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Abstract— In this paper, we study both topological and
algebraic properties of unrooted Gaussian trees in order to
characterize their security performance. Such performance is
measured by the corresponding potential in extracting common
randomness from a given tree, which is further determined by
max–min and min–max conditional mutual information (CMI)
values, subject to the order of selecting variables from the
tree by legitimate nodes Alice and Bob, and an eavesdropper
Eve, respectively. A new operation is proposed to transform a
Gaussian tree into another, and also to order different Gaussian
trees. Through such operation we construct several equivalent
classes of Gaussian trees. Each class includes multiple Gaussian
trees that can be partially ordered based on the associated
max–min or min–max CMI metric, and thus, we can find
the most secure and the least secure trees in each partially
ordered set (poset). The union of all posets generates all possible
non-isomorphic trees of the given number of variables. Then,
we assign a particular polynomial to each Gaussian tree, and
show that such polynomial can determine the relative security
performance of the Gaussian tree with respect to other trees
within the same class. In the end, based on a generalized integer
partition method, we propose a novel approach to efficiently
enumerate the most secure structures of all posets.

Index Terms— Gaussian trees, common randomness,
conditional mutual information, partially ordered sets.

I. INTRODUCTION

CONSIDER a problem of maximizing the number of
established secret key bits through public discussions

between two legitimate parties Alice and Bob in the presence
of a passive adversary eavesdropper Eve [1]–[3]. In particular,
assume three agents all have access to a set of n random
variables whose joint probability density function (PDF) is
featured in a graphical model, from which Alice and Bob
choose two of the n variables, Xa and Xb, and Eve for
another Xz , respectively. It has been shown in [1]–[3] that
the conditional mutual information (CMI) is the achievable

Manuscript received August 4, 2015; revised December 14, 2015; accepted
March 2, 2016. Date of publication March 17, 2016; date of current version
July 29, 2016. This material is based upon works supported in part by
the National Science Foundation under Grant 1320351. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Tansu Alpcan.

A. Moharrer and S. Wei are with the School of Electrical Engineering and
Computer Science, Louisiana State University, Baton Rouge, LA 70803 USA
(e-mail: amohar2@lsu.edu; swei@lsu.edu).

G. T. Amariucai is with the Department of Electrical and Com-
puter Engineering, Iowa State University, Ames, IA 50011 USA (e-mail:
gamari@iastate.edu).

J. Deng is with the Department of Computer Science, The University
of North Carolina at Greensboro, Greensboro, NC 27412 USA (e-mail:
jing.deng@uncg.edu).

Digital Object Identifier 10.1109/TIFS.2016.2543688

secrecy rate through public discussion. It quantifies the num-
ber of secret key bits per channel use established between
Alice and Bob, in the presence of passive Eve, who not only
overhears all publicly exchanged messages, but also has a full
access to Xz . Under this framework, the primary problem we
are tackling in this paper is twofold: (1) Given a graphical
model for the joint PDF of n variables, what variables should
Alice and Bob select to maximize the amount of achievable
secret information under Eve’s attack? (2) How should we
compare the potential secrecy level of different graphical
models under properly defined metrics? Does there exist a
consistent ordering of graphical models under which we could
select the most favorable or least favorable models in terms
of some properly defined metrics?

Such problems can find applications where secrecy shall
be established between legitimate parties who need to decide
what correlated random variables are to be chosen among
a set of dependent candidates. For example, in a sensor
network with n sensor-nodes whose measurements on physical
parameters, say, temperature or humidity, are to be taken as
sources of common randomness. Alice and Bob thus need to
determine which two variables should be taken considering
the leakage to a third party who can only compromise one
of the remaining nodes. In addition, if there are options as
to the set of sensor deployments in multiple set-ups, which
result in multiple joint distributions of random variables, which
topology of the underlying graphical model is more favorable?
Even more interesting is what if we could transform the joint
distribution under certain constraints by some local changes
of sensor deployment, what guidance we could provide to
such changes to attain a more favorable topology and joint
distribution in terms of a larger amount of extractable secret
key bits? Our goal is to provide insights and answers to these
interesting and security related questions on graphical models.

