibitedby pro-

grams.It is well understoodthattherearemany aspectsof a program’s executionthataretrivially predict-

able (e.g., many static branchesare only ever taken in one direction). Despitethis predictability, the

compilercannotsafelyremove the predictablebehavior, even with accurateprofile information,because

the past is not a guarantee of future behavior.

We proposegeneratinga speculative approximationof theprogram—asecondstaticimagewe call the

distilled program—in which thepredictablecodehasbeenremoved.Removal of predictablecodereduces

dynamicinstructioncountandexposesnew opportunitiesfor traditionalcompileroptimizations.Theexe-

cution of the distilled programshouldsignificantlyoutperform,while closelyparallelingin function, the

originalprogram,but it providesnocorrectnessguarantees.In fact,aspectrumof distilledprogramsexists.

As shown in Figure1(a),anaccuracy parameteris specifiedto theprogramdistiller. Loweringthis param-

etertypically enablesthedistiller to producecodethatis fasterin thecommoncasebut misspeculatesmore

frequently.

In our proposedexecutionmodel,oneprocessor1—the master—executesthe distilled programto pro-

duceaccuratepredictionsof the program’s future behavior. The masterusesthesepredictionsto orches-

tratea parallelexecutionof theoriginal programon theremainingslave processors(seeFigure1(b)).The

masterprovideseachslave processorwith a startingprogramcounter(PC)andpredictionsfor the live-in

1. For simplicity of exposition we use the word “processor”, but the ideas are equally applicable to other execution
contexts (e.g., SMT threads).

original
program

distilled
program

profile
info

profile
info

profile
info

profile
info D

IS
TI

LL
ER

accuracy
threshold

distilled
program

MASTER

SLAVE

original
program

SLAVE

original
program

SLAVE

original
program

SLAVE

original
program

start PC, live-in values

verified domain
unverified

domain

a)

b)

Figure 1. Program distillation and master/slave speculative parallelization. Theprogramdistiller (a), which
couldbehardwareor software,takestheoriginal program,profile information,anda tunableaccuracy parameter
to generatethe distilled program.During execution (b), the masterexecutesthe distilled programto predict
startingPCsandlive-invaluesfor theslaveprocessors.Theslavesverify thatthelive-inpredictionscorrespondto
a sequentialexecution. The master is not explicitly verified, but restartedwhenever the slaves detect a
misspeculation.

3

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

valuestheslave requires.ThestartPCis producedby mappingthemaster’s PCin thedistilled programto

the correspondinglocationin the original program.The live-in predictionsarederived from valuescom-

puted by the execution of the distilled program.

The slave processorsexecute the un-modifiedoriginal program(i.e., compiler modifications,while

potentiallybeneficial,arenot required),andonly they areallowedto affect architectedstate.Valuescom-

putedby themasterarebufferedwhile they areneededaslive-in predictionsandthendiscarded.Because

all communicationbetweenthe masterand the slaves is in the form of predictions,which are verified

beforetheslave updatesarchitectedstate,thereareabsolutelyno correctnessrequirementson thedistilled

program.This facilitatesconstructingthe distilled programat run-time,when the most accurateprofile

information is likely to be available.

Thetwo executionsmustrun in closesuccession—themaster’s leadis limited by theavailability of spec-

ulative buffering—soperformancewill be determinedby the slower of the two. To achieve execution

throughputequivalent to the master, additionalprocessorscanbe allocatedto the slave execution.If the

distilled programis capableof outperformingtheoriginal programby a factorof N, thenN slave proces-

sorsareallocatedto “matchtheimpedances”of thetwo executions.Theresourceoverhead(1/N) of dedi-

cating a master processor to orchestrate the execution decreases as the degree of parallelization increases.

Theorganizationof thepaperis asfollows: in Section2, we presentour executionmodel,comparingit

with previous speculative parallelizationmodels.Section3 describesa possibleimplementationof the

model,providing detail on how themaster“forks” tasksandprovideslive-in stateandhow themasteris

restartedfollowing a misspeculation.In Section4, a simpleanalyticalmodelis proposedto allow reason-

ing aboutperformance.In Section5, we performaninitial explorationof distilled programs,analyzingthe

effectiveness of a variety of speculative optimizations. We describe related work before concluding.

2 The Master/Slave Speculative Parallelization (MSSP) Execution Model

Two key componentsof any speculative parallelizationmodelarepredictingthesequenceof tasks (con-

tinuoussegmentsof the dynamicinstructionstream)and handlinginter-task communication.Although

partially performedin software,thetasksequencingperformedby MSSPis in principleequivalentto hav-

ing acentralizednext taskpredictor. ThecentraldifferencebetweenMSSPandpreviousspeculativeparal-

lelization modelsis in inter-task datacommunication.In this section,we describehow using a master

processorimprovesthecommunicationandcomputationof live-invalues,how live-inscanbeverified,and

how distilled programs enable the master processor to perform its role.

2.1 Optimizing Live-In Communication

Thevaluesa taskreadsthat it did not generateitself arethe task’s live-in values. For a moment,let us

considera simple example(shown in Figure2(a)) in which eachtask is a loop iteration and the loop

4

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

index—incrementedby eachtask—constitutesthe only inter-task communication.Previous speculative

parallelizationtechniques[1, 3, 7, 10,12,16,18,20,30,29,32] provide this live-instatefrom thetaskthat

computedit. Theexecution’s critical path(shown in Figure3(a))consistsof two components:1) thecom-

putationto convert the live-in valueto thenext task’s live-in value,and2) thetransittime for thevalueto

be passedfrom onetask to the next. If we assumeinter-task transit time of 4 cyclesanda singlecycle

increment, we can execute tasks at a rate of no more than one every 5 cycles.

To avoid sequentialtransit delays,MSSPprovides the live-in valuesfrom a 3rd party, the master(as

shown in Figure2(b)).Themasterexecutesonly thecodethatmakesup thetasklive-ins,in this caseonly

theregisterincrements.Thenew critical pathis shown in Figure3(b).Becausethetransitdelaysarenow in

parallel,we canpotentiallyachieve a taskthroughputof oneper cycle (i.e., the latency of the increment

instruction).

task A

task B

task C

r1++
r1++

r1++

task A

task B

task C r1++

r1++

r1++

...
...

master

r1++

r1++

r1++

a) b)

Figure 2. Inter-task communication in speculative parallel architectures: An illustrative example,wherethe
only inter-taskdependenceis dueto aregisterallocatedcounterthatis incrementedby eachtask.(a) In previously
proposedspeculative parallelismarchitectures,the live-insaresuppliedfrom otherin-flight tasks.(b) In MSSP,
the master processor predicts task live-in values.

r1=5

r1=4

r1=6

r1=4

r1=5

r1=6

r1=7

increment latency = 1

transit latency = 4

t=0
t=1

t=5
t=6

t=10
t=11

t=15

task A

task B

task C

increment latency = 1

transit latency = 4

t=0
t=1

t=5
t=6

task A
task B

task C

increment latency = 1

t=2
t=3
t=4

t=6
t=7 t=7

t=8 t=8
t=9

t=10
t=11

t=12

master

verification

a) b)

Figure 3. Critical paths through speculatively parallel executions: (a) With the traditional approach,the
critical pathincludesonetransitdelayfor eachtask,leadingto a maximumrateof onetaskevery 5 cycles.(b)
With themasterdeliveringlive-in values,transitlatency is incurredin parallel,leadingto a maximumrateof one
task per cycle, the increment latency.

