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In this paper, we propose a novel layering approach to achieve end-to-end exponential se- 

curity without resorting to presumed physical layer conditions. The only requirement for 

such an exponentially secure system is existence of a common key source between legiti- 

mate users that is partially known by Eve. The novel framework includes a random cipher 

and key stream generating scheme constituting the first layer and universal hash form- 

ing the second layer. The key generating scheme is based on a novel definition of a ran- 

domness extractor that derives a key stream with the required entropy from the common 

source, to be used for cipher. All metrics involved in characterizing the quality of secrecy of 

two-layer components are related to Rényi entropy and conditional Rényi entropy, which 

are all ultimately captured in the adopted information leakage metrics: mutual information 

and Eve’s distinguishability based on L 1 norm distance from uniformity. Such relationships 

are exploited to optimize the resulting bounds for secrecy exponents by selecting appro- 

priate operating parameters including required key rate and source entropies, as well as 

the required guessing error rate by Eve to attack the first layer. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

The basic secrecy system includes a sender Alice who attempts to transmit as many messages as possible to Bob, which

are secured against an eavesdropper called Eve who attempts to attain the source information from Alice based on its prior

knowledge and observation. The main problem is to design and optimize this system with a secrecy that is evaluated in

terms of the amount of information leaked to Eve. In other words, this system can only guarantee a secure transmission

between two parties if information leakage to the third party is minimized based on strict secrecy requirements. 

1.1. Motivation and related works 

In this work our main goal is to achieve end-to-end exponential security without resorting to presumed physical layer

conditions, and to further quantify the level of secrecy based on associated exponents as defined by [1,2] for two information

leakage metrics: mutual information and Eve’s distinguishability based on L 1 norm distance from uniformity, respectively.

These two metrics have been considered extensively by information theory community and cryptographic community lately.
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In information theory community, information leakage based on mutual information as secrecy criterion has been con-

sidered [3–5] . These works only consider a security metric based on mutual information which is required to be negligible

for uniformly distributed random message sources. However, in reality, we cannot expect any finitely long messages to be

uniformly random since no universally source independent compression exists for such finite sources [6] . Rather, we use

a stronger notion of end-to-end security, previously used in [1] , that requires mutual information to be negligible for any

given message distribution. In particular, Hayashi in [1] showed that when input has equivocation in terms of Rényi entropy

of order α, after application of universal 2 hash function, Eve’s information about the generated random variable decreases

at an exponential rate that can be lower bounded. This bound is more generalized and in some cases even tighter than the

bound obtained by Bennett in [7] . 

In cryptography community, security of ciphers has been mainly evaluated in terms of computation based metrics against

resource constrained attackers. However, recently some researchers have used statistical measures, like variational distance,

as secrecy criterion against adversary with unbounded computational power [8–11] . Variational distance is closely related

to practical notions of secrecy like Eve’s distinguishability and can be used to provide a universally composable notion of

secrecy that allows to express secrecy requirement for any protocol environment. As in [2,11] , Eve’s distinguishability is

defined as half of the L 1 norm distance that is closely related to universal composable security, which is the second metric

we adopt to evaluate information leakage from cryptographic point of view. As in [2] , Hayashi also provided a lower bound

of the L 1 distance between the output of universal hashing and the uniform random number, as well as its corresponding

exponent analysis. 

It should be noted that our goals of achieving end-to-end security with quantifiable secrecy exponents under metrics of

mutual information and L 1 distance, respectively, are partially inspired by the works from [1,2] . However, it should also be

remarked that the authors of [1,2] assume a common randomness to begin with and a physical layer channel from Alice to

Eve degraded than that to Bob and propose using invertible hash for secure message transmission and secret key generation.

In this work, we also assume that there exists shared common randomness, yet instead of having a degraded channel, as

a contrast, we exclusively rely on Eve’s uncertainty on this shared randomnesses as the privilege provided for legitimate

users over adversary that allows us to utilize invertible universal hash function for secrecy enhancement. The assumption

on existence of such a common random source was also used in some key extracting techniques [9,12] . As a result of the

lack of degraded Eve’s channel to exploit, a substantial amount of new results has been obtained to achieve our goals, which

are highlighted in detail in the next subsection. 

1.2. Summary of our novel results 

Given the existing advantage in terms of Eve’s uncertainty about the common randomness shared between Alice and

Bob, and without resorting to further a degraded physical channel to the eavesdropper, we propose a novel two-layer secrecy

system that can be considered as a practical construction of the methods proposed in [1,2] . In this new framework, a random

cipher and key stream generating scheme constitutes the first layer and universal hash the second layer. 

This new layering protocol prompts us to study many different problems than [1,2] including a key generation approach

based on a novel definition of randomness extractor with results provided in Theorem 1 , a novel characterization of equiv-

ocation of the message encrypted by a Shannon cipher with results provided in Theorem 2 , as well as a novel joint opti-

mization problem to maximize the attained security exponents over two layers. It should be noted that we need to put all

individual metrics in our proposed scheme that comprises (a) generation of key stream and its security evaluation using

Rényi entropy; (b) Shannon type cipher measured by both maximum a posteriori probability (MAP), and conditional Rényi

entropy; (c) i nvertible hash at transmitter and hash at receiver; as well as (d) the end-to-end security evaluation using

either mutual information or L 1 distances, in a coherent framework and then conduct optimization accordingly. 

In the first layer of design, the required keys for encryption are derived using key extracting approach that consists of a

statistical sampler which provides sampled data frames from a common key source between legitimate users and an extrac-

tor that derives keys with the required Rényi entropy for encryption from these partially secure data frames. Randomness

extractors are well suited to address the need for key derivation functionality which maps input distributions with sufficient

entropy into outputs with distributions statistically close to uniform [13] . It should be further noted that, to the best of our

knowledge, so far all existing definitions of extractors measure randomness of the extracted output in terms of statistical

distance from uniformity. In secrecy enhancement of the designed scheme that comprises second layer, privacy amplification

is based on uncertainty measured using Rényi entropy, and hence a new notion of extractor is developed that extracts the

required randomness on the basis of Rényi entropy, rather than Shannon entropy. 

The main functionality of the second layer of the design is to leverage the existing equivocation provided by the first

layer to establish a transmission mechanism with information leakage that decays exponentially fast. For this purpose, we

utilize universal 2 hash function as the main secrecy enhancement approach on top of the first layer. In particular, we suggest

a more generalized version of the invertible universal 2 hash function used in [10] based on the multiplication in finite

field [14] . It should be noted that Hayashi in [15] constructs a finite field whose multiplication has small computational

complexity, so that our proposed invertible hashing can be implemented with much less amount of calculation than physical

layer secrecy approaches whose construction resort to some sophisticated error correction codings [16] . 

We design a dual mode transmission mechanism, under this two-layer framework, that switches between two modes

of operation, one using only first layer based on encryption and the other one operating jointly on encryption and privacy
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amplification layers, to provide various secrecy levels based on the demanded security for different types of message. In

this framework, for the purpose of end-to-end security analysis, for a particular case where source messages consist of

independently and identically distributed (i.i.d) symbols, we seek to optimize bounds for exponents of information leakage.

These optimized bounds reflect unique characteristics of both universal hash function and general Shannon cipher in a

cohesive manner as shown in the major results in Sections 4 –8 . In dual mode transmission mechanism, we jointly optimize

key generation rate that guarantees achievable secrecy based on both optimized bounds of secrecy exponent as well as the

required guessing error probability for Eve. We show that due to the demand of a higher level of secrecy in operational

mode that uses both layers, its required secret key rate is much higher than the mode operating only on the first layer. 

We have presented parts of the results of this paper in [17,18] . Compared to [17] , in this work we have revised abstract

and introduction in order to more clearly address our motivation for this work as well as the novelties of the proposed

security scheme. In particular, we have clarified the difference between our work and some other relevant works in this

version. We also have used a new metric for conditional Rényi entropy that has changed the whole secrecy analysis and

characteristics of the first layer of the proposed scheme and has lead us to the new Theorem 2 in Section 5 . This critical

revision allows us to remain consistent with the definition of secrecy metrics throughout the paper. As compared with

[18] , in addition to the items listed above, in this paper we have presented a new analysis based on Eve’s guessing error

probability for the first layer of scheme. We also have proposed a new dual mode transmission mechanism and jointly

optimized the required key generation rate to achieve the required security in both operational modes. It should also be

noted that more complete proofs are provided in this paper. 

