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Abstract

Speculatre multithreadingholds the potentialto substantiallyimprove the execution performanceof
sequentialprogramsby leveraging the resourcesof multiple execution contets (e.g., processorsor
threads).For unstructurednon-numericprograms,the three key challengesof parallelizationare (1)
predictingthe sequencef tasks(i.e., groupsof instructions)that correspondgo the correctsequential
execution of the program,(2) providing eachtask with the valuesit needsto execute(i.e., its live-in
values), and (3) tolerating the communication |lagdvetween processors.

To overcomethesechallengeswe proposea hew executionmodelthatdiffersfrom previous speculatie
multithreadingmodels becauseof its master/slaze nature.In this model, one execution context—the
master—&ecutesa speculatre approximationof the original program—thedistilled program—that
allows it to anticipatefuture control- and data-flav and explicitly orchestratethe parallel execution.
Becauseahe controlflow in the two programsroughly correspondsthe mastercanaccuratelypredictthe
sequenc®f tasksby mappingits programcounter(PC)in the distilled programto a taskstartPCin the
original program. Furthermore,speculatie state (e.g., register and memory values) generatedoy the
executionof thedistilled programsenesaspredictedive-in valuesfor thetasks.Thesepredictionsreduce
the impact of communication latgnon eecution performance.

We presentan analytical model that shawvs that, if predictionsmadeby the masterare accurate the
executionperformanceloselytracksthatof thedistilled program.Thedistilled programcanexecutefaster
than the original programfor two reasonsi1) it generate®nly a subsetof the stategeneratedy the
original program,and (2) it neednot perform the predictableportion of the computation,becausehe
predictionswill be verified by the parallelizedexecutionof the original program.We perform an initial
explorationof the potentialof distilled programs shaving thatdynamicinstructioncountcanbereduced
significantly with minimal impact on accusac

1 Introduction

Most microprocessovendorsareshippingor have announcegbroductsthatexploit explicit thread-leel
parallelismat the chip level eitherthroughchip multiprocessing CMP) or simultaneousnultithreading
(SMT). Thesearchitecturesrecompellingbecausehey enableefficient utilization of largetransistorbud-
gets—aenin the presencef increasingwire delay—formulti-threadedr multi-programmedvorkloads.
Althoughwe expectthe availability of theseprocessorso encouragesomeprogrammerso explicitly par-
allelize their programs,anecdotakvidencethat mary software vendorsship un-optimizedbinariessug-
geststhatmary programmergannotjustify (eitherto themselesor their employers)the additionaleffort
of correctlyparallelizingtheir code.As aresulttherewill remainanopportunityfor “transparent’parallel-
ization.

Parallelizationwithout programmerintervention can be achieszed by analyzingthe programs depen-
dences partitioning the programinto independensubsetsand insertingthe necessarygynchronization.
For non-numericprograms,a completedependencanalysisis difficult. As a result, parallelizationfor

theseprogramss greatlyfacilitatedby speculatingn the presencef ambiguousiependenceandprovid-
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Figure 1. Program distillation and master/slave speculative parallelization. The programdistiller (a), which

couldbe hardwareor software,takesthe original program profile information,anda tunableaccurag parameter
to generatethe distilled program.During execution (b), the masterexecutesthe distilled programto predict

startingPCsandlive-in valuesfor the slave processorsT he slavesverify thatthelive-in predictionscorrespondo

a sequentialexecution. The masteris not explicitly verified, but restartedwheneaer the slaves detecta

misspeculation.

ing hardware supportfor detectionof and recovery from actionsthat violate the orderingdictatedby a
sequential xecution.

In this paper we presenta new speculatie parallelizationexecution model basedon a master/slae
architecture Our new executionmodelis motivatedby the repetitionand predictability exhibited by pro-
grams.lt is well understoodhattherearemary aspect®f a programs executionthataretrivially predict-
able (e.g., mary static branchesare only ever taken in one direction). Despitethis predictability the
compilercannotsafely remove the predictablebehaior, even with accurateprofile information, because
the past is not a guarantee of future ara

We proposegeneratinga speculatie approximationof the program—asecondstaticimagewe call the
distilled program—in which the predictablecodehasbeenremored. Remaval of predictablecodereduces
dynamicinstructioncountandexposesnen opportunitiedor traditionalcompileroptimizations.The exe-
cution of the distilled programshouldsignificantly outperform,while closely parallelingin function, the
original programbut it providesno correctnesguaranteedn fact,aspectrunof distilled programsexists.
As showvn in Figurel(a),anaccurag parameteis specifiedto the programdistiller. Loweringthis param-
etertypically enableghedistiller to producecodethatis fasterin thecommoncasebut misspeculatesiore

frequently

In our proposedexecutionmodel, one processor—the master—executesthe distilled programto pro-
duceaccuratepredictionsof the programs future behaior. The masterusesthesepredictionsto orches-
tratea parallelexecutionof the original programon the remainingslave processorgseeFigurel(b)). The

mastermrovideseachslave processomwith a startingprogramcounter(PC) and predictionsfor thelive-in

1. For simplicity of exposition we use the avd “processor”, bt the ideas are equally applicable to othexcation
contts (e.9., SMT threads).
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valuesthe slave requires.The startPCis producedoy mappingthe masters PCin thedistilled programto
the correspondindocationin the original program.The live-in predictionsare derived from valuescom-
puted by thexecution of the distilled program.

The slave processorsxecute the un-modified original program (i.e,, compiler modifications,while
potentiallybeneficial,arenot required),andonly they areallowedto affect architectedstate.Valuescom-
putedby the masterare bufferedwhile they areneededaslive-in predictionsandthendiscardedBecause
all communicationbetweenthe masterand the slavesis in the form of predictions,which are verified
beforethe slave updatesarchitectedstate thereareabsolutelyno correctnessequirement®n the distilled
program.This facilitatesconstructingthe distilled programat run-time, when the most accurateprofile
information is lilely to be gailable.