5

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

2.2 Optimizing Live-In Computation

In our simpleexample,thecomputationcomponentwasa singlecycle. In general,inter-taskcommuni-

cationcanconsistof any numberof valuesandcanbetheresultof arbitrarycomputation.Previousspecu-

lative parallelizationschemestry to minimize the computationcomponentthroughcodeschedulingby

moving definitionsof live-outsup andusesof live-insdown [30, 33]. This codemotion mustbe proven

correctby thecompileror misspeculationdetectionandrecovery codeis necessary. Optimizationsof this

sort createa tensionbetweengenerating100%correctcodeandcomputingfuture live-insasquickly as

possible.

MSSPresolvesthis tensionby decomposingtheprograminto two programs.Live-invaluescomputedby

the masteraretreatedasvaluepredictions,allowing the master’s program—thedistilled program—tobe

optimizedwithout fear of violating correctness.Conversely, with reducedperformancerequirements,the

slave’s code can focus on correctness. Live-in values are verified to detect incorrect predictions.

2.3 Verification

As with any speculative parallelismarchitecture,it is necessaryto verify thatstitchingthetaskstogether

resultsin the original sequentialexecution.Onemeansof accomplishingthis verificationis to buffer the

speculatively-usedlive-in valuesandcomparethemto thearchitectedstategeneratedby theprevioustask

at retirement.As shown in Figure4, we recordin the live-in buffer thename(e.g., architectedregisteror

address)andvalue for eachlive-in consumedby the task.Valuesproducedwithin the taskneednot be

stored,asthey canbeprovencorrecttransitively. Whentheprevioustaskis completeandhassuccessfully

updatedarchitectedstate,we comparethevaluesstoredin the live-in buffer to thearchitectedstate.If all

valuesmatch,thenthe taskhasbeenverifiedandis free to updatearchitectedstate2. This is equivalentto

the reuse test [28] but is performed at the task granularity.

PC1: r1 + 1024 → r2

PC2: load 0[r2] → r3

PC3: store r3 → 8[r2]

PC4: load 0[r5] → r6

PC5: load 8[r2] → r7

8[r2]

r2 r2

r3
r2

r5

r1

0[r5]

0[r2]

Name: Value:
PC PC1

r1 value1
0[r2] value2
r5 value3
0[r5] value4

r2 r3 r6 r7 8[r2]

Li ve-in Buffer

Figure 4. Li ve-in value verification. Name-valuepairsof live-insarestoredin the live-in buffer for verification
whenprevious taskhasretired.Sourcedvaluesproducedwithin the task(e.g., r3) neednot beverified.Oncethe
task has been verified, architected state can be updated with live-out values.

PC

Li ve-in Values

Li ve-out Values

Task Boundary

6

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

2.4 Distilled Programs

Thecodeexecutedby themasteris expectedto predict(1) thesequenceof tasksand(2) their live-inval-

ues.If the masterexecutedthe original program,it could “predict” taskstartPCsby usinghardware to

monitor theexecutionandperiodically(e.g., every 100thretiredinstruction)sendinga slave processorits

currentPC.In addition,themasterwouldhavealreadycomputedthecompletememoryandregisterimage

associatedwith thebeginningof thetaskandcouldprovide theslave with any desiredlive-in value.Thus,

theoriginalprogramcouldbeusedasaperfectpredictorfor startPCsandlive-ins,but it is unlikely to out-

perform a sequential execution.

To allow usto derivebenefitfrom theparallelization,wedistill theoriginalprogramto theminimalcom-

putationthatfulfills themaster’s requirements.Onecomponentof distillation,asmentionedin Section1, is

removing predictablebehaviors from the distilled program.In addition,the distilled programneedonly

compute a subset of the original program’s state.

Only valuesthatfrequentlyform a task’s live-instateneedto becomputedby thedistilledprogram.Val-

uesthatarecreatedandkilled within a task(shown in Figure5(a))cannever bea live-in valueandthere-

fore maynot needto becomputed.Furthermore,becausetheparallelizedtaskswill eventuallyperformall

storesandregisterwrites in theoriginal program,thedistilled programneedonly computevalueswhose

definitionandusecouldbein-flight simultaneously. If thedistance(in dynamicinstructionsin theoriginal

execution)betweenthedefinitionandthefirst useis large(asshown in Figure5(b)),thedefinitionneednot

be in the distilled program,becausethe valuewill be availablefrom the architectedstateby the time the

use is executed.

2. For memory consistency in multiprocessors it is necessary to monitor the addresses ofall loads for coherence
requests between verification and retirement. Alternatively, the reuse test and architected state update can poten-
tially be performed atomically with respect to the memory system by acquiring the necessary coherence permis-
sions for blocks containing live-in and live-out values, as is described in [23].

ST X

LD X
LD X Last Use

ST Y

LD Y
First Use

(last retired instruction)

In-flight Tasks}
Distilled Fetch Wave Front

Figure 5. State updates that need not be included in checkpoints produced by the distilled program. (a) If
thedefinitionandall usesof avalueoccurwithin a task,it will notbea live-in.(b) If thedefinitionandfirst useof
avaluearenotsimultaneouslyin-flight (i.e., thedefinitionis retiredbeforethefirst useis fetched),thenthelive-in
value can be retrieved from architected state.

a) b)Task Boundary

Task Boundary

Retirement Wave Front

(master’s last fetched inst.)

7

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

3 Possible Implementation

In this section,we describeanexampleof anMSSParchitectureto discussthetypesof mechanismthat

arerequired.A full studyof this architectureis beyondthescopeof this paperandis left for futurework.

We first presentanoverview of thearchitecture,thendescribehow thecheckpointswork, andfinally dis-

cuss the misspeculation detection and recovery path.

3.1 Execution Model

Themaster(P0 in Figure6(a))managestheparallelexecutionthroughexplicit fork instructions present

in thedistilledprogram.Uponencounteringa fork instruction,P0spawns(1) thenext task(TaskB) in the

original programon a free processor(P2), providing it with a “checkpoint” of the master’s currentstate

(checkpointsaredescribedin detail in Section3.2).After somelatency, thecheckpointarrivesandP2 can

begin executingthetask(2). P0 continuesexecuting(3) thedistilled programsegmentthatcorrespondsto

task B, which we refer to asB’ .

As taskB executes,it retrievesits live-insfrom the checkpoint,recordingthe name-valuepairs that it

consumes.Whentheprevioustask(TaskA onP3) is complete(4), P2canbegin checkingits live-invalues

againstthearchitectedstate.If therecordedlive-in valuesexactly correspondto architectedstate,thenthe

CHKPT

FORK

FORK

FORK

P1 P2 P3P0

A’

B’

C’

Task A

Task B

Task C

Task Retired

Begin Verify
End Verify
Commit State

Misspeculation Detected

Restart Task C
C’

Bad Checkpoint

...