In Section 2 , we provide the required background in cryptography and information theory. Section 3 presents the whole

scheme of design and illustrates denotations that are used throughout the paper. Key extractor and cipher are described

and analyzed in Sections 4 and 5 , respectively. Privacy amplification and exponent analysis based on mutual information

and variational distance metrics are detailed in Section 6 . The description of dual mode transmission mechanism and its

optimization are presented in Section 7 , and its related numerical analysis is provided in Section 8 . Finally, we conclude in

Section 9 , and the proofs of some theorems are given in Appendix A . 

2. Relevant background 

In this section, we provide a brief review about several important notions in information theory and cryptography. Let

random variable X have probability distribution of P X defined on the alphabet set of �, and let U X be a uniform distribution

on the same alphabet set of X which is �. L 1 distance of P X from uniform distribution is 

d 1 (P X , U X ) � 

∑ 

x 

| P X (x ) − U X (x ) | . (1) 

When the distribution P Y of the random variable Y and the joint distribution of P X , Y are given, we get 

d 1 (P X,Y , U X × P Y ) = 

∑ 

x,y 

| P X,Y (x, y ) − U X (x ) P Y (y ) | 

= 

∑ 

y 

P Y (y ) 
∑ 

x 

| P X| Y (x | y ) − U X (x ) | = 

∑ 

y 

P Y (y ) d 1 (P X| Y = y , U X ) . (2) 

Rényi entropy of order α for 1 < α ≤ 2 is defined as [19,20] : 

H α(X ) = 

1 

1 − α
log 

∑ 

x 

P X ( x ) 
α. (3) 

We also have joint Rényi entropy defined as 

H α(X, Y ) = 

1 

1 − α
log 

∑ 

x,y 

P αX,Y ( x, y ) . (4) 

Then, we shall define the conditional Rényi entropy 

H α(X | Y ) = 

1 

1 − α
log 

∑ 

x,y 

P Y ( y ) P X| Y ( x | y ) α. (5) 

As another measure of difference between two distributions, we can obtain distance of P X from uniform distribution in

terms of Rényi divergence of order α, for 1 < α ≤ 2 [19] 

D α(P X || U X ) = 

1 

α − 1 

log 
∑ 

x 

P X (x ) αU X (x ) 1 −α. (6) 

For α = 1 , KL-divergence is defined as 

D (P X || U X ) = 

∑ 

x 

P X (x ) log 
P X (x ) 

U X (x ) 
. (7) 
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Fig. 1. Transmitter side in the proposed secrecy scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following inequality in [21] characterizes the relationship between KL-divergence and L 1 distance 

− log d 1 (P X , U X ) ≥ −1 

2 

log D (P X || U X ) . (8)

We adopt universal hashing for privacy amplification and key extraction. An ensemble of the functions h s that maps set

� to { 1 , . . . , M} , where S determines statistical behavior of the function h , is called universal 2 when it satisfies the following

conditions [22] : 

Condition 1: ∀ x 1 � = x 2 ∈ �, the probability that h s (x 1 ) = h s (x 2 ) is at most 1 
M 

. 

Condition 2: For any S , the cardinality of h −1 
s { i } is independent of the input i . 

To make this concrete we give an example of a universal 2 hash function with an efficiently computable inverter that

can be used for key derivation and privacy amplification in our scheme. The construction was used in [10] as randomness

extractor. Here, we use a more general symbol-wise format of this construction. If we interpret n -symbol strings as elements

of the finite field GF( q n ), we shall define a multiplication operator � on them. Let set � be { 0 , . . . , q − 1 } and consider seed S

that is drawn uniformly from the set SD = �n \ 0 n . We define the universal hash function h : SD × �n → �b that operates on

inputs X ∈ �n and S ∈ SD to output the first truncated b -symbols of X � S as A = h (X, S) = trunc b (X � S) (this construction

was also used in [14] ). 

Let S −1 be the inverse of S with respect to multiplication in GF( q n ). Then, we can efficiently invert this universal

hashing by the function h −1 : SD × �n −b × �b → �n defined as h −1 (S, R, A ) = (A || R ) � S −1 , for R uniform over �n −b . In

Appendix A we show that both conditions 1 and 2 hold for this function, meaning that in addition to uniformity of the

output hash value, every point in the range has the same number of preimages. 

3. Proposed model for secrecy scheme 

The transmitter and the receiver side of our proposed secrecy scheme are shown in Figs. 1 and 2 , respectively. We

assume that there exists a source of information denoted by V about which Eve has a lower bounded uncertainty measured

in terms of Rényi entropy. Key extracting module shown in Fig. 3 is used to derive nearly uniform secret key from this

weakly random source of data. By independently sampling a segment of this source at time i we obtain a data frame �i

that will have the required randomness given Eve’s knowledge in terms of Rényi entropy. We show that a key Q 

i can be

extracted out of �i , by using extractor based on universal hashing, with Rényi entropy that is asymptotically close to the

maximum value. This generated key can be used as a symmetric key for encryption in a general cipher. 

Consider a uniformly distributed and randomly chosen function from a universal class of hash functions that is applied

upon a source of data with a sufficient equivocation (conditional Rényi entropy given Eve’s knowledge). It is proven in

[1,2] that the generated output hash value will have exponentially decreasing information leakage measured in terms of

mutual information or L 1 norm distance from uniform distribution. 

As shown in Fig. 1 , the secure transmission mechanism is applied over a sequence of l blocks with the size of b -symbols.

As convention a message block at time i is shown as A 

i , with symbols of { A 

i 
1 
, A 

i 
2 
, . . . , A 

i 
b 
} . A sequence of l concatenated

blocks is denoted as A 

(l) = { A 

1 , A 

2 , . . . , A 

l } . Inverse universal hash maps this sequence into a sequence of plaintext blocks

{ X 1 , X 2 , . . . , X l } using the same random seed S that is publicly known and a sequence of random vectors { R 1 , R 2 , . . . , R l } that

are uniformly generated. In our scheme we consider an invertible universal hash function based on modulo n multiplication

in GF ( q n ). Inverse universal hash maps its input into its pre-image that increases its length by adding some randomness

through binning. It has a similar functionality as the homophonic encoder in approach proposed in [23] or the random

binning based encoding proposed by Wyner and Ciszar in [3,4] and can be considered as a particular encoder that tailors to

Eve’s uncertainty over the key source. 
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Fig. 2. Receiver side in the proposed secrecy scheme. 

Fig. 3. Key extractor from a weakly random source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each of the generated n -symbol plaintext blocks at the output of inverse universal hash function will be encrypted inde-

pendently using a general cipher. The cipher is comprised of a key stream generator to derive key stream C i from this key Q 

i 

using a bijective mapping as well as a combiner that combines this key stream with the plaintext block X 

i . For i = 1 , . . . , l,

this encryption results in a sequence of ciphertexts Y (l) = { Y 1 , Y 2 , . . . , Y l } , that will be transmitted to Bob and eavesdropped

by Eve. 

Key extractor and the cipher constitute the first layer of secrecy that ensures sufficient equivocation of plaintext blocks

provided that the extracted key has the required Rényi entropy. Upon receiving these ciphertexts, Bob has the same initial

key source V and uses inverse mappings to recover the plaintext sequence X (l) = { X 1 , X 2 , . . . , X l } with a sufficient equivoca-

tion. As will be stated in Theorems 4 and 5 , after applying the universal hash over this sequence, Eve’s information about

the restored message sequence A 

( l ) approaches zero exponentially fast, whose exponent can be bounded properly. 

4. Key extractor 

With the existence of an initial key source that contains some good amount of randomness but is non-uniformly dis-

tributed or partially known by Eve, we need to design a key extracting function based on essential cryptographic com-

ponents that derives required keys from this imperfect source with a randomness close to uniform. The assumption on

existence of such a random source was also used in some key extracting techniques like [9,12,24] . This random data can be

produced through different means such as hardware devices based on thermal noise, statistical sampling of user’s keyboard

strokes or timing data obtained from the hard disk or packet transmission in a network [9] . Here we describe characteristics

of the proposed key extractor with the structure illustrated in Fig. 3 , that consists of an independent sampler which pro-

vides data frames with the required Rényi entropy given Eve’s knowledge, and a randomness extractor that uses universal

hashing to extract keys from these data frames with Rényi entropy asymptotically close to maximum. 