Thetwo executiongnustrunin closesuccession—thmastersleadis limited by the availability of spec-
ulative buffering—so performancewill be determinedby the slower of the two. To achiee execution
throughputequivalentto the master additionalprocessorgan be allocatedto the slave execution.If the
distilled programis capableof outperformingthe original programby a factorof N, thenN slave proces-

sorsareallocatedto “matchthe impedancesbf thetwo executions.Theresourceoverhead /N) of dedi-

cating a master processor to orchestratestheution decreases as thguaee of parallelization increases.

The organizationof the paperis asfollows: in Section2, we presenbur executionmodel,comparingit
with previous speculatie parallelizationmodels.Section3 describesa possibleimplementationof the
model, providing detail on how the master‘forks” tasksand provideslive-in stateandhow the masteris
restartedollowing a misspeculationln Sectiord, a simpleanalyticalmodelis proposedo allow reason-
ing aboutperformanceln Section5, we performaninitial explorationof distilled programsanalyzingthe

effectiveness of aariety of speculate optimizations. W describe relatedavk before concluding.

2 The Master/Slave Speculative Par allelization (M SSP) Execution M odel

Two key component®f arny speculatie parallelizationmodelare predictingthe sequencef tasks (con-
tinuous segmentsof the dynamicinstruction stream)and handlinginter-task communication Although
partially performedn software,thetasksequencingperformedby MSSPis in principle equivalentto hav-
ing acentralizedhext taskpredictor The centraldifferencebetweerMSSPandprevious speculatre paral-
lelization modelsis in inter-task datacommunicationlIn this section,we describehow using a master
processommprovesthe communicatiorandcomputatiorof live-invalues how live-inscanbeverified,and

how distilled programs enable the master processor to perform its role.

2.1 Optimizing Live-ln Communication

The valuesa taskreadsthatit did not generatdtself arethe tasks live-in values. For a moment,let us

considera simple example (shavn in Figure2(a)) in which eachtaskis a loop iteration and the loop

University of Wisconsin-Madison dchnical Report 1438.\&ilable from http://wwwcs.wisc.edu/~zilles/papers/mssp-tr1438.pdf



task A tqsk A rl=4 : master

9 task B C ke =5 [1++]
ri=4 ri=6 LI1++
task C
- -—
| r1= ri++
r1=5 s task C -
ri=6 ++
4 )
T++]r1=7 rl++

Figure 2. Inter-task communication in speculative parallel architectures: An illustrative example,wherethe
only inter-taskdependencis dueto aregisterallocatedcounterthatis incrementedy eachtask.(a) In previously
proposedspeculatie parallelismarchitecturesthe live-insare suppliedfrom otherin-flight tasks.(b) In MSSR
the master processor predicts task-in values.
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Figure 3. Critical paths through speculatively parallel executions. (a) With the traditional approach the
critical pathincludesonetransitdelayfor eachtask,leadingto a maximumrate of onetaskevery 5 cycles. (b)
With the masterdeliveringlive-in values transitlateng is incurredin parallel,leadingto a maximumrateof one
task per gcle, the increment latenc

index—incrementedby eachtask—constituteshe only intertask communication Previous speculatie
parallelizatiortechnique$1, 3,7,10,12,16,18, 20, 30, 29, 32] provide this live-in statefrom the taskthat
computedt. Theexecutions critical path(shovn in Figure3(a)) consistsof two componentsi) thecom-
putationto corvertthelive-in valueto the next tasks live-in value,and2) the transittime for the valueto
be passedrom onetaskto the next. If we assumenter-tasktransittime of 4 cyclesanda singlecycle
increment, we canxecute tasks at a rate of no more than aeeye5 g/cles.

To avoid sequentiakransitdelays,MSSP providesthe live-in valuesfrom a 3rd party, the master(as
shown in Figure2(b)). The masterexecutesonly the codethatmakesup thetasklive-ins,in this caseonly
theregisterincrementsThenew critical pathis shovn in Figure3(b). Becausehetransitdelaysarenow in
parallel,we canpotentially achiese a taskthroughputof one per cycle (i.e., the latengy of theincrement

instruction).
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2.2 Optimizing Live-In Computation

In our simpleexample,the computationcomponenivasa singlecycle. In generaljnter-taskcommuni-
cationcanconsistof any numberof valuesandcanbetheresultof arbitrarycomputationPrevious specu-
lative parallelizationschemedry to minimize the computationcomponenthrough code schedulingby
moving definitionsof live-outsup and usesof live-insdown [30, 33]. This codemotion mustbe proven
correctby the compileror misspeculatiordetectionandrecovery codeis necessaryOptimizationsof this
sort createa tensionbetweengeneratingl00% correctcodeand computingfuture live-insas quickly as
possible.

MSSPresohesthistensionby decomposinghe programinto two programsLive-invaluescomputedy
the masterare treatedas value predictions allowing the masters program—thedistilled program—tobe
optimizedwithout fear of violating correctnessCornversely with reducedperformanceequirementsthe

slave’s code can focus on correctnessetin values are erified to detect incorrect predictions.

2.3 \erification

As with ary speculatre parallelismarchitectureit is necessaryo verify thatstitchingthe taskstogether
resultsin the original sequentiakxecution.One meansof accomplishinghis verificationis to buffer the
speculatrely-usedive-in valuesandcomparehemto the architectedstategeneratedby the previoustask
at retirement.As shavn in Figure4, we recordin the live-in buffer the name(e.g., architectedegisteror
addressknd value for eachlive-in consumedy the task. Valuesproducedwithin the taskneednot be
stored,asthey canbe proven correcttransitively. Whenthe previoustaskis completeandhassuccessfully

updatedarchitectedstate we comparethe valuesstoredin the live-in buffer to the architectedstate.If all

valuesmatch,thenthe taskhasbeenverified andis free to updatearchitectedstat@. This is equivalentto

the reuse test [28]ub is performed at the task granularity

Task Boundary
z y Z Live-in Buffer

PCy:\rl + 1024 — r2

> Name: | Value:
r2| |r2
: PC P
. i PC,: load 0[r2] — r3 Cl
Live-in Values@v rl valug
PC3: store r3 — 8[r2] 0[r2] value,
A 5 valuey
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/\_/Live-out\/alues

Figure 4. Live-in value verification. Name-aluepairsof live-insarestoredin the live-in buffer for verification
whenprevioustaskhasretired. Sourcedvaluesproducedwithin thetask(e.g., r3) neednot be verified. Oncethe
task has beerevified, architected state can be updated wittdiut \alues.
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Figure 5. State updates that need not be included in checkpoints produced by the distilled program. (a) If
thedefinitionandall usesof avalueoccurwithin atask,it will notbealive-in.(b) If thedefinitionandfirst useof
avaluearenot simultaneouslyn-flight (i.e., thedefinitionis retiredbeforethefirst useis fetched) thenthelive-in
value can be retried from architected state.