1

2
3

4

5

6

7

Figure 6. Master processordistrib utescheckpointsto slaves.(a) Themaster, executingthedistilled program
on processorP0, forks tasks,providing them live-in valuesin the form of checkpoints.The live-in valuesare
verified when the previous task retires.Misspeculations,due to incorrectcheckpoints,causethe masterto be
restarted with the architected state. (b) Physically, this architecture can be mapped onto a chip multiprocessor.

Distilled
Program

Original
Program

Original
Program

Original
Program

Original
Program

Original
Program

Checkpoint
Verification

Checkpoint
 Broadcast

Processor
 Core

a)

b)
Fork Task

Execute Task

8

Squashed

8

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

taskhasbeenverifiedandcanberetired,andarchitectedstatecanbeupdated(5) with the task’s live-out

values.

If a checkpointcontainsanincorrectvalue(3) for a live-in—becausethedistilled programproducedthe

wrongvalueor did not producea neededvalue—thiswill bedetectedduringverification.On detectionof

the misspeculation(6), the masteris squashed,asareall other in-flight tasks.At this time, the masteris

restartedatC’ (7), usingthecurrentarchitectedstate.In parallel,executionof thecorrespondingtaskin the

original program (Task C) begins.

The MSSPexecutionmodelis easilymappedonto anexplicitly parallelarchitecture,suchasthe CMP

shown in Figure6(b).ExistingCMPdesigns(e.g., dynamicsuperscalaror EPICprocessorsconnectedwith

a high bandwidth,low latency interconnectionnetwork) couldbeenhancedto supportthemanagementof

checkpointstate,detectionof andrecovery from live-in valuemisspeculations,andmappingbetweenthe

distilled andoriginal programs.We discusstherequirementsof eachof theseenhancementsthenext three

sections.

3.2 Checkpoints

Thecheckpoints,distributedto provide tasklive-in values,cannotconsistof a completecopy of thepro-

gram’s memoryimage,nor is sucha copy necessary. Thecheckpointneedsonly includename-valuepairs

for which the checkpointdiffers from architectedstate.As is shown in Figure7(a),eachsegmentof the

distilled program’s executionbetweenfork instructionsproducesa partialcheckpointof thevaluescreated

by thesegment.Themasterrecordsthename-valuepairsandtagsthemwith asequencenumbercalledthe

partial checkpoint number.

The completestateimagerequiredby a taskis provided by the un-retiredpartial checkpoints(ordered

from youngestto oldest)togetherwith thearchitectedstate.Whena live-invalueis required,theslavepro-

cessorlogically accesseseachpartial checkpointin sequence,looking for the first valuewith a matching

name(shown in Figure7(b)). If nomatchis found,thearchitectedvalueis used.Thisprocessis verysimi-

lar to what is requiredfor otherspeculative parallelizationtechniques.To avoid increasingcacheaccess

latency by sequentiallyaccessingpartial checkpoints,the task’s view of the block can be assembledat

cachefill time, as was previously proposedin [15, 16, 30]. Eachpartial checkpointcan be deallocated

architected state
partial checkpoint N-2
partial checkpoint N-1
partial checkpoint N

live-ins for task N+1

Figure 7. Li ve-in checkpoint is assembledfr om partial checkpoints. (a) Each segment of the distilled
program’s execution producesa partial checkpoint.(b) A checkpointimage for task N+1 is assembledby
selecting the most recent copy of each value from the partial checkpoints and architected state.

a)

b)

9

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

whenthe correspondingtaskcompletesits updateof architectedstate.At this point, the architectedstate

reflects the complete and correct execution of the task, and the partial checkpoint is no longer necessary.

As discussedin Section3.1, thegenerationof checkpointsis dictatedby specialfork instructionsin the

distilled program(shown in Figure8). Thesefork instructionshave aninstructionformat like anuncondi-

tional direct branch,but, when executed,two pathsare followed. The mastercontinuesexecuting the

fall-throughpath,andthebranchtargetpathis spawnedonanidle slaveprocessor. If no idle processorsare

available,thespawn canbebufferedor thedistilled programstalled.Thefork instructionalsoincrements

the partial checkpoint number.

To allow cross-taskoptimizationsin the distilled program,the slave processorexecutestransitioncode

beforebranchingto the original program(seeFigure8). Without the transitioncode,the distilled pro-

gram’sstatewouldhave to correspondexactly to thatof theoriginalprogramatevery fork instruction.The

transitioncodeenablesoptimizationslike re-allocatingregistersandhoistingcodeacrosscheckpointsby

restoringthestateexpectedby theoriginal program.By executingthetransitioncodeon theslave proces-

sor, we minimize the work performedby the master. Transitioncodeonly updatesthe local copy of the

checkpoint(i.e., it doesnot updatearchitectedstateandthereforeneednot betrackedfor verificationpur-

poses).

Thecheckpointstateincludesa startingPC(discussedin moredetail in thenext two sections)but pro-

videsno indicationof wherethe taskshouldend. Intuitively, eachtaskshouldendwherethe next task

begins,sothey canbestitchedtogetherto makeacomplete,non-redundantexecution.To thisend,westat-

ically annotateeachoriginal programinstruction(in the form of a bitmapthat parallelsthe original pro-

gram’s static image)with whetherthe instructioncorrespondswith the beginning of a task,much like

Multiscalar’s stop bits [29]. As eachtaskexecutes,it checkswhetherthis checkpointbit is set,andstops

when a set bit is encountered3.

FORK

fall-through

spawn

transition
code

transition
code

jump to
original

code

di
st

ill
ed

pr
og

ra
m

di
st

ill
ed

pr
og

ra
m

Entry restart distilled
program from
state of original

Code executed on
master processor

fork
instruction

Figure 8. Distilled program structure to support checkpointing and misspeculation recovery. Basicblocks
endingin FORK instructionscontinueexecutingthe fall-through pathon themasterprocessorandspawn task
executionon an idle slave processor. Entries,with associatedtransitioncode,enablerestartingthemasteraftera
misspeculation.

10

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

3.3 Misspeculation Recovery

Becausethedistilled programis optimizedfor thecommoncase,it will causea misspeculationwhenan

uncommoncaseis encountered.As discussedin Section2.3, thesemisspeculationswill be detectedby

comparingthelive-instate(includingthestartingtaskPC)with thearchitectedstateresultingfrom thepre-

vious task.When a misspeculationis detected,all checkpointsand speculative stateare destroyed; the

architected state is as it was left by the last task to retire.

To restartthedistilled programaftera misspeculation,we provide anentry associatedwith eachcheck-

point. This entrycontainstransitioncode—inthesamespirit asfor thespawn—thatconvertsthestateof

theoriginal programinto thatof thedistilled programbeforejumping into thedistilled program.Finding

theentryPCin thedistilledprogramcorrespondingto a locationin theoriginalprogramis discussedin the

next section.

3.4 Mapping Between Original and Distilled Programs

In thisproposedimplementation,thedistilledprogramstaticcodeimageis distinctfrom theoriginalpro-

gram.While usinga separatecodeimageprovidesflexibility in transformingtheoriginal programinto the

distilled program,it requiresus to provide explicit mappingsbetweenthe two programs,becausethedis-

tilled programresidesat a differentsetof memoryaddressesthantheoriginal program.In this section,we

discussthetwo situationsfor which thesemappingsmustbeused:(1) instancesin the(original) program

whenprogramcounters(PCs)arestoredin registersandmemory, and(2) transitionsfrom oneprogramto

the other.