As a first step, we have adopted a game theoretic framework
to study the proposed problems: (1) max-min perspective:
Alice and Bob first pick two random variables out of n
variables, based on the pessimistic assumption that Eve will
later choose the best variable from the remaining n − 2
variables, i.e. to find the solution to the max-min conditional
mutual information I (Xa; Xb|Xz); (2) min-max perspective:
Eve selects its favorite random variable first, while Alice and
Bob choose from n−1 remaining random variables in the sec-
ond place to find the solution to the min-max of the conditional
mutual information. It should be noted that such a modeling
has been coined as the security game in several contexts [4].
In fact, [4] defines the secrecy capacity metric similar
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to the max-min value of conditional mutual information,
which quantifies the maximum rate of reliable information
transmitted from source to destination, in the presence of an
eavesdropper. Due to the vast parameter space of graphical
models, we restrict our attention to the cases where the joint
PDF of n variables can be featured in unrooted Gaussian trees
to address the aforementioned problems. Since in Gaussian
trees there is a single path connecting any two variables,
we found studying such models not only mathematically
convenient, but also conducive to several fundamental insights.
To solve the proposed problems, we have explored several
results obtained in [5] regarding the conditional independence
relationships in Gaussian trees.

As a constraint and also for the purpose of fair comparisons
between Gaussian trees using either the max-min or min-max
conditional mutual information, we require all weighted trees
to share the same joint entropy, i.e., the same total amount of
randomness. Consequently, we consider the secrecy levels of
n random variables measured by either max-min or min-max
CMI for cases where their joint distributions can be featured
in un-rooted and weighted Gaussian trees under a constraint
of a given total joint randomness, namely, the joint entropy.

The contributions of this paper can be categorized into two
groups of topological and algebraic analysis:
• First, we show that in each scenario Alice, Bob, and

Eve choose a triplet of nodes, where each node is in
a special topological correspondence with others. As a
result, our search space to find the max-min or min-max
values is reduced significantly. Then, we formally define
a pruning and grafting (PG) operation to transform one
Gaussian tree into another. In particular, we introduce
a special form of PG operation, namely, pruning and
grafting of leaf with neighbor of degree 2 (PGLN-2). This
operation has an important impact on Gaussian trees: the
max-min (min-max) value of the resulting Gaussian tree
is always less than or equal to the max-min (min-max)
value of the original Gaussian tree, hence making the
resulting tree less secure than the original one. As a result,
we form partially ordered sets (posets) of Gaussian
trees and analyze the structural properties of these
posets, by introducing an equivalent graph for each of
these sets.

• Second, we introduce some algebraic tools to study the
Gaussian trees and our introduced operations. We use
the notion of Tutte-like polynomials [6] to represent
each Gaussian tree with a specific polynomial. We show
the impact of PGLN-2 operation on the corresponding
polynomial, and also show that although non-isomorphic
trees may have identical polynomials, however, for each
of the posets and in the most cases this problem does not
happen. We also show that some useful information can
be extracted from this polynomial: the relative security
of each Gaussian tree in a poset can be determined by
its corresponding polynomial. Finally, we show that in
each poset there exists the most secure Gaussian tree,
as the poset leader, and introduce a systematic approach
based on integer partitions [7] to effectively and directly
enumerate all such structures.

A. Related Work

Other than our preliminary results in [8] and [9] where
partial findings were reported, to the best of our knowledge,
there are no other previous works that fully capture the current
problem.

The fundamental problem of secret key sharing between
two users in the presence of an eavesdropper in a public dis-
cussion channel is considered in [1]–[3]. Manshaei et al. in [4]
provide a game theoretic framework to introduce the secrecy
capacity.

In [5] and [10]–[12], some fundamental properties of
Gaussian graphical models have been tackled using algebraic
methods.

In [13], Patra and Lal propose an operation called grafting
to order trees based on their algebraic connectivity, which
is the second smallest eigenvalue (λ2) of the Laplacian
matrix. Moreover, in [14] the concept of generalized tree
shift (GTS) is introduced to obtain certain posets for unlabeled
and unweighted trees. It is further shown in [14] that the
corresponding posets are also ordered based on the value of
their algebraic connectivity.