Consider random vector V common between Alice and Bob, consisting of ν random variables as V = (V 1 , V 2 , . . . , V ν ) that

is used as initial keying source. This keying source V gathered by users has to contain enough uncertainty at Eve’s side in

terms of Rényi entropy of order 2 denoted by H 2 ( V ). As shown in Fig. 3 the first step in key extractor is a sampling module

that each time independently samples a λ-tuple from this source such that each symbol can only be sampled once. For any

λ-tuple i = (i 1 , i 2 , . . . , i λ) with 1 ≤ i 1 < i 2 < . . . < i λ ≤ ν let V i be the sampled string (V i 1 , V i 2 , . . . , V i λ ) . Then, it is shown in

[25] that 

H 2 (V i ) ≥ H 2 (V ) − (ν − λ) . (9) 

For H 2 (V ) − (ν − λ) = δ if we denote the randomly sampled λ-tuple string at time i as �i , it will have collision entropy

of at least δ. Rényi entropy is a decreasing function with respect to its order [20] , so H α( �i ) ≥ H 2 ( �
i ) ≥ δ for 1 < α ≤ 2,

and Eve’s uncertainty about the sampled output in terms of Rényi entropy of order α will be at least δ. 
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Each time that λ number of samples are taken for key generation out of the source V , it is assumed that these samples

are excluded from upcoming samplings for future key generation. Moreover, we assume that for each key generation, the

keying source keeps its minimum required collision entropy of H 2 ( V ) by replenishing its missing samples. This is to make

sure that acquiring any information about previous keys will not assist Eve to reduce her uncertainty about future keys. 

The second step is to use a randomness extractors that derives keys from these independently sampled data frames

by mapping inputs with sufficient Rényi entropy into outputs that are statistically close to uniform. Since in our scheme

privacy amplification is characterized based on Rényi entropy, we need to develop a new notion of extractor that extracts

randomness in terms of Rényi entropy, unlike existing definitions of extractors that measure extracted randomness based

on statistical distance. The following theorem, proven in Appendix B , explains how universal hash functions can be used to

extract randomness in terms of Rényi entropy. It can be considered as a generalization of Theorem 1 in [1] , from Shannon

entropy to Rényi entropy of order α > 1. 

Theorem 1. Consider a universal class of hash functions h s : X → K; where S is uniform over SD . If we apply h s over input X ∈ X 

with Rényi entropy of H α( X ) ≥ δ, for 1 < α ≤ 2, the generated hash value Q = h s (X ) with Q ∈ K attains Rényi entropy with the

following lower bound 

H α(Q ) ≥ log |K| − 1 

α − 1 

e −(α−1)[ δ−log |K| ] . (10)

Now, we can define the new notion of Rényi extractor: 

Definition 1. RenExt: X × SD → K is a ( δ, ζ ) Rényi extractor if for every seed S uniformly chosen on SD and every source X ∈ X 

of Rényi entropy H 2 ( X ) ≥ δ, it holds that RenExt ( X , S ) has Rényi entropy of at least log |K| − ζ . 

Rényi extractor based on universal hashing results in entropy loss ζ which is exponentially decreasing. By applying this

Rényi extractor over sampled data frame �i which has Rényi entropy of at least δ, provided that δ > log |K| , we obtain a

key Q 

i ∈ K with Rény entrpy 

H α(Q 

i ) ≥ log |K| − 1 

α − 1 

e −(α−1)[ δ−log |K| ] = log |K| − ζ . 

If we adopt universal hashing technique based on � multiplication in GF( q n ) for key extraction, we need to use indepen-

dent seeds for each key derivation. It ensures that then due to independent sampling and mapping used in key extractor,

the generated keys will be independent of each other. 

5. Cipher 

In this section we characterize the first layer of secrecy in the proposed scheme that is based on a cipher and then

use equivocation of order α as the measure to evaluate its secrecy. It then leads us to determine the definition of a good

cipher and also the required key generation rate that guarantees the minimum required secrecy level for this layer. Consider

a deterministic cipher that consists of a key stream generator and a combiner. Let the plaintext block at time i be X i =
(X i 

1 
, X i 

2 
, . . . , X i n ) where X i 

j 
∈ �. The key extractor output is Q 

i that takes values in the set K with total of e nR s elements. At

time i key stream generator maps the input key Q 

i to the key stream of length n , C i = (C i 
1 
, C i 

2 
, . . . , C i n ) with components from

the set � using the mapping 	: K → �n . We define the cipher as the set C ∗ = { C 1 , C 2 , . . . , C e nR s } of key streams with length

n and key rate of R s = 

log |K| 
n . 

For i = 1 , . . . , l the cipher produces the ciphertext block Y i from the i th plaintext block X 

i and the i th key stream C i using

the combiner f (., .) that maps �n × �n → �n . 

Y i = f (X 

i , C i ) i = 1 , 2 , · · · . (11)

Bob is aware of the key Q 

i used at time i and can generate the same key stream C i using key stream generator. He applies

inverse mapping g (., .) to the received ciphertext block C i in order to recover the plaintext block X 

i , with g : �n × �n → �n

and X i = g(Y i , C i ) . Depending on the mapping f , the cipher could be block, stream cipher, or additive-like cipher. 

Now the question is how much Eve knows about the plaintext. She has knowledge about the system and all the mappings

and can receive ciphertexts. However, she has some lack of knowledge about the key source that results in uncertainty

about the cipher key. We evaluate this uncertainty in terms of equivocation of order α as defined in Eq. (5) that can be

characterized using Theorem 2 . The proof for this theorem is provided in Appendix C . 

Theorem 2. Let X = (X 1 , X 2 , . . . , X n ) , Y = (Y 1 , Y 2 , . . . , Y n ) and C = (C 1 , C 2 , . . . , C n ) be random vectors representing plaintext block,

ciphertext block and the key stream, respectively, where X i ∈ X , Y i ∈ Y and C i ∈ C such that |X | = |Y| . Let Q denote the random

vector representing the key. Let us define two measures 

p ∗(y ) � 

P Y (y ) 1 −α

γα,Y 

q ∗(y ) � 

∑ 

x P 
α
XY (x, y ) 

�α,XY 

, (12)
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where 

γα,Y � 

∑ 

y 

P Y (y ) 1 −α

�α,XY � 

∑ 

x 

∑ 

y 

P αXY (x, y ) (13) 

Then, there exists β > 1 such that for α > 1, equivocation of the plaintext satisfies: 

H α(X | Y ) ≥ H α(Q ) − D α(P X || U X ) − D α(P Y || U Y ) − β−1 
α−1 

D β [ ρ∗
Y || U Y ] . (14) 

where ρ∗
Y is defined as 

ρ∗
Y � 

{
p ∗Y if D β [ p ∗Y || U Y ] ≥ D β [ q ∗Y || U Y ] 
q ∗Y if D β [ q ∗Y || U Y ] ≥ D β [ p ∗Y || U Y ] 

(15) 

We define output redundancy function as 

�0 (P XY , α, β) = D α(P Y || U Y ) + 

β − 1 

α − 1 

D β [ ρ∗
Y || U Y ] . (16) 

A good cipher can be defined as a cipher that, regardless of what distribution its input has, generates ciphertext that is

sufficiently close to uniform distribution. This closeness can be measured in terms of Rényi divergence defined in Eq. (6) by

requiring it to be negligible. However, for our design we demand a cipher that for a given input–output distribution results

in a negligible output redundancy defined in Eq. (16) , implying that in addition to Rényi divergence of the ciphertext, the

second term in Eq. (16) is required to be close to zero. Namely, 

�0 (P XY , α, β) ≤ ε, (17) 

where ε has a sufficiently small positive value. Accordingly, for such a cipher equivocation of the plaintext satisfies 

H α(X | Y ) ≥ H α(Q ) − D α(P X || U X ) − ε. (18) 

The key generation rate R s has to be specified in order to guarantee the required secrecy for the first layer of the scheme

including the cipher and key extractor. It aims at a minimum required equivocation for Eve about the message that can be

characterized in terms of the average error probability in Eve’s estimation of the plaintext block. Let X 

∗ be an estimate of

adversary from the plaintext block X based on the maximum a posteriori probability (MAP) given the received ciphertext Y

as X ∗ = arg max X∈ �n P r[ X| Y ] . MAP decision rule minimizes the average probability of error per plaintext block defined as 

P e,adv = E Y [1 − max 
X∈ �n 

P r(X | Y )] = 1 − E Y [ max 
X∈ �n 

P r(X | Y )] . (19) 

According to the following theorem that is presented and proven as Theorem 6 in [26] , Rényi entropy can be used to

bound error probability of MAP decision rule based on an analogue of Fano’s lemma. 