Althougheachprogramhasa separatecodeimage,they sharea singledatamemoryimage(e.g., stack,

global segment,etc.).All PCsin this imagemustpoint to theoriginal program,asthey would in a tradi-

tionalexecution.Thus,unlessweperformsometranslation,any indirectbranch(e.g., avirtual functioncall

or return)performedby the distilled programwill thrust it into the original program’s codesegment.To

avoid this transition,all indirect branchesfirst translatethe target PC usinga mapfrom the original pro-

gramto thespeculative program4. Themapneedonly includePCsin theoriginal programthataretargets

of indirect branches.

Similarly, whenever the distilled programgeneratesa PC (e.g., a returnaddressfrom a jump-and-link

instruction)thatmaybepartof a checkpoint,thegeneratedaddressmustbe thePCthatwould begener-

atedby theoriginal program.Otherwise,any useof thatvaluein theoriginal programwill resultin a veri-

fication failure. Thus, return addressesmust be translated,but hardware translationis not necessary

3. The first instruction in a task will have it’s checkpoint bit set; obviously this stop bit is ignored.
4. Our model does the translation in hardware as part of the indirect branch’s execution, but other implementations

are possible.

11

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

becausethereturnaddressis a constant.Instead,we canstaticallytranslateit, build it asa constantin the

distilled program, and use a non-linking jump instruction.5

Theabove mappingsarenecessaryto avoid undesiredinter-programtransitions,but we needto provide

additionalmappingswhensuchtransitionsaredesired.As part of a checkpoint,the mastermust include

the startingPC for the task.This, like the return addresstranslation,discussedabove, can be statically

translated. In addition, the misspeculationrecovery processinvolves restartingthe masterat the entry

point that correspondsto the original program’s currentlocation.This again involvesa translation,from

original to distilled programPCs,that is performedby the recovery hardware.Thereis oneentry corre-

spondingto eachcheckpointlocation in the original program,since the distilled program is always

restarted at a checkpoint boundary.

Both mappingsfrom the original programto the distilled program(i.e., entriesandindirect branches)

mustbe one-to-onemappings6. This constraintpreventsreplicatingregionsthat requirethesemappings,

disallowing some instances of optimizations like function inlining or code specialization.

4 Analytical Performance Model

Fromtheexecutionmodeldescribedin Section3 we now presenta simpleanalyticalmodelto allow us

to reason about performance. Our model makes the following assumptions:

• All tasks are equivalent and have execution time,E.

• Distilling the program results in a speedup ofα; distilled program segments execute inE/α time.

• Thereis an initiation latency, I, betweenwhena fork instructionis executedby the distilled program
andwhenthetaskbegins.This latency accountsfor inter-corecommunicationlatency, time to execute
transitioncode,andany additionalexecutionlatency incurreddueto branchmispredictionsor cache
misses not observed by a sequential execution.

• Thereis a binomial distribution with someprobability, P, that a checkpointreceived by a taskwill be

correctly verified.7

• Misspeculationsaredetectedwith a latency, D, aftertheprevioustaskhasbeencompleted.This latency
accountsfor thetimeto updatearchitectedstateandtheinter-corecommunicationrequiredto checkthe
misspeculated task’s live-ins.

• Restartingthe distilled programtakes a latency, R, after a misspeculationhas beendetected.This
latency accountsfor any inter-corecommunicationto transferarchitectedstateandfor thetimerequired
to execute transition code.

• Additional slave processorsarealwaysavailable.Thus,verificationis on thecritical pathonly for tasks
that correspond to distilled program segments that produce incorrect checkpoints.

5. Although this non-linking jump does not write a register we still want it to push the return address on the return
address stack (RAS). The master processor could interpret the existing JAL instructions to have this behavior.

6. A mechanism could be provided to select between mappings to remove this constraint.
7. The correctness of checkpoints is assumed to be independent and identically distributed (IID).

12

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

Theoriginal executiontime for a programcomposedof N tasksis NE. Theexecutiontime of eachtask

in theMSSPexecutiondependson whetherits segmentin thedistilled programproduceda correctcheck-

point. If so,thetask’s executiontime is thatof thedistilled program’s segment,E/α. If not, thetask’s exe-

cution time is it’s latency, E, plus the initiation, detection,and restartlatencies,I+D+R. (For algebraic

simplicity, we groupthesetermsinto a singlenormalizedoverheadterm,O = (I+D+R)/E). Thefrequency

of theseeventsareP and(1 - P), respectively. Thus,the total executiontime is N(pE/α + (1-p)E(1+O)),

and speedup is given by:

Theresultingequationhasthreefreevariables:α, P, andO. Figure9(a)showsthatif weassumethenor-

malizedoverhead,O, is 1 (i.e., equalto thetaskexecutiontime), thenspeedup is super-linear with predic-

tion accuracy. As is expected,at low predictionaccuraciesslow-downs areincurred.At high accuracies

(i.e., P > .98), performance closely tracks the performance of the distilled program. Sensitivity to nor-

malizedoverheadis shown in Figure9(b).This plot demonstratesthat the architecture is largely insensi-

tive to inter-core latency whenpredictionaccuracy is high.Theparametersα, andP arepropertiesof the

distilled program. We explore the interaction between these terms in the next section.

5 Initial Exploration of Distilled Programs

In this section,we describeaninitial explorationof distilled programs.This is not intendedto bea com-

pletecharacterizationbut, instead,is a demonstrationthatsignificantpotentialexistsandthat theconcept

warrantsfurtherstudy. Thisexplorationhasthreecomponents:first, wepresentacodesnippetthatwasdis-

tilled by hand,discussingthe optimizationsperformedandtheir effectiveness.Second,we presentsome

speedu p
time sequential()
time parallel()

-- 1–= NE

N
PE
α

------- 1 P–()E 1 O+()+

---–

1– 1
P
α
--- 1 P–() 1 O+〈 〉+
--- 1–= =

0.0 0.2 0.4 0.6 0.8 1.0

Probability of correct checkpoint (P)

0%

100%

200%

300%

0.0 0.5 1.0 1.5 2.0

Normalized Overhead (O)

0%

100%

200%

300%α = 4

α = 3

α = 2

P = 1.0

P = .99
P = .98

P = .95

P = .90

P = .85

Figure 9. Performance predicted by the analytical model. (a) Speedupis super-linear with checkpoint
predictionaccuracy, and at high predictionaccuracy performancetracksthat of the distilled program,(results
shown for O=1). (b) The architectureis insensitive to inter-processorcommunicationlatency (capturedby
parameter O) when checkpoint prediction accuracy is high (results shown for α = 4).

a) b)

P = .80

S
pe

ed
up

13

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

evidencethatsuggeststhatourexampleis representativeof theSPEC2000integerbenchmarks.Third, we

describeour automateddistiller andpresentresultsfor theoptimizationsimplemented.All of our experi-

mentsare donein the context of optimized(-O4 -arch ev6 -fast) Alpha ISA binariesusing simulators

derived from the SimpleScalar toolkit [4].