2.4 Distilled Programs

Thecodeexecutedby themasteris expectedo predict(1) the sequencef tasksand(2) their live-inval-
ues.If the masterexecutedthe original program,it could “predict” task start PCsby using hardware to
monitor the executionandperiodically (e.g., every 100thretiredinstruction)sendinga slave processoits
currentPC.In addition,the mastemwould have alreadycomputedhe completememoryandregisterimage
associateavith the beginning of thetaskandcould provide the slave with ary desiredive-invalue.Thus,
theoriginal programcouldbe usedasa perfectpredictorfor startPCsandlive-ins,but it is unlikely to out-
perform a sequentiakecution.

To allow usto derive benefitfrom theparallelizationwe distill the original programto the minimal com-
putationthatfulfills the masters requirementsOnecomponentf distillation,asmentionedn Sectionl, is
removing predictablebehaiors from the distilled program.In addition, the distilled programneedonly
compute a subset of the original prograsstate.

Only valuesthatfrequentlyform atasks live-in stateneedto be computedby the distilled program.Val-
uesthatarecreatedandkilled within atask(shavn in Figure5(a)) cannever be a live-in valueandthere-
fore maynot needto be computedFurthermorebecausehe parallelizedtaskswill eventuallyperformall
storesandregisterwritesin the original program,the distilled programneedonly computevalueswhose
definitionandusecould bein-flight simultaneouslylf thedistancegin dynamicinstructionsin the original
execution)betweerthedefinitionandthefirst useis large (asshavn in Figure5(b)), the definitionneednot
bein the distilled program,becausehe valuewill be availablefrom the architectedstateby the time the

use is gecuted.

2. For memory consistegan multiprocessors it is necessary to monitor the addresséisl@dds for coherence

requests betweeresification and retirement. Alternagily, the reuse test and architected state update can poten-
tially be performed atomically with respect to the memory system by acquiring the necessary coherence perm

sions for blocks containingvié-in and We-out \alues, as is described in [23].
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Figure 6. Master processordistrib utes checkpointsto slaves.(a) The master executingthe distilled program
on processofPO0, forks tasks,providing themlive-in valuesin the form of checkpoints.The live-in valuesare
verified when the previous task retires. Misspeculationsdue to incorrectcheckpoints,causethe masterto be
restarted with the architected state. (bygttally, this architecture can be mapped onto a chip multiprocesso

3 Possible Implementation

In this section,we describean exampleof an MSSParchitectureo discusghetypesof mechanisnthat
arerequired.A full studyof this architecturds beyondthe scopeof this paperandis left for future work.
We first presentan overview of the architecturethendescribehow the checkpointsvork, andfinally dis-

cuss the misspeculation detection and vepppath.

3.1 Execution Model

Themaster(PO in Figure6(a)) manageshe parallelexecutionthroughexplicit fork instructions present
in thedistilled program.Uponencountering fork instruction,P0 spavns (1) the next task(Task B) in the
original programon a free processo(P2), providing it with a “checkpoint” of the masters currentstate
(checkpointsaredescribedn detailin Section3.2). After somelatengy, the checkpointarrivesandP2 can
begin executingthetask(2). PO continuesexecuting(3) thedistilled programsegmentthatcorresponds$o
task B, which we refer to & .

As taskB executesit retrievesits live-insfrom the checkpoint,recordingthe name-alue pairsthat it
consumesWhentheprevioustask(Task A onP3) is completeg(4), P2 canbeagin checkingits live-invalues

againstthe architectedstate.If therecordedive-in valuesexactly correspondo architectedstate thenthe
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taskhasbeenverified andcanbe retired,andarchitectedstatecan be updated5) with the task’s live-out
values.

If acheckpointcontainsanincorrectvalue(3) for alive-in—becausghedistilled programproducedhe
wrongvalueor did not producea neededralue—thiswill be detectediuring verification.On detectionof
the misspeculatior(6), the masteris squashedasareall otherin-flight tasks.At this time, the masteris
restartecatC’ (7), usingthecurrentarchitectedtate In parallel,executionof the correspondingaskin the
original program Task C) bajins.

The MSSPexecutionmodelis easilymappedonto an explicitly parallelarchitecturesuchasthe CMP
shawn in Figure6(b). Existing CMP designge.g., dynamicsuperscalaor EPICprocessorsonnectedvith
a high bandwidth Jow lateng interconnectiometwork) could be enhancedo supportthe managemenbf
checkpointstate,detectionof andrecovery from live-in value misspeculationsand mappingbetweenthe
distilled andoriginal programsWe discusshe requirement®f eachof theseenhancementte next three

sections.

3.2 Checkpoints

The checkpointsdistributedto provide tasklive-in values,cannotconsistof a completecopy of thepro-
gram’s memoryimage,nor is sucha copy necessaryl he checkpointneedsonly includename-aluepairs
for which the checkpointdiffers from architectedstate.As is shawvn in Figure7(a), eachsegmentof the
distilled programs executionbetweerfork instructionsgproducesa partialcheckpointof the valuescreated
by thesegment.The masterecordghe name-@aluepairsandtagsthemwith a sequence@umbercalledthe
partial checkpoint number.