Theorem 3. Let P be the set of a posteriori probabilities as P = { P 1 , P 2 , . . . , P m 

} , and let h α( P ) be defined as 

h α(P ) = 

1 

1 − α
log 

( 

m ∑ 

i =1 

p αi 

) 

, (20) 

If we consider estimation error probability defined as P e = 1 − max P i , for α � = 1 the maximum upper bound for h α( P ) is

attained as 

h̄ α(P e ) = 

1 

1 − α
log 

[
( 1 − P e ) 

α + 

(
1 

m − 1 

)α−1 

P αe 

]
. (21) 

Consider plaintext estimation by adversary, with the set of a posteriori probabilities as P = { P r(X = x | Y = y ) |∀ x ∈ �n } and

average estimation error probability for adversary as P e,adv defined in Eq. (19) . According to the above-mentioned Theorem

6 we can obtain the maximum upper bound for h α( P ) based on the definition in Eq. (20) for α > 1 as 

h̄ α(P e,adv ) = 

1 

1 − α
log 

[
( 1 − P e,adv ) 

α + 

(
1 

| �| n − 1 

)α−1 

P αe,adv 

]
. 

As a result, its average over the values of the random variable Y defined as 

h 

a v e 
α (P ) = 

1 

1 − α

∑ 

y ∈ �n 

P Y ( y ) log 
∑ 

x ∈ �n 

P r( X = x | Y = y ) α

will also follow this upper bound. h a v e α (P ) can be considered as one of the definitions of the conditional Rényi entropy as

discussed in [27] that due to Jensen’s inequality is always greater than or equal to the definition of the conditional Rényi

entropy in Eq. (5) used in this work. Therefore, we can obtain the upper bound for conditional Rényi entropy of order α

H α(X | Y ) ≤ h̄ α(P e,adv ) , for 1 < α ≤ 2 . (22) 
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In this work error probability of attacker in estimation of the plaintext block using MAP is adopted as the secrecy metric

for the first layer of the scheme. Such metric was also used in previous works [28,29] as secrecy criterion. Let us determine

a threshold as P th 
e and design the system with a key stream generation rate that ensures that Eve’s block error probability

always exceeds it. It is easy to see that for 1 < α ≤ 2, h̄ α(P e,adv ) is a monotonic increasing function of P e,adv . In other words,

if we ensure that h̄ α(P th 
e ) ≤ H α(X| Y ) due to inequality (22) and monotonic behavior of h̄ α(P e,adv ) we will have P e,adv ≥ P th 

e .

Let τα � h̄ α(P th 
e ) , so we need to make sure that equivocation in Eq. (18) never drops below τα

H α(Q ) − D α(P X || U X ) − ε ≥ τα. 

We define η � ε + τα so that 

H α(Q ) − D α(P X || U X ) ≥ η. 

If we use our proposed key extracting technique, H α( Q ) can be lower bounded according to Eq. (10) . Then, for the above

inequality to hold, we need to satisfy the following sufficient condition, 

log |K| ≥ D α(P X || U X ) + 

1 

α − 1 

e −(α−1)[ δ−log |K| ] + η. (23)

Since in our proposed scheme δ and log |K| depend on each other, we can assume that they are chosen in a way that

both satisfy δ − log |K| ≥ γ . Hence, we can infer that 

R s ≥
D α(P X || U X ) + η + 

1 
α−1 

e −(α−1) γ

n 

. (24)

It characterizes the minimum required key stream generation rate for the first layer of secrecy. 

6. Privacy amplification 

In this section we discuss how universal hashing can be used to create a higher layer of secrecy on top of the cipher, as

the first layer, in order to transmit messages with a security evaluated in terms of secrecy exponent that measures how fast

information leakage decays with respect to the number of transmitted blocks. This exponent is defined for information leak-

age measured in terms of mutual information as well as L 1 distance, and is characterized based on lower bounds presented

in Theorems 4 and 5 for the proposed two layer secrecy scheme. 

6.1. Secrecy exponent analysis based on mutual information 

The main objective of using universal hashing in our scheme is bringing secrecy up to the second layer by privacy

amplification. Let h s be an ensemble of universal 2 hash functions that maps set �n to { 1 , . . . , M} and satisfies both conditions

1 and 2. As proven in [1] , information leakage in terms of mutual information, averaged over possible seeds S , satisfies 

E s [ I(h s (X ) ;Y ) ] ≤ min 

1 <α≤2 

e −(α−1)(H α (X| Y ) −log M) 

α − 1 

. (25)

So we can find a function h s from �n to { 1 , . . . , M} that 

I(h s (X ) ;Y ) ≤ min 

1 <α≤2 

e −(α−1)(H α (X| Y ) −log M) 

α − 1 

, (26)

where Y denotes the obtained knowledge by Eve. Eq. (26) implies that when legitimate users have a common random-

ness denoted by X with equivocation of at least H α( X | Y ), we can make sure that the upper bound for Eve’s knowl-

edge about the output of h s ( X ) decreases with the exponent of (α − 1)(H α(X| Y ) − log M) . It should be noted that the

parameter α is introduced to the upper bound on mutual information in Eqs. (25) and (26) , due to the adoption of

Rényi entropy as a measure in quantifying the information leakage. By considering that both H α( X | Y ) and log ( M ) are

the functions of the block length n , if we put a normalized exponent in the power of the exponential function, i.e.

1 / (α − 1) exp ( −n (α − 1)(H α(X| Y ) − log (M)) /n ) , we can see that as the block length grows large asymptotically, for any

given α ∈ (1, 2], the mutual information is driven to zero exponentially fast with respect to the block length n . The addi-

tional optimization with respect to α that will be discussed in Section 7 is to further sharpen such exponential rate. In a

word, when we present an information theoretically secure scheme, we mean the proposed metric (either mutual informa-

tion or L 1 distance) about information leakage is driven asymptotically to zero at an exponential rate. 

In our scheme Alice and Bob exchange random vector X through encryption that enables them to have a shared body

of random data with equivocation of H α( X | Y ). As the next step if we apply the universal hash function based on � mul-

tiplication in GF( q n ), that maps �n to �b , it can be assured that output A = h s (X ) will have information leakage with the

decreasing exponent of at least (α − 1)(H α(X| Y ) − log M) , for M = | �b | . Now if we reverse this process and obtain X from

input A using inverse universal hash that maps �b to �n , we will get the same results since condition 2 guarantees that

the cardinality | h −1 
s (A ) | does not depend on A . Let Alice generate uniformly random string R over �n −b and apply inverse
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function h −1 
s over the input A , R and S −1 to obtain plaintext X = (A || R ) � S −1 . Then, decreasing exponent of information

leakage about A will be at least (α − 1)(H α(X| Y ) − log M) . 