5.1 Examples of Speculative Transformations

In Section4, we showedthatour proposedexecutionmodelis likely to achieve largespeedupsonly if it

takessignificantlylesstimeto executethedistilledprogramthantheoriginalprogramandfew misspecula-

tions occur. Execution time can be compute as:

Sincethemasterprocessorwill have no frequency advantageover theslave processors,its performance

advantagemust come from reducing the dynamic instruction count and/or increasingthe IPC. In

Section5.1.1,we show a codeexamplethat can be distilled to 33% of its original dynamiclength. In

Section5.1.2, we argue why this code can have an IPC as good or better than the original code.

5.1.1 Reducing Dynamic Instruction Count

In Figure10(a),we show the control flow graph(CFG) for a pair of functions(bsR andspec_getc)

from thebenchmarkbzip2. BsR andits calls to spec_getc comprisealmost3% of theinstructionsexe-

cutedin our runsof bzip2. Many of the branchesarestronglybiasedor alwaystaken in onedirection,

resultingin two dominantpathsthroughthiscode.Thesepathshavedynamicinstructionlengthsof 34and

102 instructions.

By applyingprofile-drivenspeculative transformationsto thecode,it canbereducedto theCFGshown

in Figure10(b). The two dominantpathshave beenreducedto 15 and30 instructions,respectively. All

otherpathshave been(speculatively) optimizedaway. On the infrequentexecutionsof thesepaths—84

timesin roughly10 million executions,or about0.001%of thetime—amisspeculationwill occur. Other-

wise, the optimized code faithfully reproduces the execution behavior of the original code.

In Figure10(c),weattributetheremoval of eachinstructionto anoptimizationthatenabledit. Thisclas-

sificationis not canonicalbecausetheeliminationof an instructionoftenrequiresmultiple optimizations,

but it provides someinsight into the effectivenessof variousoptimizations.The fruitful optimizations

(applied by hand) in this example are:

• Nop Elimination: We remove compiler inserted nops. Not an optimizationper se.

• Dead Code Elimination: We remove instructions whose results never affect an active path.

• Identity Operation Elimination: Theresultof someoperationsis consistentlyequalto oneof its input
operands.Most commonlythis occurswith logical operationswhereoneoperandis alwaysa superset
of the other. These instructions can be eliminated.

number of dynamic instruction

instructions per cycle (IPC) frequency
execution time =

14

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

• Branch Elimination: Strongly-biased branches and their predicate computation can be removed.

• Constant Folding: Constantscanbepushedinto theoffsetfield of amemoryinstruction.Stackpointer
arithmetic can be collapsed if a function does not call other functions dynamically.

• Function Inlining: Inlining directly enablesthe removal of call andreturninstructions.More impor-
tantly, it allows functions to be specialized to their call site.

• Save/Restore Removal - Trivial: Registersavesandrestorescanbe removed if the instructionsthat
were using the saved register are eliminated.

• Register Renumbering: Many registermovescanbe eliminatedby reassigningarchitecturalregister
numbers.

• Save/Restore Removal - Renumbering: If free registersareavailable,architecturalregisternumbers
can be reassigned to alleviate the need to save and restore registers.

• Additional Register Allocation: Repeatedlyaccessedmemoryvaluescanberegisterallocatedif free
registersareavailable.Frequently, thecompileris preventedfrom allocatingregistersbecauseit cannot
prove freedomfrom aliases.With a memorydependenceprofile, thedistilled programcanbeattentive
to frequent aliases when allocating registers.

Theseoptimizationsenabletheaveragedynamicpathlengththroughtheexampleto bereducedby 67%.

Oneimportantobservation is that thebenefitis achieved throughthecooperationof many optimizations.

Although the relative contribution of the individual optimizationsand the total reductionin path length

vary for differentpiecesof code,it hasbeenour experiencethatsubstantialimprovementsalwaysrequire

the composition of multiple optimizations.

78

2 i

6

5 i

6

14 i

20 i

7186802
2 i

2827087

3 i

10 i

11 i

5 i

18 i

11 i

5 i

2827009

2827087

2827087

2827081

2827081

Fall-through Branch
Taken Branch
Removed Taken Branch

2827009

2827087

2827087

bsR

spec_getc

8 i

7 i

15 i

2827009

2827087

7186802

bsR

Additional Reg. Alloc. (4%)

Save/Restore - Renum. (21%)

Register Renumbering (4%)

Residual Code (33%)

Identity Op. Elimination (1%)

Branch Elimination (10%)

Constant Folding (11%)

Nop Elimination (2%)

Dead Code Elimination (10%)

Function Inlining (1%)
Save/Restore - Trivial (1%)

a)

b)

c)

Figure 10. Distilling Programs with Speculative Transformations. A codeexample(a) canbedistilled (b) to
reduceaveragedynamic instruction path length by 67%. (c) We quantify the benefit of each speculative
transformation (described in the text). Rounding error causes percentages to not sum to 100%.

15

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

5.1.2 Improving IPC

In addition to reducingdynamic instructioncount, we believe that the distilled programcan have a

higherIPC thantheoriginal program.Below we describesomewaysthat this canbeachieved.A number

of thesecorrespondto traditionalprofile-directedoptimizations.Distilled programsandMSSPprovide a

vehicle for performingtheseoptimizationsat run-time (when the profile information is most relevant)

without fearof breakingfragilecode.Clearly, thebenefitof thesetechniqueswill bereducedif theoriginal

program has already incorporated them.

• Speculative Optimizations: Someof the optimizationsdescribedabove (e.g., registerallocation)not
only removecode,but simplify theremainingcode.Distilling theexamplereducesthefractionof loads
to 1/5 from 1/4, reducing dataflow height and contention for the cache ports.

• Scheduling: Having removedbranches,thedistilled programhaslargerbasicblocks,which facilitates
instructionscheduling.In addition,loadscanbehoistedacrossbasicblockswith impunity; exceptions
caused by the distilled program are ignored.

• Reducing Static Code Size: Removing instructionsfrom active blocksandeliminatinginactive blocks
reduces static code size, enabling more efficient use of the instruction cache.

• Code Layout: Distilling theabove example,reducestheaveragenumberof discontinuousfetches(i.e.,
takenbranches)by a factorof 4, throughfunctioninlining, branchremoval, andassigningthedominant
branch target to the fall-through path. Code layout can also minimize I-cache conflicts.

• If-conversion: Somefrequentlymispredictedbranchescanbeif-convertedusingcmov instructionsto
avoid branchmispredictionpenalties.Distilling programsmaycreateadditionalprofitableopportunities
for if-conversion by reducing the code in the if and else clauses.

• Pre-fetching: Cache miss profiling can guide scheduling of loads and insertion of pre-fetches.
We expect these optimizations to maintain, if not improve, IPC relative to the original program.

5.2 Predictability and Repetition in Programs

In theprevioussection,we demonstrateda examplecodesegmentthatcouldbedistilled to a third of its

original sizewith minimal impacton correctness.In this section,we presentdataon the ubiquity of pre-

dictability in non-numericprogramsto suggestthat theexampleis representative. We presentdataon the

distribution of branchbiases,thepresenceof codeexpansion-freeinlining opportunities,andthelifetimes

of register and memory values.