The completestateimagerequiredby a taskis provided by the un-retiredpartial checkpointgordered
from youngesto oldest)togethewith thearchitectedstate Whenallive-in valueis requiredtheslave pro-
cessollogically accessesachpartial checkpointin sequencepoking for the first valuewith a matching
name(shawvn in Figure7(b)). If no matchis found,thearchitectedralueis used.This processs very simi-
lar to whatis requiredfor otherspeculatre parallelizationtechniquesTo avoid increasingcacheaccess
lateny by sequentiallyaccessingpartial checkpointsthe task’s view of the block can be assembledat

cachefill time, aswas previously proposedn [15, 16, 30]. Eachpartial checkpointcan be deallocated

a) architected state | I
partial checkpoint N-2 m m Il B BN
partial checkpoint N-1
partial checkpoint N [ [ ] [ | [ ]
b) Jive-ins for task N+1] || N I | N ]

Figure 7. Live-in checkpoint is assembledfrom partial checkpoints. (a) Each sggment of the distilled
program$ execution producesa partial checkpoint.(b) A checkpointimage for task N+1 is assembledoy
selecting the most recent gopf each alue from the partial checkpoints and architected state.
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whenthe correspondindask completests updateof architectedstate.At this point, the architectedstate

reflects the complete and correreeution of the task, and the partial checkpoint is no longer necessary

As discussedn Section3.1,the generatiorof checkpointgs dictatedby specialfork instructionsin the
distilled program(shavn in Figure8). Thesefork instructionshave aninstructionformatlik e an uncondi-
tional direct branch,but, when executed,two pathsare followed. The mastercontinuesexecuting the
fall-throughpath,andthe branchtargetpathis spavnedon anidle slave processoif noidle processorare
available,the spavn canbe bufferedor the distilled programstalled.The fork instructionalsoincrements
the partial checkpoint number

To allow cross-tasloptimizationsin the distilled program,the slave processoexecutegransitioncode
before branchingto the original program(seeFigure8). Without the transition code, the distilled pro-
gram’s statewould have to correspondxactly to thatof the original programat every fork instruction.The
transitioncodeenablesoptimizationslik e re-allocatingregistersandhoisting codeacrosscheckpointsoy
restoringthe stateexpectedby the original program By executingthetransitioncodeon the slave proces-
sor, we minimize the work performedby the master Transitioncodeonly updatesthe local copy of the
checkpoinf(i.e., it doesnot updatearchitectedstateandthereforeneednot betrackedfor verificationpur-
poses).

The checkpointstateincludesa startingPC (discussedn moredetailin the next two sections)ut pro-
vides no indication of wherethe task shouldend. Intuitively, eachtask shouldend wherethe next task
begins,sothey canbestitchedtogetheto make acomplete non-redundangxecution.To this end,we stat-
ically annotatesachoriginal programinstruction(in the form of a bitmapthat parallelsthe original pro-
grams static image)with whetherthe instructioncorrespondsvith the beginning of a task, muchlike

Multiscalar’s stop bits [29]. As eachtaskexecutesjt checkswhetherthis checkpointbit is set,and stops

when a set bit is encounterfed

restart distilled
program from

state of original

fork

instruction transition
1 code

Spawn
transition

fall-through
code

e Code executed on
jump d master processor

original
code
Figure 8. Distilled program structure to support checkpointing and misspeculation recovery. Basicblocks
endingin FORK instructionscontinueexecutingthe fall-through pathon the mastemprocessoandspawn task

executionon anidle slave processorEntries,with associatedransitioncode,enablerestartingthe masteraftera
misspeculation.
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3.3 Misspeculation Recovery

Becausehedistilled programis optimizedfor the commoncasejt will causea misspeculationvhenan
uncommoncaseis encounteredAs discussedn Section2.3, thesemisspeculationsvill be detectedoy
comparinghelive-in state(includingthe startingtaskPC)with thearchitectedstateresultingfrom the pre-
vious task. When a misspeculatioris detectedall checkpointsand speculatie stateare destryed; the
architected state is as iawleft by the last task to retire.

To restartthe distilled programafter a misspeculationywe provide anentry associatedavith eachcheck-
point. This entry containstransitioncode—inthe samespirit asfor the spavn—thatcorvertsthe stateof
the original programinto that of the distilled programbeforejumpinginto the distilled program.Finding
theentryPCin thedistilled programcorrespondingo alocationin the original programis discussedh the
next section.

3.4 Mapping Between Original and Distilled Programs

In this proposedmplementationthedistilled programstaticcodeimageis distinctfrom the original pro-
gram.While usinga separateodeimageprovidesflexibility in transformingthe original programinto the
distilled program,it requiresusto provide explicit mappingsbetweenthetwo programspecausehe dis-
tilled programresidesat a differentsetof memoryaddressethanthe original program.In this section,we
discusghetwo situationsfor which thesemappingsmustbe used:(1) instancesn the (original) program
whenprogramcountergPCs)arestoredin registersandmemory and(2) transitionsfrom oneprogramto
the other

Although eachprogramhasa separate&odeimage,they sharea singledatamemoryimage(e.g., stack,
global sgment,etc.).All PCsin this imagemustpoint to the original program,asthey would in a tradi-
tional execution.Thus,unlesswe performsometranslationary indirectbranch(e.g., avirtual functioncall
or return) performedby the distilled programwill thrustit into the original programs codesegment.To

avoid this transition,all indirect branchedirst translatethe target PC usinga mapfrom the original pro-

gramto the speculatie prograrﬁ". Themapneedonly includePCsin the original programthataretargets
of indirect branches.

Similarly, wheneer the distilled programgenerates PC (e.g., a returnaddressrom a jump-and-link
instruction)that may be part of a checkpointthe generatecddressnmustbe the PC thatwould be gener-
atedby the original program.Otherwise any useof thatvaluein the original programwill resultin a veri-

fication failure. Thus, return addressesnust be translated,but hardware translationis not necessary

3. The first instruction in a task will kia it's checkpoint bit set; eiusly this stop bit is ignored.

4. Our model does the translation in haedevas part of the indirect brangteecution, it other implementations
are possible.

10
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becausehe returnaddresss a constantlnstead we canstaticallytranslatet, build it asa constanin the

distilled program, and use a non-linking jump instrucfion.

The abore mappingsarenecessaryo avoid undesirednter-programtransitions but we needto provide
additionalmappingswhensuchtransitionsare desired.As part of a checkpointthe mastermustinclude
the startingPC for the task. This, like the return addresgranslation,discussedibove, can be statically
translated. In addition,the misspeculationrecovery processnvolves restartingthe masterat the entry
point that correspondgo the original programs currentlocation. This again involves a translation,from
original to distilled programPCs,thatis performedby the recosery hardware. Thereis oneentry corre-
spondingto eachcheckpointlocation in the original program, since the distilled programis always
restarted at a checkpoint boundary

Both mappingsfrom the original programto the distilled program(i.e., entriesandindirect branches)

mustbe one-to-onemapping@. This constraintpreventsreplicatingregionsthat requirethesemappings,

disalloving some instances of optimizationsgliftunction inlining or code specialization.