Consider l -fold scenario of the above-mentioned mechanism where input message is framed into a sequence of l blocks

denoted by A 

(l) = { A 

1 , A 

2 , . . . , A 

l } for A 

i ∈ �b . Alice generates the sequence of l uniformly random (n − b) -symbol strings

R (l) = { R 1 , R 2 , . . . , R l } , and then by using inverse universal hash, outputs X i = (A 

i || R i ) � S −1 , to map A 

( l ) to the sequence

of plaintexts X (l) = { X 1 , X 2 , . . . , X l } . Then, X 

( l ) will be mapped to the sequence of ciphertexts Y (l) = { Y 1 , Y 2 , . . . , Y l } as Y i =
f (X i , C i ) through encryption by the sequence of l key streams C (l) = { C 1 , C 2 , . . . , C l } that are generated using the cipher keys

{ Q 

1 , Q 

2 , . . . , Q 

l } . Let A 

(l) ∈ I . We can obtain the random number generation rate in this l -fold transmission mechanism as 

ρ � lim 

l→∞ 

log |I| 
l 

= lim 

l→∞ 

log | �b | l 
l 

= log | �b | = log M. (27) 

At the receiver end after deciphering and recovering of X 

( l ) that consists of l plaintext blocks, universal hashing will be

applied over them to restore message blocks as A 

i = trunc b (X i � S) . Note that the same seed S , uniformly chosen over �n ,

is used for hashing of all l blocks that has to be publicly known before their transmission. We define mutual information

based secrecy exponent for l -fold scenario as 

e (l) 
I 

� lim 

l→∞ 

− log I(h 

(l) (X 

(l) ) ;Y (l) ) 

l 
, (28) 

whose lower bound is given in the following theorem. 

Theorem 4. Let random variable A represent the message block of size b with components in the set � where M = | �b | and Q

represent the cipher key. Then, for the described l-fold transmission mechanism in two layer secrecy scheme, mutual information

based secrecy exponent satisfies: 

e (l) 
I 

≥ max 
0 <α≤1 

(α − 1)(H α(Q ) + H α(A ) − 2 log M − ε) . (29) 

Proof. Since R i and A 

i are independent of R j and A 

j for i � = j , for a given S , X 

i and X 

j will be independent of each other.

Namely, revealing any information about any of the plaintexts does not assist Eve to reduce her uncertainty about other

ones. Consequently, we shall write 

H α(X 

(l) | Y (l) ) = lH α(X 

i | Y i ) = lH α(X | Y ) . (30) 

We use Cartesian product construction of universal class of hash functions in order to enlarge the domain of hash family.

In this construction hashed outputs, that are generated using hash function with the same seed, are concatenated, where

h (l) 
s (X (l) ) is defined as h s (X 1 ) || h s (X 2 ) || . . . || h s (X l ) . Stinson showed in [30] that Cartesian product based universal hashing

denoted by h (l) 
s results in the same collision probability as h s . Namely, using only one seed for l transformations does not

compromise security. 

At receiver l -fold universal hash function h (l) 
s maps X 

( l ) to A 

( l ) . Joint distribution of X 

( l ) and Y ( l ) denoted by P X (l) ,Y (l) can

be obtained by l -fold identical and independent distribution of P X , Y as ( P X , Y ) 
l , so that we can infer from Eq. (30) 

I(h 

(l) 
s (X 

(l) ) ;Y (l) ) ≤ min 

1 <α≤2 

e −(α−1)(H α (X (l) | Y (l) ) −log |A b | l ) 
α − 1 

= min 

1 <α≤2 

e −l(α−1)(H α (X| Y ) −log |A b | ) 
α − 1 

. 

Hence, based on the definition of the secrecy exponent in Eq. (28) , e (l) 
I 

can be obtained 

e (l) 
I 

≥ max 
1 <α≤2 

(α − 1)(H α(X | Y ) − log M) . (31) 

Based on the secrecy analysis for the first layer of the scheme which is constituted of the cipher and the key extractor, we

obtained equivocation of each plaintext block in Eq. (18) . On the other hand, redundancy of the plaintext can be quantified

in terms of entropy of the message block from which it is derived using inverse universal hashing. Random vector R is of

size n − b with components in the set � meaning that R is uniformly generated over �n −b . For a given seed S , distribution

of random vector X that is produced as X = (A || R ) � S −1 is determined based on the distribution of R and input A that are

independent of each other. As a result, 

P X (X | S) = P A (A ) .P R (R ) = 

P A (a ) 

| �| n −b 
. (32) 

It is easy to show that output of inverse universal hashing represented by the random vector X has the same redundancy

measured in terms of Rényi divergence of order α as the input to this inverse operator represented by random vector A ,

i.e. 

D α(P A || U A ) = D α(P X || U X ) . (33) 
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Consequently, in the proposed scheme with cipher and generated key Q , based on Eq. (18) , equivocation of the plaintext

X with respect to the input message redundancy will be 

H α(X | Y ) ≥ H α(Q ) − D α(P A || U A ) − ε. (34)

Noting that random vector A has alphabet size of M = | �| b , it will have Rényi entropy of 

H α(A ) = log M − D α(P A || U A ) . 

After replacing it in Eq. (34) , we see that equivocation satisfies 

H α(X | Y ) ≥ H α(Q ) + H α(A ) − log M − ε. (35)

Then, substituting it in Eq. (31) gives us the desired lower bound of the secrecy exponent in Eq. (29) . �

Eq. (29) indicates that the decreasing exponent of information leakage depends only on the entropy of the generated key,

H α( Q ), uncertainty about the source message, H α( A ), random number generation rate, log M , as well as the upper bound for

output redundancy, ε. To have positive secrecy exponent for a source with the entropy of H α( A ), extracted key entropy for

single block encryption has to be at least 

H α(Q ) ≥ 2 log M + ε − H α(A ) . (36)

By replacing the entropy for extracted key given in Eq. (10) , and considering that δ − log |K| ≥ γ , we get the following

requirement for the key size: 

log |K| ≥ 2 log M + 

1 

α − 1 

e −(α−1) γ − H α(A ) + ε. (37)

This condition guarantees exponential security for highly confidential message transmission. 

6.2. Secrecy exponent analysis based on L 1 distance 

We adopt Eve’s distinguishability that was previously used in [2] as another metric to characterize leaked information

to adversary. Namely, we obtain a lower bound of the L 1 distance between the output of universal hashing function and

uniform distribution for the two layer secrecy scheme, and define secrecy exponent as an indicator of how exponentially fast

this distance decreases in terms of the number of transmitted blocks. Consider an ensemble of functions h s that maps the

random number X ∈ �n to { 1 , 2 , . . . , M} satisfying both universality conditions. Alice and Bob apply the same function to the

common random variable X to obtain h s ( X ). Let Y ∈ �n be the random variable representing Eve’s knowledge where P h s (X ) ,Y 

denotes the joint distribution of h s ( X ) and Y . Let U h s (X ) be the uniform distribution on { 1 , 2 , . . . , M} . Eve’s distinguishability

is defined in [2] as 

d 1 (P h s (X ) ,Y | Y ) = d 1 (P h s (X ) ,Y , U h s (X ) × P Y ) . (38)

According to Eq. (2) it can be rewritten as 

d 1 (P h s (X ) ,Y | Y ) = 

∑ 

y 

P Y (y ) d 1 (P h s (X ) | Y = y , U h s (X ) ) . (39)

It measures randomness of the output value of a particular hash function h s from Eve’s perspective in terms of L 1 distance

from the uniform distribution, averaged over Eve’s possible knowledge Y . If we average this distance over all possible seeds

S ∈ SD , when the resulted value is sufficiently small, we can be certain that h s ( X ) is independent of random variables S and

Y . Thus, the generated random variable will be suitable even when we randomly choose the hash function. 

In [2] it is shown that for 1 < α ≤ 2 

E s [ d 1 (P h s (X ) ,Y | Y )] ≤ min 

1 <α≤2 
3 M 

α−1 
α e −

α−1 
α H α (X| Y ) , 

where E s denotes expectation in terms of the random variable S . As a result, there exists a function h s such that 

d 1 (P h s (X ) ,Y | Y ) ≤ min 

1 <α≤2 
3 e −

α−1 
α (H α (X| Y ) −log M) . (40)

This equation implies that when equivocation of X is larger than the random number generation rate, log M , distribution

of the generated random variable h s ( X ) asymptotically approaches to uniformity. Consider our two layer secrecy scheme

in which inverse of l -fold universal hash function h (l) 
s , using the same publicly known seed, maps a sequence of message

blocks A 

( l ) to a sequence of plaintext blocks X 

( l ) . We define decreasing exponent of L 1 distance of generated secret messages

from uniform random numbers as 

e (l) 
1 

� lim 

l→∞ 

− log d 1 (P 
h (l) 

s (X (l) ) ,Y (l) | Y (l) ) 

l 
, (41)

whose lower bound can be characterized using Theorem 5 . 
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Theorem 5. Let random variable A represent the message block of size b with components in the set � where M = | �b | , and Q

represent the cipher key. Then, for the proposed secrecy scheme with l-fold transmission mechanism, the secrecy exponent based

on L 1 distance satisfies: 

e (l) 
1 

≥ max 
1 <α≤2 

(α − 1)(H α(Q ) + H α(A ) − 2 log M − ε) 

α
. (42) 

Proof. At receiver l -fold universal hash function h (l) 
s generates the message sequence A 

( l ) that belongs to the set I where

|I| = | �b | l . By using Eqs. (30) and (40) we write 

d 1 (P 
h (l) 

s (X (l) ) ,Y (l) | Y (l) ) ≤ min 

1 <α≤2 
3 e −

α−1 
α (H α (X (l) | Y (l) ) −log | �b | l ) 

= min 

1 <α≤2 
3 e −

(α−l) l 
α (H α (X| Y ) −log | �b | ) . 