As demonstratedin Section5.1.1, much of the computationperformedby non-numericprogramsto

resolve control-flow is unnecessary. Many staticbranchesareonly taken in onedirection,andthesestatic

branchescomprisea significantfraction of dynamicbranches(e.g., as high as 80% in vortex). These

branchesandothersthatonly rarelygo in thenon-biasdirectioncanberemovedfrom thedistilledprogram

with minimal impactoncorrectness.Figure11(a)showsthatbrancheswith greaterthan99%bias(denoted

by thedottedvertical line) make up 93%,72%,40%,and28%of thedynamicbranchesin vortex, gcc,

16

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

eon, andcrafty. Furthermore,dynamically, many functionshave a uniquecall site.Figure11(b)shows

that about half of the functions touched during the execution can be inlined without code growth.

Most valuescomputedby the programfall into oneof the two optimizationcasesshown in Figure5:

short lifetimes anddistantfirst uses.Almost all registervaluesand30-40%of storesarenot referenced

morethan100instructionsafterthevalueis created.Many of thesevalueswill becreatedandkilled within

a taskandthereforeneednot be includedin checkpoints.Another20-40%of storevaluesarenot refer-

encedduringthefirst 10,000instructionsafterthestore.Thesestoresneednot beexecutedby thedistilled

programbecause,by thetime thefirst useis encountered,thevaluewill havebeenalreadyproducedby the

original program. Figure12 shows data forperl, which is representative of SpecInt 2000.

5.3 Automatic Program Distillation

As partof our researchon theMSSPexecutionmodel,wearedevelopinganautomaticprogramdistiller.

This infrastructureis not complete,but for theoptimizationscurrentlyimplementedwe obtainresultsthat

100 95 90 85 80

static branch bias

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
. d

yn
am

ic
 b

ra
nc

h

vortex
gcc
crafty
eon

Figure11.Exploitable regularity in control flow. (a)Highly-biasedstaticbranchescontributea largefractionof
dynamicbranches.Cumulative distributions of dynamicbranches—categorizedby the static branch’s bias—is
shown for 4 benchmarksthatrepresentthedistribution of behaviors. (b) About one-halfof executedfunctionsare
called from a single call site and can be inlined with no code growth.

0.0

0.2

0.4

0.6

0.8

1.0

fr
a

ct
io

n
 s

in
g

le
 c

a
ll

-s
it

e

bzi cra eon gap gcc gzi mcf par per two vor vpr
a) b)

Figure 12.Distances,in instructions, to first and last usefr om register(a) and memory (b) writes. Datafor
perl plottedascumulative fraction (i.e., 75% of registersobserve their last usewithin 10 cyclesof the write).
For both registersand memory, first and last usesare rarely far apart. Almost all register valuesare read
immediately—within10 instructions—andare never referencedagain after 20 instructions.11% of written
registersarenever read.Storelifetimesexhibit morevariation.Thedistilledprogramcanpotentiallyavoid 80%of
stores:about45% areshort lived (last usewithin 100 instructions)andanother35% have distantfirst uses(not
referenced in the first 10,000 instructions following the store.)

1 10 100 1000 10000

distance (in instructions)

0.0

0.2

0.4

0.6

0.8

1.0

 f
ra

ct
io

n
of

 w
ri

te
s

1 10 100 1000 10000

distance (in instructions)

0.0

0.2

0.4

0.6

0.8

1.0

 f
ra

ct
io

n
of

 s
to

re
sfirst use

last use

distant stores

short lived
stores

a) b)

17

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

arecomparableto themanuallydistilled examplefrom Section5.1.1.We have seenno evidenceto believe

thattheautomateddistiller will fail to achieve thefull reductionachievedby theexamplewhenall optimi-

zations are completed.

Our infrastructureconsistsof threepieces:the profiler, the distiller, andthe evaluationsimulator. The

profilercollectsavarietyof information(e.g., control-flow edgeprofilesandmemorydependenceprofiles)

andsavesthedatato files for useby thedistiller. Thedistiller generatesa internalrepresentation(IR) from

the original program.Using heuristicsthat attemptto createtasksof moderatesize(around100 instruc-

tions),checkpointsareinserted8 into theIR at naturalboundaries(e.g., loop headersandreturntargets)in

an attemptto minimize the sizeof live-in sets.Next the distiller, guidedby profile information,applies

speculative codetransformationsto theIR. Thecodeis thengeneratedalongwith thenecessarymapsand

the checkpointbitmap.The resultingaveragetaskandlive-in setsizesfor the benchmarksareshown in

Table1.

Theevaluationsimulatorperformsfunctionalsimulationof boththemasterandtheslaves.Thesimulator

is completely execution-driven and allows arbitrary wrong-pathexecution. The architectedmemory,

sharedby themasterandslaves,is not updatedimmediatelyby theslavesto simulatethe lag betweenthe

distilled program execution and task retirement.

For the optimizationsimplemented,our automaticdistiller achievesresultscomparableto the example

presentedin Section5.1.1.Reductionsin dynamicinstructioncountsareshown for asuccessionof optimi-

zationsin Figure13.Theresultsarenormalizedto theoriginal programwith thenopsremoved.Thenum-

8. Some optimizations are sensitive to the location of checkpoints; hence, our results are affected by the quality of
our heuristics. We expect that our results could be improved by better checkpoint insertion algorithms.

bzi cra eon gap gcc gzi mcf par per two vor vpr

Avg. Task Size 57 121 109 89 58 44 59 93 111 199 98 129

Avg. # live-in reg. 5.9 5.3 5.0 4.8 4.6 4.3 3.2 4.7 4.8 4.6 5.5 6.4

Avg. # live-in mem. 6 24 16 13 7 5 10 10 14 23 12 17

Table 1. Task characterization. Task size is in dynamic instructions. While register live-in count is largely inde-
pendent of average task size, number of memory live-in values correlates strongly to average task size.

60%

80%

100%

120%

dy
na

m
ic

 le
ng

th orig. w/nops
+ dead
+ branch
+ store
+ identity

bzi cra eon gap gcc gzi mcf par per two vor vpr

Figure 13. Reduction of dynamic instruction count as a function of the extent of optimization. Optimization
groupsdescribedin text. Datashown for runsof thefirst 2 billion instructionsof thebenchmark,normalizedto the
original program with the nops removed.

136%

18

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

ber of nopsin the original executionis substantial;the first bar shows the relative size of the original

programwith the nops included.The secondbar turns on dead codeelimination. The third bar adds

branch removal (usingan accuracy thresholdof 1%) and inlining achievablewithout codegrowth. Bar

four adds the distant store optimization, which didn’t benefit the two functions in the example in

Section5.1.1,but benefitsthe executionsasa whole,especiallygcc andvortex. Thefifth andfinal bar

adds theidentity optimization.