4 Analytical Performance M odel

Fromthe executionmodeldescribedn Section3 we now presenta simpleanalyticalmodelto allow us
to reason about performance. Our model esake folloving assumptions:

¢ All tasks are egwalent and heae execution timek.

¢ Distilling the program results in a speedupmptistilled program sgments gecute inE/o time.

e Thereis aninitiation lateng, |, betweenwhena fork instructionis executedby the distilled program
andwhenthetaskbegins. This lateny accountdor inter-corecommunicationateng, time to execute
transitioncode,and ary additionalexecutionlateng incurreddueto branchmispredictionsor cache
misses not obseed by a sequentiakecution.

e Thereis a binomial distribution with someprobability, P, thata checkpointreceved by a taskwill be

correctly \erified”

e Misspeculationgredetectedvith alateng, D, afterthe previoustaskhasbeencompletedThis lateny
accountdor thetime to updatearchitectedstateandtheinter-corecommunicatiorrequiredto checkthe
misspeculated tasklive-ins.

e Restartingthe distilled programtakes a lateng/, R, after a misspeculatiorhas beendetected.This
lateng/ accountdor ary inter-corecommunicatiorto transferarchitectedtateandfor thetime required
to execute transition code.

« Additional slave processorarealwaysavailable.Thus,verificationis on the critical pathonly for tasks
that correspond to distilled prograngseents that produce incorrect checkpoints.

5. Although this non-linking jump does not write @jigter we still vant it to push the return address on the return
address stack (RAS). The master processor could interpretistiage AL instructions to hee this behaior.

6. A mechanism could be primed to select between mappings to reethis constraint.

7. The correctness of checkpoints is assumed to be independent and identicallytelis(HD).
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The original executiontime for a programcomposedf N tasksis NE. The executiontime of eachtask
in the MSSPexecutiondepend®n whetherits segmentin the distilled programproduceda correctcheck-
point. If so,thetask’s executiontime is thatof the distilled programs segment,E/a. If not, thetask’s exe-
cutiontime is it's lateng, E, plus the initiation, detection,and restartlatencies,|+D+R. (For algebraic
simplicity, we groupthesetermsinto a singlenormalizedoverheaderm,O = (1+D+R)/E). Thefrequeny
of theseeventsareP and(1 - P), respectiely. Thus,the total executiontime is N(pE/a. + (1-p)E(1+0)),
and speedup is\gn by:

time(sequential) . _ NE 1= 1 _1

speedup = — =
time(parallel) N(%E+<1—P)E(1+O)) g+(l—P)<l+O>

Theresultingequatiorhasthreefreevariablesa, P, andO. Figure9(a)shavsthatif we assumehenor-
malizedoverheadQ, is 1 (i.e., equalto thetaskexecutiontime), thenspeedup is super-linear with predic-
tion accuracy. As is expected,at low predictionaccuracieslow-dovns areincurred.At high accuracies
(i.e., P > .98), performance closely tracks the performance of the distilled program. Sensitvity to nor-
malizedoverheads shovn in Figure9(b). This plot demonstratethatthe architecture is largely insensi-
tive to inter-core latency whenpredictionaccurag is high. The parameters:, andP arepropertiesof the

distilled program. W explore the interaction between these terms in thé sextion.

5 Initial Exploration of Distilled Programs

In this section,we describeaninitial explorationof distilled programsThisis notintendedto beacom-
pletecharacterizatiomut, instead,is a demonstratiorthat significantpotentialexists andthatthe concept
warrantdurtherstudy This explorationhasthreecomponentsfirst, we presenticodesnippethatwasdis-

tilled by hand,discussinghe optimizationsperformedandtheir effectivenessSecondwe presentsome

300% o=4 300% - P=10
i
] P=.98
200% o=3 200%
S ] P=.95
S ]
(] " =2 1
0 100% o= 100% P=90
n P=.85
] P =.80
0% 0%t -—-———————mmmmmmm - - -
Q) U i T T T T T T T T 1 b) U L e B
0.0 0.2 0.4 0.6 0.8 1.0 0.0 05 1.0 15 20
Probability of correct checkpoint (P) Normalized Overhead (O)

Figure 9. Performance predicted by the analytical model. (a) Speedupis supetlinear with checkpoint
predictionaccurag, and at high predictionaccurag performancetracksthat of the distilled program,(results
shavn for O=1). (b) The architectureis insensitve to interprocessorcommunicationlateng (capturedby
parameter O) when checkpoint prediction acouiadigh (results stven for o = 4).
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evidencethatsuggestshatour exampleis representatie of the SPEC2000integerbenchmarksThird, we
describeour automatedlistiller andpresentresultsfor the optimizationsimplementedAll of our experi-
mentsare donein the contet of optimized (-O4 -arch ev6 -fast) Alpha ISA binariesusing simulators

derived from the SimpleScalar toolkit [4].

5.1 Examplesof Speculative Transfor mations
In Section4, we shavedthatour proposedexecutionmodelis likely to achieve large speedupsnly if it
takessignificantlylesstime to executethedistilled programthanthe original programandfew misspecula-

tions occurExecution time can be compute as:

L number of dynamic instruction
execution time =

instructions per cycle (IPC) x frequency

Sincethe mastemprocessowill have no frequeny adwantageover the slave processorsts performance
advantage must come from reducing the dynamic instruction count and/or increasingthe IPC. In
Section5.1.1, we shov a code examplethat can be distilled to 33% of its original dynamiclength. In

Section5.1.2, we ague wty this code can va an IPC as good or better than the original code.

5.1.1 Reducing Dynamic Instruction Count

In Figure10(a),we shav the control flow graph(CFG) for a pair of functions(bsr and spec_getc)
from thebenchmarkozip2. Bsr andits callsto spec_getc comprisealmost3% of the instructionsexe-
cutedin our runsof bzip2. Many of the branchesare strongly biasedor alwaystaken in onedirection,
resultingin two dominantpathsthroughthis code. Thesepathshave dynamicinstructionlengthsof 34 and
102 instructions.