For the random number generation rate of ρ = log M where M = | �b | , we can obtain decreasing exponent of L 1 norm

based on its definition in Eq. (41) as 

e (l) 
1 

≥ max 
1 <α≤2 

(α − 1)(H α(X | Y ) − log M) 

α
. (43) 

Random variable X represents the plaintext blocks that are generated by the inverse universal hash operation and then

encrypted using the cipher, giving them equivocation obtained in Eq. (35) . Substituting it in Eq. (43) completes the proof. �

As a result, if we use the proposed key extractor to derive cipher keys, the same condition in Eq. (37) needs to hold to

have information leakage in terms of variational distance or Eve’s distinguishability decay exponentially to zero. 

6.3. Comparison between bounds and metrics 

First of all, we compare two bounds presented for the exponent of information leakage, one based on mutual information

in Eq. (31) and the other one based on L 1 distance in Eq. (43) . We can rewrite mutual information between X and Y in terms

of KL divergence 

I(X ;Y ) = D (P X,Y || U X × P Y ) . (44) 

Hence, according to the definition of secrecy exponent e (l) 
I 

in Eq. (28) we shall rewrite Eq. (31) 

lim 

l→∞ 

−1 

l 
log D (P 

h (l) 
s (X (l) ) ,Y (l) || U 

h (l) 
s (X (l) ) 

× P Y (l) ) ≥ max 
1 <α≤2 

(α − 1)(H α(X | Y ) − log M) , (45) 

so by using the property in Eq. (8) , the exponent for L 1 distance can be lower bounded 

lim 

l→∞ 

−1 

l 
log d 1 (P 

h (l) 
s (X (l) ) ,Y (l) | Y (l) ) ≥ max 

1 <α≤2 

(α − 1)(H α(X | Y ) − log M) 

2 

. (46) 

However, this bound is smaller than the lower bound we used to characterize exponent of information leakage in terms

of variational distance, implying that the bound in Eq. (43) is tighter than the one for mutual information in Eq. (31) . 

On the other hand, If we compare these two metrics, based on the equivalence of mutual information and KL-distance

and inequality (8) , we infer that 

1 

2 

log I(h 

(l) 
s (X 

(l) ) ;Y (l) ) ≥ log d 1 (P 
h (l) 

s (X (l) ) ,Y (l) | Y (l) ) . (47) 

This inequality indicates that whenever system is secure from mutual information point of view, and the left hand side

is smaller than a sufficiently small number, the right hand side will also be upper bounded making information leakage

in terms of variational distance negligible. Not to mention that mutual information is a stronger metric compared to L 1 
distance. Nevertheless, the main reason that makes variational distance a more suitable secrecy metric from cryptographic

perspective is that it simplifies formulation for practical analysis of any protocol environment and can be augmented with

practical notions of secrecy like Eve’s distinuishability. 

7. Dual mode transmission mechanism 

As discussed in previous sections the proposed secrecy scheme provides exponential secrecy if privacy amplification is

applied on top of the cipher with the stipulation on the key length that is formulated in Eq. (37) . It implies that there

exists a trade-off such that exponential secrecy that guarantees a higher level of secrecy requires a relatively high key

rate. On the other hand, only highly confidential part of the message requires exponential secrecy and a higher key rate,

whereas normally it is not demanded in regular transmission. As a result, we design a dual mode transmission mechanism

depicted in Fig. 4 that, depending on the demanded level of secrecy for transmission, switches to either encryption mode

operating only on first layer or privacy amplification (PA) mode that jointly utilizes both secrecy layers. In other words, PA
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Fig. 4. Dual mode transmission with two layers of secrecy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mode operates jointly on both encryption and privacy amplification layers to provide a higher level of secrecy based on

exponential secrecy compared to lower level of secrecy based on guessing error probability that is provided by encryption

mode. In this section we jointly optimize the minimum required key rate that guarantees achievable secrecy based on both

optimized bounds of secrecy exponent for PA mode and the required guessing error probability for encryption mode. 

For analysis, we consider a special case with binary i.i.d. message source such that � = { 0 , 1 } where transmission unit is

bit rather than symbol. For regular and efficient transmission that does not require additional security, transmission mecha-

nism switches to encryption mode where input message is framed into n -bit blocks and then encrypted by a cipher. For this

layer of secrecy, we adopt Eve’s probability of failure in estimating the correct plaintext block as the secrecy criterion. Such

error probability was also considered as a metric to measure security in [28,29] . As discussed in Section 5 average block

error probability of Eve denoted by P e,adv always exceeds the required threshold P th 
e if the required condition for the length

of the extracted key in Eq. (23) is satisfied. 

In encryption mode each plaintext block is equivalent to n -bit message block. Let us represent a plaintext block with

random vector X ∈ {0, 1} n whose components X i , for i = 1 , . . . , n, are independently and identically generated Bernoulli

random variables with P r(X i = 1) = p. It is easy to see that X has Rényi entropy of 

H α(X ) = − n 

α − 1 

log [ p α + (1 − p) α] . (48)

As a result, its Rényi divergence can be written as 

D α(P X || U X ) = n log | �| + 

n 

α − 1 

log [ p α + (1 − p) α] . (49)

Therefore, the minimum required key length for encryption mode given in Eq. (23) will be a function of p , n , P th 
e , α, ε

and γ that we denote as �e (p, n, P th 
e , α, γ , ε) . 

As shown in Fig. 4 when a part of message requires a higher level of secrecy, transmission mechanism switches to PA

mode where the message source is encapsulated into b -bit blocks, and then a sequence of l concatenated message blocks

will be mapped to a sequence of plaintext blocks using inverse universal hashing. In Section 6 we obtained the lower bound

for decreasing exponent of information leakage in Eq. (29) that has to be maximized in terms of the order of Rényi entropy

to have the highest possible decreasing rate for information leakage. Considering i.i.d. message source whose components

are Bernoulli random variables with probability p , and extracted cipher key whose entropy is given in Eq. (10) , we can

obtain the lower bound for the decreasing exponent as 

G I (α, k, p, γ , ε) = (α − 1)( log |K| − 2 log M) − e −(α−1) γ − b log [ p α + (1 − p) α] − ε, (50)

where δ − log |K| ≥ γ . We need to maximize G I ( α, k , p , γ , ε) with respect to α where 1 < α ≤ 2. As a result, the optimiza-

tion problem can be formulated as 

max 
1 <α≤2 

G I (α, k, p, γ , ε) , for γ > 0 and G I (α, k, p, γ , ε) > 0 . (51)

We use numerical optimization over 1 < α∗ ≤ 2 and denote the optimized order as α∗ and the maximized lower bound

as G 

max 
I 

. As the secrecy requirement for PA mode, we determine a threshold for secrecy exponent as G 

th 
I 

and find the mini-

mum required cipher key length for which G 

max 
I 

≥ G 

th 
I 

as 

log |K| ≥ G 

th 
I + e −(α∗−1) γ + log [ p α

∗ + (1 − p) α
∗
] b + 2 log M + ε 

α∗ − 1 

(52)

We denote this required lower bound for the key length in PA mode as �pa (p, b, G 

th , α∗, γ , ε) . 