Theseoptimizationsreducedynamicinstructioncountby 15-40%(20-50%whencountingnopremoval)

acrossthebenchmarksuite.Theseresults,for themostpart,exceedthe22%reductionthesameoptimiza-

tionsachievedin ourhandoptimizedexample.All executionshadtaskmisspeculationratesbelow 1%and

many configurationswerebelow 0.1%.Thus,it appearsthatit will bepossibleto automaticallydistill pro-

gramsto achieve significantreductionsin dynamicinstructionlengthwhile maintainingsmallmisspecula-

tion rates.

By varying the enabledsetof optimizationsandadjustingthe correctnessthresholdsof the individual

optimizationswe cancreatea spectrumof distilled programs.Figure14(a)plots theaccuracy of distilled

programsfor crafty againsttheir reductionin dynamicinstructioncount.Thedatapointsabove theline

arebadconfigurations(worseaccuracy andmoredynamicinstructionsthananotherconfiguration).The

bestconfigurationsfor eachbenchmarkfollow a trend(shown in Figure14(b)).Initially, dynamicinstruc-

tion countfalls rapidly with little impacton accuracy. Shortly thereafter, thecurvesflattenout—ata task

mispredictionrateof less0.1%—andadditionalreductionin dynamicinstructioncountcomesonly with

increasingthe numberof misspeculations.The bestperformanceis likely achieved by configurationson

the knee of the curve.

6 Related Work

Thiswork draws inspirationfrom threemainbodiesof work: speculativemultithreading,leader/follower

architectures, and speculative compiler optimizations.

Figure 14. Performance/accuracy trade-off. (a) The misspeculationratesanddynamicpath reductionsfor a
spectrumof distilledprogramsfor thebenchmarkcrafty, (b) Thebestconfigurationsfor all benchmarkshavea
similar L-shapetrend.Most of thebenefitof eachoptimizationcomeswith only a smallmisspeculationpenalty;
as the correctness threshold is lowered only incremental performance is achieved.

0.0% 0.1% 0.2% 0.3%

misspeculation rate

80%

85%

90%

95%

100%
dy

na
m

ic
 le

ng
th

0% 0.2% 0.4% 0.6%

misspeculation rate

100%

75%

50%

dy
na

m
ic

 le
ng

th

a) b)

19

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

Therehasbeenextensive previousresearchin speculative multithreading,someexamplesinclude[1, 3,

7, 10,12,16,18,20,30,29,32]. Ourmanagementof thespeculativestatecreatedby thedistilledprogram

draws heavily from this research.Theideaof predictingtasklive-insusingtraditionalvaluepredictorshas

been previously proposed in [1, 20, 22].

Themaster/slave architectureof theMSSPmodelcorrespondsto the leader/follower architecturespro-

posedfor sequentialprocessors.To toleratememorylatency, the decoupledaccess/executearchitecture

[26] broke the programinto a streamthat loadedandstoreddatavalues(leader),anda streamthat per-

formednon-addresscomputation(follower).Pre-executionproposals[8, 25, 31, 34] executea speculative

subsetof theprogram(leader)to prefetchandgeneratepredictionsfor thecompleteexecutionof theorigi-

nal program (follower).

Leader/follower architectureshave alsobeenproposedfor fault tolerance,wherebothprocessesexecute

theoriginal program,detectinginconsistenciesin theexecutions.AR-SMT [24] performsthe two execu-

tionsasthreadsonanSMT. Diva [2] performsthesecondexecutiononasimplerprocessorthatcanbever-

ified to detect design faults in the core.

Of the leader/follower architectures,the closestto MSSPis SlipStream[31]. The MSSPmodeldiffers

from SlipStreamin threemajorways:(1) thefollower executionis parallelizedin MSSP, (2) thecodeexe-

cutedby theleaderis a separatestaticimageratherthana strict subsetof theoriginal program.A separate

imageprovidesadditionaloptimizationopportunities,but it requiresexplicit mapsto correlatethetwo exe-

cutions.(3) SlipStreamdynamicallyselectstheprogramsubsetbasedon thepredictedpath,whereMSSP

uses a static distilled program.

Our leader, thedistilled program,derivesits advantageover thewholeexecutionthroughapplyingpro-

file-driven speculative transformations.Othershave previously observed the benefitof thesetransforma-

tions, some examples include control-based[6, 9, 11, 19, 27], data-dependence[14, 17, 21], and

value-based[5, 13] optimizations.Our work differs from previous work, becausethe speculationis not

verified by the transformed code but by running the original program in parallel.

7 Summary/Conclusion

In this paper, we presenteda new executionmodel,Master/Slave Speculative Parallelization(MSSP),

thatdiffersfrom previousspeculative multithreadingarchitecturesby way of its master/slave architecture.

A key componentof this modelis thedistilled program,a speculative approximationof theoriginal pro-

gram.By usingrepresentative profile information,programdistillation appearscapableof generatingsub-

stantially fastercode (67% of code was removed from one example) that accuratelyreproducesthe

executionbehavior of theoriginal code(taskmisspeculationratessignificantlybelow 1%). We presented

20

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

ananalyticalmodelthatsuggeststhatwhendistilled programsareaccurate,theperformanceof thewhole

execution can closely track that of the distilled program.

We believe the MSSPexecutionmodel conformsto the necessaryreal world constraintsto become

widely adopted.Becausethe original programis usedun-modified,there are no necessarycompiler

changesandlegacy binariescanbesupported.Thedistilled code,which canbederived from theoriginal

program,hasnocorrectnessrequirements.As aresult,theprogramdistiller neednotbeverified.Thearchi-

tectureitself is tolerantof wire latency, becauseinter-processorcommunicationis only on thecritical path

whenthemastermisspeculates,anoccurrenceour studyof distilled programssuggestcanbemadeinfre-

quent.

8 References

[1] H. Akkary andM. A. Driscoll. A DynamicMultithreadingProcessor. In Proceedings of the 31st Annual IEEE/ACM
International Symposium on Microarchitecture, pages 226–236, Nov. 1998.

[2] T. M. Austin. DIVA: A ReliableSubstratefor DeepSubmicronMicroarchitectureDesign.In Proceedings of the 32nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 196–207, Nov. 1999.

[3] D. Bruening,S.Devabhaktuni,and S.Amarasinghe.Softspec:Software-basedSpeculative Parallelism.In 3rd ACM
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3), Dec. 2000.

[4] D. C. BurgerandT. M. Austin.TheSimpleScalarTool Set,Version2.0.TechnicalReportCS-TR-1997-1342,Computer
Sciences Department, University of Wisconsin–Madison, 1997.

[5] B. Calder, P. Feller, andA. Eustace.ValueProfiling andOptimization.Journal of Instruction Level Parallelism, Mar.
1999.

[6] P. P. Chang,S.A. Mahlke, W. Y. Chen,N. J. Water, andW. mei W. Hwu. IMPACT: An ArchitecturalFramework for
Multiple-Instruction-IssueProcessors.In Proceedings of the 18th Annual International Symposium on Computer Architec-
ture, pages 266–275, May 1991.

[7] M. Cintra,J.Martinez,andJ.Torrellas.ArchitecturalSupportfor ScalableSpeculative Parallelizationin Shared-Mem-
ory Systems. InProceedings of the 27th Annual International Symposium on Computer Architecture, June 2000.