By applyingprofile-driven speculatre transformationgo the code,it canbe reducedo the CFG shovn
in Figure10(b). The two dominantpathshave beenreducedto 15 and 30 instructions,respectiely. All
other pathshave been(speculatiely) optimizedaway. On the infrequentexecutionsof thesepaths—84
timesin roughly 10 million executionsor about0.001%o0f the time—amisspeculationwill occur Other-
wise, the optimized codeaithfully reproduces thexecution behaor of the original code.

In Figure10(c),we attribute theremoval of eachinstructionto anoptimizationthatenabledt. Thisclas-
sificationis not canonicalbecausehe eliminationof aninstructionoften requiresmultiple optimizations,
but it provides someinsight into the effectivenessof various optimizations.The fruitful optimizations
(applied by hand) in thisxample are:

¢ Nop Elimination: We remae compiler inserted nops. Not an optimizatjen se.
e Dead Code Elimination: We remae instructions whose resultsvee afect an actie path.
e |dentity Operation Elimination: Theresultof someoperationss consistentlyequalto oneof its input

operandsMost commonlythis occurswith logical operationsvhereoneoperands alwaysa superset
of the otherThese instructions can be eliminated.
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Q) bsR c) —— Nop Elimination (2%)

2827087 —— Dead Code Elimination (10%)
14 i spec_getc . L .
beR —— ldentity Op. Elimination (1%)
2827009 11i b) —— Branch Elimination (10%)
8i
7186802 - 2827009 )
I 2827087 —— Constant Folding (11%)
- __~— Function Inlining (1%)
7186802 |15 —— Save/Restore - Trivial (1%)
78 2827087 —— Register Renumbering (4%)
18 | 2827087
—— Save/Restore - Renum. (21%
2827087 2827081 ( )
} 6
10i 11 I - ~dditional Reg. Alloc. (4%)
2827009 ® 2827081
5i]]|5i —— Residual Code (33%)
o
2827087 —— Fall-through Branch
Taken Branch

Removed Taken Branch

Figure 10. Distilling Programs with Speculative Transformations. A codeexample(a) canbe distilled (b) to
reduce average dynamic instruction path length by 67%. (c) We quantify the benefit of each speculatie
transformation (described in thexte Rounding error causes percentages to not sum to 100%.

e Branch Elimination: Strongly-biased branches and their predicate computation can bestemo

e Constant Folding: Constantsanbe pushednto the offsetfield of amemoryinstruction.Stackpointer
arithmetic can be collapsed if a function does not call other functions dynamically

e Function Inlining: Inlining directly enableghe removal of call andreturninstructions.More impor-
tantly, it allows functions to be specialized to their call site.

e Save/Restore Removal - Trivial: Registersavesandrestorescanbe removed if the instructionsthat
were using the s&d rayister are eliminated.

¢ Register Renumbering: Many register movescanbe eliminatedby reassigningarchitecturakegister
numbers.

e Save/Restore Removal - Renumbering: If free registersare available,architecturakegisternumbers
can be reassigned to allate the need to 8a and restore gisters.

e Additional Register Allocation: Repeatedlyaccessethemoryvaluescanberegisterallocatedif free
registersareavailable.Frequentlythe compileris preventedfrom allocatingregistersbecausét cannot
prove freedomfrom aliasesWith a memorydependencerofile, the distilled programcanbe attentve
to frequent aliases when allocatingisters.

Theseoptimizationsenablethe averagedynamicpathlengththroughthe exampleto bereducedy 67%.

Oneimportantobsenationis thatthe benefitis achieved throughthe cooperatiorof mary optimizations.
Although the relative contribution of the individual optimizationsand the total reductionin pathlength
vary for differentpiecesof code,it hasbeenour experiencethat substantialmprovementsalwaysrequire

the composition of multiple optimizations.
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5.1.2 Improving IPC

In addition to reducingdynamicinstruction count, we believe that the distilled programcan have a
higherIPC thanthe original program.Below we describesomewaysthatthis canbe achieved. A number
of thesecorrespondo traditional profile-directedoptimizations.Distilled programsand MSSPprovide a
vehicle for performingtheseoptimizationsat run-time (when the profile information is most relevant)
without fearof breakingfragile code.Clearly, the benefitof thesetechniquesvill bereducedf theoriginal

program has already incorporated them.

e Speculative Optimizations: Someof the optimizationsdescribedabove (e.g., registerallocation)not
only remove code,but simplify theremainingcode.Distilling theexamplereduceghefractionof loads
to 1/5 from 1/4, reducing datafioheight and contention for the cache ports.

e Scheduling: Having removed branchesthe distilled programhaslarger basicblocks,which facilitates
instructionschedulingln addition,loadscanbe hoistedacrosshasicblockswith impunity; exceptions
caused by the distilled program are ignored.

e Reducing Static Code Size: Remaing instructionsfrom active blocksandeliminatinginactive blocks
reduces static code size, enabling mofieieht use of the instruction cache.

e CodeLayout: Distilling theabove example,reduceghe averagenumberof discontinuougetcheg(i.e.,
takenbranchespy afactorof 4, throughfunctioninlining, branchremoval, andassigninghedominant
branch taget to the dll-through path. Code layout can also minimize I-cache conflicts.

e [f-conversion: Somefrequentlymispredictecbranchesanbeif-convertedusingcmow instructionsto
avoid branchmispredictiorpenaltiesDistilling programamay createadditionalprofitableopportunities
for if-corversion by reducing the code in the if and else clauses.

e Prefetching: Cache miss profiling can guide scheduling of loads and insertion of pre-fetches.

We expect these optimizations to maintain, if not im@plPC relatre to the original program.

5.2 Predictability and Repetition in Programs

In the previous section we demonstrated examplecodesegmentthat could be distilled to a third of its
original sizewith minimal impacton correctnessin this section,we presentdataon the ubiquity of pre-
dictability in non-numerigprogramsto suggesthatthe exampleis representatie. We presentdataon the
distribution of branchbiasesthe presencef codeexpansion-freenlining opportunitiesandthe lifetimes
of register and memoryalues.