I 
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Fig. 5. Security rate in different modes with different metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering L 1 norm distance as secrecy metric, according to Eq. (42) , function G L 1 
representing the lower bound for the

decreasing exponent of information leakage turns out to be 

G L 1 (α, k, p, γ , ε) = 

(α − 1)( log |K| − 2 log M) − e −(α−1) γ − log [ p α + (1 − p) α] b − ε 

α
(53) 

Similarly G L 1 
can be maximized for 1 < α ≤ 2 and G L 1 

> 0 . Then, for optimized α∗, if we determine the required thresh-

old for G 

max 
L 1 

as G 

th 
L 1 

, we can obtain the requirement for the key length to have G 

max 
L 1 

≥ G 

th 
L 1 

as: 

log |K| ≥ α∗G 

th 
1 + e −(α∗−1) γ + log [ p α

∗ + (1 − p) α
∗
] b + ε 

α∗ − 1 

+ 2 log M. (54) 

When both modes of operations are utilized in this transmission mechanism, it is necessary to simultaneously satisfy

their demanded secrecy. That allows us to use the same key stream generation rate R s defined as log |K| 
n in both operational

modes that needs to satisfy 

R s ≥ max 
[
�pa (p, b, G 

th 
I , α∗, γ ) , �e (p, n, P th 

e , α∗, γ ) 
]
/n. (55) 

8. Optimization of dual mode mechanism based on numerical results 

In this section based on the optimized bounds for the key lengths in dual mode transmission, we numerically optimize

the required key generation rate for two operational modes subject to different secrecy levels that are demanded in each

one. Let security rate be the minimum required key length for transmission of each message symbol or bit with the required

security. In encryption mode cipher keys are generated per message block of length n -bit, hence security rate that meets the

secrecy requirement is �e (p, n, P th 
e , α∗, γ ) /n . In PA mode each generated key is applied per message block of length b -bit,

therefore security rate will be �pa (b, α∗, p, γ , G 

th 
I 

) /b. To compare security rate for two operational modes, we numerically

optimize α by exhaustive search over 1 < α ≤ 2 with step size of 10 −4 , to obtain the maximum lower bound for secrecy

exponent, and then determine the required key length and secrecy rate for each mode based on the secrecy requirement.

We choose γ = 5 and use the universal hashing rate of r h = 

b 
n to be 0.4. For the varying key length of b < log |K| < 2 b, and

Bernoulli parameter of 0 < p ≤ 0.5, we find α∗ for which G I and G L 1 
are maximized. As secrecy requirement we select G 

th 
I 

to be 8, and G 

th 
L 1 

to be half of it due to the inequality (47) , meanwhile P th 
e is set to be 1 − 10 −4 . Next, for each given p , we

can find the smallest log |K| for which the maximized lower bound for secrecy exponent never goes below the thresholds,

i.e. G I ≥ G 

th 
I 

, G L 1 
≥ G 

th 
L 1 

. 

Fig. 5 depicts the achievable security rate in terms of varying Bernoulli parameter 0 < p < 0.5 for input with i.i.d. binary

distribution. It shows the security rates that in PA mode satisfy the required lower bound for secrecy exponent based on
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Fig. 6. Required key stream generation rate in dual mode transmission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mutual information (denoted by r I pa ) or variational distance (denoted by r 1 pa ). It should be noted that even though here we

use a new secrecy analysis for the first layer of the proposed scheme that is different than our work in [17] , this figure turns

out to be the same for both works. That is because the effect of the new analysis based on the new metric appears as ε
in Eqs. (52) and (54) as though due to the main assumption in Eq. (17) that cipher is chosen in a way that ε has a small

positive value, this effect on �pa / b and �e / n as opposed to the previous results will be ε/ b and ε/ n that is negligible and

very close to zero. That is the main reason it does not show any change on the figure compared to our previous work. 

Fig. 5 also illustrates security rate in encryption mode denoted by r e that meets the demanded block error rate for

cryptanalyst. As expected, the closer p is to 0.5 and uniformity, the smaller key length and consequently the lower secrecy

rate will be needed. For instance, for uniformly distributed input with p = 0 . 5 , the secrecy rate for PA mode is r pa = 0 . 735

that is almost half of the required secrecy rate for p = 0 . 025 . Moreover, the required security rate for PA mode is much

higher than encryption mode due to its stronger secrecy requirement. As can be seen, in PA mode for p = 0 . 05 the required

security rate is relatively high about 1.35 while for encryption mode it is 0.72. Note that the results obtained for both metrics

in PA mode are almost the same with slight differences for 0.05 < p < 0.3. That is because mutual information is a stronger

metric compared to L 1 distance, and has a looser lower bound that will require a slightly higher security rate to meet the

secrecy requirement. 

Considering the scenario when both operational modes are utilized, Fig. 6 , based on Eq. (55) , shows how required key

stream rate varies with respect to the parameter p of input binary distribution and universal hashing rate b 
n . Note that

low hashing rate indicates that more redundancy is added through inverse hashing. Exponential secrecy in PA mode is

much stronger than the error probability metric in encryption mode, so in most areas key length is determined by the

secrecy criterion in PA mode. However, in circled area the necessary key stream rate is determined based on the secrecy

requirement of encryption mode. That is because for low universal hashing rate ( b is much smaller than n ) and low source

entropy (low p ) the required key length for strong secrecy of b -bit message in PA mode might not be sufficient even for

weak secrecy of n -bit message in encryption mode. 

9. Conclusion 

In this paper, we adopted a new layering approach in design of a secure transmission mechanism with information

leakage that decays at exponential rate. In our proposed two layer security scheme, a key extractor and a Shannon cipher

constitute the first layer, over which a universal hashing mechanism forms the second layer for the purpose of privacy

amplification. The main assumption is existence of a partially secure common source between legitimate users from which

a key extracting approach that is based on a novel definition of randomness extractor derives the required key stream for

the cipher. We characterized and optimized the lower bound for decreasing exponent of information leakage called secrecy

exponent in terms of two metrics of mutual information and Eve’s distinguishability. Under this two layer framework, a dual

mode transmission mechanism is designed, with a key generation rate that is jointly optimized to provide different levels

of secrecy over different operational modes, based on the required lower bound for secrecy exponent and the minimum

required failure probability of attack. 

Appendix A. Universality of � multiplication in GF( q n ) 

Proof. We first prove Condition 1 of universality for the function h s defined as h (S, X ) = trunc b [ S � X] . For the collision

probability of this function we can write 

P r[ S ∈ SD : h (S, X ) = h (S, X 

′ )] = P r[ S ∈ SD , ∃ R ∈ �n −b \ 0 

n −b : S � (X � X 

′ ) = (0 

b , R )] 
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≤ (q n −b − 1) 
1 

q n − 1 

≤ 1 

q b 
. 

Since X � X 

′ � = 0, we can find at most one S ∈ �n \ 0 n for which S � (X � X ′ ) = (0 b , R ) with R � = 0. The last inequality holds

since for a ≤ b we have a −1 
b−1 

≤ a 
b 

. 

For the second condition consider a randomly chosen S . We can see that h −1 (R, S, A ) = S −1 
� (A || R ) is uniformly dis-

tributed over the preimage set X A = { X ∈ �n , h (X, S) = A } which has cardinality of q n −b , implying that | h −1 
s (A ) | = q n −b . That

is because a uniformly chosen R over the set �n −b determines which X ∈ X A generates ( A || R ) after multiplication by S . There

exists q b such preimage sets that are disjoint and have cardinality that does not depend on A . Contrarily, if there exists an

element in both X A and X A ′ with A � = A 

′ , it means that S −1 
� (A || R ) = S −1 

� (A 

′ || R ′ ) . For R � = R ′ it is impossible to hold, but

for R = R ′ it requires that A = A 

′ which is contradictory. Therefore, | h −1 
s (A ) | = |X A | = q n −b which does not depend on A . �

Appendix B. Proof of Theorem 1 

Proof. It is sufficient to prove that the statement holds for E s H α( Q ), where E s denotes the expectation over S . Then, we can

find a function h s for which the inequality (10) holds. Due to convexity of the function 

1 
1 −α log (. ) for α > 1, we can write 

E s H α(h s (X )) = E s 
1 

1 − α
log 

∑ 

h s (x ) 

P r[ h s (x )] α ≥ 1 

1 − α
log E s 

∑ 

h s (x ) 

P r[ h s (x )] α, (B.1) 

where x is a realization of random variable X . We can rewrite the right hand side as ∑ 

h s (x ) 

P r[ h s (x )] α = 

∑ 

ζ

P r[ h s (x ) = ζ ] P r[ h s (x ′ ) = h s (x ) = ζ ] α−1 

where ζ is a realization of random variable Q . If condition 2 of universality holds for the ensemble of functions h s , it implies

that preimages of different ζ ’s (i.e. h −1 
s (ζ ) ) are distinct. Therefore, taking expectation over random variable Q is equivalent

to averaging over X . For the second term in this equation the probability of occurrence of a particular ζ is equivalent to

finding probability of its preimage, so we have 

∑ 

h s (x ) 

P r[ h s (x )] α = 

∑ 

x 

P r(X = x ) P r[ h 

−1 
s (ζ )] α−1 = 

∑ 

x 

P X (x ) 

[ ∑ 

x ′ : h s (x ′ )= h s (x ) 

P X (x ′ ) 

] α−1 

. 