[8] J.Collins, H. Wang,D. Tullsen,C. Hughes,Y. Lee, D. Lavery, andJ.Shen.Speculative precomputation:Long-range
prefetchingof delinquentloads.In Proceedings of the 28th Annual International Symposium on Computer Architecture,
pages 14–25, July 2001.

[9] R. P. Colwell, R. P. Nix, J.J.O. Donnell,D. B. Papworth,andP. K. Rodman.A VLIW architecturefor a traceschedul-
ing compiler. In Proceedings of the Second International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 180–192, Oct. 1987.

[10] P. Dubey, K. O’Brien, K. O’Brien, andC. Barton.Single-ProgramSpeculative Multithreading(SPSM)Architecture:
Compiler-AssistedFineGrainedMultithreading.In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, June 1995.

[11] J.A. Fisher. Trace scheduling: a technique for global microcode compaction. C-30(7):478–490, 1981.

[12] M. Franklin andG. S. Sohi.The ExpandableSplit Window Paradigmfor Exploiting Fine-GrainParallelism.In Pro-
ceedings of the 19th Annual International Symposium on Computer Architecture, pages 58–67, May 1992.

[13] C. Fu,M. D. Jennings,S.Y. Larin, andT. M. Conte.Valuespeculationschedulingfor highperformanceprocessors.In
Proceedings of the Eighth International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 262–271, Oct. 1998.

[14] D. M. Gallagher, W. Y. Chen,S.A. Mahlke, J.C. Gyllenhaal,and W. W. Hwu. Dynamic memorydisambiguation
usingthe memoryconflict buffer. In Proceedings of the Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 183–193, Oct. 1994.

21

U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 Te

ch
ni

ca
l R

ep
or

t 1
43

8.
 Ava

ila
bl

e
fr

om
 h

ttp
://

w
w

w.c
s.

w
is

c.
ed

u/
~

zi
lle

s/
pa

pe
rs

/m
ss

p-
tr

14
38

.p
df

[15] S.Gopal,T. Vijaykumar, J.E. Smith,andG. S.Sohi.SpeculativeVersioningCache.In Proceedings of the Fourth IEEE
Symposium on High-Performance Computer Architecture, pages 195–205, Feb. 1998.

[16] L. Hammond,M. Willey, andK. Olukotun.DataSpeculationSupportfor aChipMultiprocessor. In Proceedings of the
Eighth International Conference on Architectural Support for Programming Languages and Operating Systems, pages
58–69, Oct. 1998.

[17] V. Kathail, M. Schlansker, and B. R. Rau.HPL PlayDohArchitectureSpecification:Version1.0. TechnicalReport
HPL-93-80, HP Laboratories, Feb 1994.

[18] T. Knight. An Architecturefor Mostly FunctionalLanguages.In Proceedings of the ACM Conference on Lisp and
Functional Programming, pages 88–93, Aug. 1986.

[19] S.A. Mahlke, W. Y. Chen,R. A. Bringmann,R. E. Hank, W. W. Hwu, B. R. Rau, and M. S. Schlansker. Sentinel
scheduling:A modelfor compiler-controlledspeculative execution.ACM Transactions on Computer Systems, 11(4),Nov.
1993.

[20] P. Marcuello,J.Tubella,andA. Gonzalez.ValuePredictionfor Speculative MultithreadedArchitectures.In Proceed-
ings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 219–229, Nov. 1999.

[21] M. Mock, M. Das,C. Chambers,andS.J. Eggers.DynamicPoints-To Sets:A Comparisonwith StaticAnalysesand
PotentialApplicationsin ProgramUnderstandingandOptimization.In Workshop on Program Analysis for Software Tools
and Engineering (PASTE), June 2001.

[22] J.Oplinger, D. Heine,andM. S.Lam. In Searchof Speculative Thread-Level Parallelism.In Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation Techniques, Oct. 1999.

[23] R. Rajwar andJ.R. Goodman.Speculative Lock Elision: EnablingHighly ConcurrentMultithreadedExecution.In
Proceedings of the 34rd Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2001.

[24] E. Rotenberg. AR-SMT: A MicroarchitecturalApproachto Fault Tolerancein Microprocessors.In Proceedings of the
29th International Symposium on Fault-Tolerant Computing Systems, pages 84–91, June 1999.

[25] A. Roth andG. Sohi.Speculative Data-Driven Multi-Threading.In Proceedings of the Seventh IEEE Symposium on
High-Performance Computer Architecture, pages 37–48, Jan. 2001.

[26] J.E. Smith.DecoupledAccess/ExecuteComputerArchitecture.In Proceedings of the 9th Annual Symposium on Com-
puter Architecture, pages 112–119, Apr. 1982.

[27] M. D. Smith,M. S. Lam, andM. A. Horowitz. Boostingbeyondstaticschedulingin a superscalarprocessor. In Pro-
ceedings of the 17th Annual International Symposium on Computer Architecture, pages 344–354, May 1990.

[28] A. SodaniandG. S.Sohi.DynamicInstructionReuse.In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 194–205, June 1997.

[29] G. Sohi,S.Breach,andT. Vijaykumar. MultiscalarProcessors.In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 414–425, June 1995.

[30] J.G. SteffanandT. C. Mowry. ThePotentialfor UsingThread-Level DataSpeculationto FacilitateAutomaticParallel-
ization. InProceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture, Feb. 1998.

[31] K. Sundaramoorthy, Z. Purser, andE. Rotenberg. SlipstreamProcessors:Improving bothPerformanceandFaultToler-
ance.In Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and
Operating Systems, Nov. 2000.

[32] J.-Y. TsaiandP.-C.Yew. TheSuperthreadedArchitecture:ThreadPipeliningwith Run-TimeDataDependenceCheck-
ing andControl Speculation.In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques, pages 35–46, Oct. 1996.

[33] T. N. Vijaykumar and G. S. Sohi. Task Selectionfor a Multiscalar Processor. In Proceedings of the 31st Annual
IEEE/ACM International Symposium on Microarchitecture, pages 81–92, Nov. 1998.

[34] C. B. Zilles andG. S. Sohi.Execution-basedPredictionUsingSpeculative Slices.In Proceedings of the 28th Annual
International Symposium on Computer Architecture, pages 2–13, July 2001.

	Master/Slave Speculative Parallelization with Distilled Programs
	Craig B. Zilles and Gurindar S. Sohi
	[zilles, sohi]@cs.wisc.edu
	1 Introduction
	2 The Master/Slave Speculative Parallelization (MSSP) Execution Model
	2.1 Optimizing Live-In Communication
	2.2 Optimizing Live-In Computation
	2.3 Verification
	2.4 Distilled Programs

	3 Possible Implementation
	3.1 Execution Model
	3.2 Checkpoints
	3.3 Misspeculation Recovery
	3.4 Mapping Between Original and Distilled Programs

	4 Analytical Performance Model
	5 Initial Exploration of Distilled Programs
	5.1 Examples of Speculative Transformations
	5.1.1 Reducing Dynamic Instruction Count
	5.1.2 Improving IPC

	5.2 Predictability and Repetition in Programs
	5.3 Automatic Program Distillation
	Table 1. Task characterization. Task size is in dynamic instructions. While register live-in coun...

	6 Related Work
	7 Summary/Conclusion
	8 References