As demonstratedn Section5.1.1, much of the computationperformedby non-numericprogramsto
resole control-flav is unnecessarMany staticbranchesareonly takenin onedirection,andthesestatic
branchescomprisea significantfraction of dynamicbranchegqe.g., ashigh as80% in vortex). These
branchesndothersthatonly rarelygoin thenon-biagdirectioncanberemovedfrom thedistilled program
with minimalimpacton correctnesgrigurell(a)shovsthatbranchesvith greatetthan99%bias(denoted

by the dottedvertical line) make up 93%, 72%, 40%, and 28% of the dynamicbranchesn vortex, gcc,
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Figure 11. Exploitable regularity in control flow. (a) Highly-biasedstaticbranchegontribute a largefraction of
dynamicbranchesCumulatve distributions of dynamicbranches—catmrizedby the static branchs bias—is
shawvn for 4 benchmarkshatrepresenthe distribution of behaiors. (b) About one-halfof executedfunctionsare
called from a single call site and can be inlined with no codetgro

eon, andcrafty. Furthermoredynamically mary functionshave a uniquecall site. Figure11(b) shovs
that about half of the functions touched during tkecation can be inlined without code witb.

Most valuescomputedby the programfall into one of the two optimizationcasesshavn in Figure5:
shortlifetimes and distantfirst uses.Almost all registervaluesand 30-40%of storesare not referenced
morethanl100instructionsafterthevalueis createdMany of thesevalueswill becreatedandkilled within
a taskandthereforeneednot be includedin checkpoints Another20-40%of storevaluesare not refer-
encedduringthefirst 10,000instructionsafterthe store. Thesestoresneednot be executedby the distilled
programbecauseby thetime thefirst useis encounteredhevaluewill have beenalreadyproducedy the

original program. Figur&2 shevs data foper1, which is representag of Specint 2000.

5.3 Automatic Program Distillation

As partof ourresearclonthe MSSPexecutionmodel,we aredevelopinganautomatigprogramdistiller.

This infrastructurdas not complete but for the optimizationscurrentlyimplementedve obtainresultsthat

8 197 first use g 1094

5 081 S 08~ distant stores

w 0.6 s 0.6

° last use o

& 044 S 04+

8 024 g 0.2

= 00 U U = 00 U D
a) 1 10 100 1000 10000 b) 1 10 100 1000 10000

distance (in instructions) distance (in instructions)

Figure 12. Distances,in instructions, to first and last usefrom register (a) and memory (b) writes. Datafor
perl plottedascumulative fraction (i.e., 75% of registersobsere their lastusewithin 10 cyclesof the write).
For both registersand memory first and last usesare rarely far apart. Alimost all register values are read
immediately—within 10 instructions—andare never referencedagain after 20 instructions.11% of written
registersarenever read.Storelifetimesexhibit morevariation.Thedistilled programcanpotentiallyavoid 80% of
stores:about45% are shortlived (last usewithin 100 instructions)and another35% have distantfirst uses(not
referenced in the first 10,000 instructions foflog the store.)
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bzi | cra | eon | gap | gcc | gzi | mcf | par | per | two | vor | vpr
Avg. Task Size 57| 121 | 109 89 58 44 59 93| 111 | 199 98 | 129
Avg. # live-in reg. 59| 53| 50| 48| 46| 43| 32| 47| 48| 46| 55| 64
Avg. # live-in mem. 6 24 16 13 7 5 10 10 14 23 12 17

Table 1. Task characterization. Task size is in dynamic instructions. Whilgister live-in count is lagely inde-
pendent of gerage task size, number of memoxwglin values correlates strongly teeaage task size.

)
- 120% 136% .
ks 0 orig. w/nops
% 100% B+ dgead P
2 0% — o + branch
g B + store
_% 60% - m + jdentity

“"bzi cra eon gap gcc gz mcf par per two vor vpr

Figure 13. Reduction of dynamic instruction count as a function of the extent of optimization. Optimization
groupsdescribedn text. Datashown for runsof thefirst 2 billion instructionsof thebenchmarknormalizedo the
original program with the nops remexd.
arecomparabléo the manuallydistilled examplefrom Section5.1.1.We have seemo evidenceto believe
thattheautomatedlistiller will fail to achieve thefull reductionachievedby the examplewhenall optimi-
zations are completed.
Our infrastructureconsistsof threepieces:the profiler, the distiller, and the evaluationsimulator The
profiler collectsa variety of information(e.g., control-flov edgeprofilesandmemorydependenceprofiles)
andsavesthedatato files for useby thedistiller. Thedistiller generatesinternalrepresentatiofiR) from

the original program.Using heuristicsthat attemptto createtasksof moderatesize (around100 instruc-

tions), checkpointsareinserted into the IR at naturalboundariege.q., loop headersandreturntargets)in
an attemptto minimize the size of live-in sets.Next the distiller, guidedby profile information, applies
speculatre codetransformationgo the IR. The codeis thengenerate@longwith the necessarynapsand
the checkpointbitmap. The resultingaveragetaskandlive-in setsizesfor the benchmarksare shavn in
Tablel.

Theevaluationsimulatorperformsfunctionalsimulationof boththe masterandthe slaves.The simulator
is completely execution-drven and allows arbitrary wrong-path execution. The architectedmemory
sharedby the masterandslaves,is not updatedmmediatelyby the slavesto simulatethe lag betweerthe
distilled program xecution and task retirement.

For the optimizationsimplementedpur automaticdistiller achievesresultscomparableo the example
presentedn Section5.1.1.Reductionsn dynamicinstructioncountsareshavn for a successiowf optimi-

zationsin Figure13. Theresultsarenormalizedto the original programwith the nopsremoved. The num-

8. Some optimizations are sengiito the location of checkpoints; hence, our results &etafl by the quality of
our heuristics. W expect that our results could be impeal by better checkpoint insertion algorithms.