According to this equation we shall state that 

E s 
∑ 

h s (x ) 

P r[ h s (x )] α = 

∑ 

x 

P X (x ) E s 

[ ∑ 

x ′ : h s (x ′ )= h s (x ) 

P X ( x 
′ ) 

] α−1 

≤
∑ 

x 

P X (x ) 

[ 

E s 
∑ 

x ′ : h s (x ′ )= h s (x ) 

P X ( x 
′ ) 

] α−1 

. (B.2) 

The last inequality is due to concavity of f (x ) = x α−1 for 1 < α ≤ 2. 

E s 
∑ 

x ′ : h s (x ′ )= h s (x ) 

P X (x ′ ) 1 = 

∑ 

S 

P r(S = S ′ )[ P r(x ′ = x ) + P r(h s (x ′ ) = h s (x ) | x ′ � = x )] 

2 ≤
∑ 

S 

P s (S)[ P X (x ) + 

1 

|K| ] 
3 = P X (x ) + 

1 

|K| . (B.3) 

Inequality (2) is resulted from the universality property of the family of hash functions h s that maps X to the set of size

|K| . The equality 3 holds since the random variable S is uniform randomly distributed. We know that for 0 < t ≤ 1 we have

(x + y ) t ≤ x t + y t . Therefore [ 
P X (x ) + 

1 

|K| 
] α−1 

≤ P X (x ) α−1 + 

1 

|K| α−1 
. (B.4) 

substituting Eqs. (B.2) –(B.4) into Eq. (B.1) results in 

E s H α(h s (X )) ≥ 1 

1 − α
log 

∑ 

x 

P X (x ) 
[ 

P X (x ) α−1 + 

1 

|K| α−1 

] 

= 

1 

1 − α
log 

[∑ 

x 

P X (x ) α + 

1 

|K| α−1 

]

= 

1 

1 − α
log 

[ 
e −(α−1) H α (X ) + 

1 

|K| α−1 

] 
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= 

1 

α − 1 

log |K| α−1 − 1 

α − 1 

log 
[
1 + e (α−1)( log |K|−H α (X )) 

]
. 

Finally, using the inequality log (1 + x ) ≤ x and the facts that h s (X ) = Q and H α( X ) ≥ δ proves the statement for E s H α( Q )

and hence for Eq. (10) . �

Appendix C. Proof of Theorem 2 

Proof. Based on the definition of two measures p ∗
Y 

and q ∗
Y 

we can write ∑ 

y 

P Y (y ) 
∑ 

x 

P αX| Y (x | y ) = 

∑ 

y 

P Y (y ) 1 −α
∑ 

x 

P αX,Y (x, y ) = γα,Y �α,XY 

∑ 

y 

p ∗(y ) q ∗(y ) . 

So that based on the definition of the conditional Rényi entropy we get the following inequality 

H α(X | Y ) ≥ −1 
α−1 

log �α,XY − 1 
α−1 

log γα,XY − 1 
α−1 

log 
∑ 

y p 
∗(y ) q ∗(y ) . 

Based on the definition of the joint Rényi entropy in Eq. (4) , we shall write 

H α(X | Y ) ≥ H α(X, Y ) − 1 
α−1 

log γα,Y − 1 
α−1 

log 
∑ 

y p 
∗(y ) q ∗(y ) . (C.1)

We first rewrite the second term in Eq. (C.1) in terms of the Rényi divergence of the ciphertext: 

1 

α − 1 

log γα,Y = 

1 

α − 1 

log 
∑ 

y 

1 

|Y| α |Y| αP Y (y ) 1 −α

= 

1 

α − 1 

{ 

log |Y| α + log 
∑ 

y 

U Y (y ) αP Y (y ) 1 −α

} 

= 

α

α − 1 

log |Y| + D α[ P Y || U Y ] . (C.2)

If we use Hölder’s inequality, we can get ∑ 

y 

p ∗(y ) q ∗(y ) ≤ || p ∗(y ) || β1 
|| q ∗(y ) || β2 

, where 
1 

β1 

+ 

1 

β2 

= 1 , β1 > β2 > 1 . 

After taking log operation from both sides, on the right hand side the first term can be written in terms of Rényi diver-

gence 

log || p ∗(y ) || β1 
= log 

( ∑ 

y 

p ∗(y ) β1 

) 

1 
β1 

= 

1 

β1 

log 
∑ 

y 

|Y | 1 −β1 
1 

|Y | 1 −β1 
p ∗(y ) β1 

= 

1 

β1 

[(1 − β1 ) log |Y| + 

β1 − 1 

β1 − 1 

log 
∑ 

y 

U Y (y ) 1 −β1 p ∗(y ) β1 ] 

= 

β1 − 1 

β1 

[ D β1 
(p ∗Y || U Y ) − log |Y| ] . 

Thus, for the third term in Eq. (C.1) we shall write 

1 

α − 1 

log 
∑ 

y 

p ∗(y ) q ∗(y ) 
1 ≤ (β1 − 1)[ D β1 

(p ∗Y || U Y ) − log |Y| ] 
β1 (α − 1) 

+ 

(β2 − 1)[ D β2 
(q ∗Y || U Y ) − log |Y| ] 

β2 (α − 1) 

2 ≤ −1 

α − 1 

log |Y| + 

β1 − 1 

α − 1 

(
1 

β1 

D β1 
[ p ∗Y || U Y ] + 

1 

β2 

D β1 
[ q ∗Y || U Y ] 

)
. 

Inequality (2) is due to the fact that Rényi divergence is non-decreasing in order [31] , and hence we have D β1 
[ q ∗Y || U Y ] ≥

D β2 
[ q ∗

Y 
|| U Y ] for β1 > β2 . Let us choose one of the measures p ∗

Y 
or q ∗

Y 
that has a larger Rényi divergence from uniformity

and denote it by ρ∗
Y 

. As a result, the third term will satisfy the following inequality 

1 

α − 1 

∑ 

y 

p ∗(y ) q ∗(y ) ≤ −1 

α − 1 

log |Y| + 

β1 − 1 

α − 1 

D β1 
[ ρ∗

Y || U Y ] . (C.3)

We replace Eqs. ( C.2 ) and ( C.3 ) into Eq. (C.1) and define β� β1 , in order to obtain the equivocation for plaintext 

H α(X | Y ) ≥ H α(X, Y ) − log |Y| − D α[ P Y || U Y ] − β−1 
α−1 

D β [ ρ∗
Y || U Y ] , (C.4)
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where ρ∗
Y is defined in Eq. (15) . The goal is to see how equivocation of the plaintext depends on the entropy of the key

as well as input–output distribution. Since f (., .) is a one-to-one mapping, it is easy to see that H α(X, Y ) = H α(X, C) . But

we know that the key stream C is independent of the input plaintext X implying that H α(X, C) = H α(X ) + H α(C) . Moreover,

key stream generator uses mapping rule 	 that is a bijective function and derives every key stream C from exactly one

key Q and therefore does not increase entropy. Consequently, Eve’s lack of knowledge about the key Q will be transformed

to her uncertainty about the key stream C , i.e. H α(C) = H α(Q ) . As a result, H α(X, Y ) = H α(X ) + H α(Q ) . We can also write

entropy of X in terms of Rényi divergence as H α(X ) = log |X | − D α(P X || U X ) . Finally, considering that |X | = |Y| , Eq. (14) can

be derived from Eq. (C.4) . �
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