17

University of Wsconsin-Madison dchnical Report 1438.\ailable from http://wwwcs.wisc.edu/~zilles/papers/mssp-tr1438.pdf



- 100% x 100%

= <

g 95% ‘%

é 90% ] X x % 75% -

£ 5% X% e x £

© 8o% | : 50% | : :

a) 0.0% 0.1% 0.2% 0.3% b) 0% 0.2% 0.4% 0.6%
misspeculation rate misspeculation rate

Figure 14. Performance/accuracy trade-off. (a) The misspeculatiorratesand dynamicpath reductionsfor a
spectrunof distilled programdor thebenchmarkerafty, (b) Thebestconfigurationdor all benchmarkfiave a
similar L-shapetrend.Most of the benefitof eachoptimizationcomeswith only a smallmisspeculatiorpenalty;
as the correctness threshold wéoed only incremental performance is achie

ber of nopsin the original executionis substantialthe first bar shavs the relative size of the original

programwith the nopsincluded. The secondbar turns on dead code elimination. The third bar adds
branch removal (usingan accurag thresholdof 1%) andinlining achiezable without codegrowth. Bar
four addsthe distant store optimization, which didn’t benefit the two functions in the example in

Section5.1.1,but benefitsthe executionsasa whole, especiallygcc andvortex. Thefifth andfinal bar
adds thedentity optimization.

Theseoptimizationsreducedynamicinstructioncountby 15-40%(20-50%whencountingnopremoval)
acrosghe benchmarlsuite. Theseresults for the mostpart,exceedthe 22%reductionthe sameoptimiza-
tionsachiezedin our handoptimizedexample.All executionshadtaskmisspeculatiomatesbelov 1% and
mary configurationsverebelow 0.1%.Thus,it appearghatit will be possibleto automaticallydistill pro-
gramsto achieve significantreductionan dynamicinstructionlengthwhile maintainingsmallmisspecula-
tion rates.

By varying the enabledsetof optimizationsand adjustingthe correctnesshresholdsof the individual
optimizationswe cancreatea spectrumof distilled programs Figure 14(a) plots the accurag of distilled
programgfor crafty againsttheir reductionin dynamicinstructioncount. The datapointsabove theline
are bad configurationgworseaccurag and more dynamicinstructionsthananotherconfiguration).The
bestconfigurationgor eachbenchmarkollow atrend(shavn in Figure14(b)). Initially, dynamicinstruc-
tion countfalls rapidly with little impacton accurag. Shortly thereafterthe curvesflattenout—ata task
mispredictionrate of less0.1%—andadditionalreductionin dynamicinstructioncountcomesonly with
increasingthe numberof misspeculationsThe bestperformances likely achieved by configurationson
the knee of the cuer

6 Related Work

Thiswork draws inspirationfrom threemain bodiesof work: speculatre multithreading)eader/follaver

architectures, and speculaicompiler optimizations.

18

University of Wsconsin-Madison dchnical Report 1438.\ailable from http://wwwcs.wisc.edu/~zilles/papers/mssp-tr1438.pdf



Therehasbeenextensive previousresearchn speculatre multithreading someexamplesinclude[1, 3,
7,10,12,16,18,20, 30,29, 32]. Our managemenf the speculatie statecreatedby thedistilled program
draws heavily from thisresearchTheideaof predictingtasklive-insusingtraditionalvaluepredictorshas
been preiously proposed in [1, 20, 22].

The master/slae architectureof the MSSPmodelcorrespondso the leader/follaver architecturegpro-
posedfor sequentialprocessorsTo toleratememorylateng, the decoupledaccessfeecutearchitecture
[26] broke the programinto a streamthat loadedand storeddatavalues(leader),and a streamthat per-
formednon-addressomputation(follower). Pre-eecutionproposalgd8, 25, 31, 34] executea speculatie
subsebf the program(leader)to prefetchandgenerateredictionsfor the completeexecutionof the origi-
nal program (follaver).

Leader/follaver architecturefiave alsobeenproposedor fault tolerancewhereboth processesxecute
the original program,detectinginconsistencief the executions AR-SMT [24] performsthe two execu-
tionsasthreadson anSMT. Diva[2] performsthesecondexecutiononasimplerprocessothatcanbever-
ified to detect desigrafilts in the core.

Of the leader/follaver architecturesthe closestto MSSPis SlipStream[31]. The MSSPmodeldiffers
from SlipStreamn threemajorways: (1) thefollower executionis parallelizedn MSSR (2) the codeexe-
cutedby the leaderis a separatestaticimageratherthana strict subsebf the original program.A separate
imageprovidesadditionaloptimizationopportunitiesput it requiresexplicit mapsto correlatethetwo exe-
cutions.(3) SlipStreamdynamicallyselectghe programsubsetbasedon the predictedpath,whereMSSP
uses a static distilled program.

Our leader the distilled program,derivesits advantageover the whole executionthroughapplying pro-
file-driven speculatire transformationsOthershave previously obsenred the benefitof thesetransforma-
tions, some examplesinclude control-based[6, 9, 11, 19, 27], data-dependencfl4, 17, 21], and
value-based5, 13] optimizations.Our work differs from previous work, becausehe speculations not

verified by the transformed codatlby running the original program in parallel.

7 Summary/Conclusion

In this paper we presenteda hew executionmodel, Master/Slae Speculatie Parallelization(MSSP),
thatdiffersfrom previous speculatre multithreadingarchitecturedy way of its master/slae architecture.
A key componenbf this modelis the distilled program,a speculatre approximationof the original pro-
gram.By usingrepresentate profile information,programdistillation appearsapableof generatingsub-
stantially faster code (67% of code was removed from one example) that accuratelyreproduceshe

executionbehaior of the original code(taskmisspeculatiomatessignificantlybelowv 1%). We presented
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ananalyticalmodelthatsuggestshatwhendistilled programsareaccuratethe performancesf thewhole
execution can closely track that of the distilled program.

We believe the MSSP execution model conformsto the necessaryeal world constraintsto become
widely adopted.Becausethe original programis usedun-modified,there are no necessarycompiler
changesandlegacgy binariescanbe supportedThe distilled code,which canbe derived from the original
programhasno correctnessequirementsAs aresult,the programdistiller neednot beverified. The archi-
tectureitself is tolerantof wire lateng, becausénter-processocommunicatioris only onthecritical path
whenthe mastemisspeculatesan occurrenceur study of distilled programssuggestanbe madeinfre-

quent.
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