In [8], we only considered the current problem for certain
Gaussian trees with n = {4, 5} nodes in the max-min scenario,
where each random variable in a Gaussian tree has a unit
variance. In [9], we extended the results of [8], to Gaussian
trees with larger size. In this study, however, we general-
ize the scope into considering any Gaussian tree, with its
random variables having arbitrary variance values. Moreover,
we extend our study with the max-min metric to scenarios
where min-max metric is adopted.

B. Paper Organization

The paper is organized as follows. Section II presents the
system model. We define the notion of Gaussian trees, and
introduce the squared partial correlation coefficient to be used
in the max-min and min-max scenarios. We study topological
properties of Gaussian trees in Section III. For both scenarios,
we introduce the PG and PGLN-2 operations to partially
order Gaussian trees. Furthermore, we formally define the
equivalent classes of Gaussian trees, which are obtained by
these operations. In Section IV certain types of polynomials
are introduced to characterize the security performance of
each Gaussian tree. Also, we propose an effective method
to enumerate certain Gaussian structures with robust security
performances. Section V gives the concluding remarks.

II. SYSTEM MODEL

Here, for the simplicity of denotations, instead of Xa , Xb,
and Xz we use a, b, and z as the random variables that
represent the choice of Alice, Bob, and Eve, respectively. The
capital letters A, B , and Z denote the corresponding subsets
of random variables chosen by each group.

In this study, we consider the Gaussian joint distribution to
capture the density of n variables, i.e., Px(x1, x2, . . . , xn) ∼
N(μ,�), where μ is the mean vector that without loss
of generality we assume μ = 0, and � is a symmetric
positive-definite covariance matrix of n random variables with
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σi j ∈ � be the covariance between the random variables
xi and x j . Furthermore, we assume that the joint den-
sity can be characterized by a weighted and unrooted tree
T = (V , E, W ), where V is the set of nodes representing
the random variables, E is the set of edges showing the
dependency relations between variables [10]–[12], and W is
the set of edge weights with elements wi j = σi j whenever
there is an edge between the nodes xi and x j . For a fair
comparison between any two Gaussian trees, we assume
that the users in all models have the same total amount of
randomness, i.e., the same entropy. In this case, it is well
known that the entropy of x = (x1, x2, . . . , xn) can be
obtained by H = 1/2 ln((2πe)n|�|) [15]. Hence, in order
to obtain a fixed entropy we have to fix the determinant
of the covariance matrix, i.e., |�| = CE , where CE ∈ R

is a finite and non-zero constant. Suppose xi , x j , xk are
three variables drawn from the Gaussian graphical model,
where xi ⊥ x j |xk , i.e., xi is conditionally independent of x j ,
given xk . Then, one can show that σi j = σikσ j k/σkk [5], where
σkk is the variance for the node xk . Now, suppose there is a
path pi j = ei,i1 ei1,i2 . . . eim−1, j between i and j consisting
of m edges. Since in Gaussian trees there is only one path
between any two vertices, we can write

σi j = σi,i1 σi1,i2 . . . σim−1, j/

im−1∏

l=i1

σll (1)

Note that equation (1) is only valid for Gaussian tree mod-
els, hence makes studying these structures more convenient.

Next, we give a proper definition for the max-min problem,
under the explained scenario.

Definition 1: Under the Gaussian tree model, legitimate
entities Alice and Bob pick two nodes a and b on the tree
under the attack by an eavesdropper Eve who selects the
third and distinct node/variable z on the same tree. The
objective of Alice and Bob is to select the pair (a, b) to max-
imize the minimum conditional mutual information I (a; b|z).
In particular, we adopt max{a,b}minz I (a; b|z, T ) as the first
metric to measure the privacy level of a given weighted
Gaussian tree T = (V , E, W ).

Similarly, we can define the min-max problem
under the same circumstances. In this case we adopt
minz max{a,b} I (a; b|z, T ) as another metric to measure
the privacy level of a given weighted Gaussian tree
T = (V , E, W ).

For Gaussian random variables the conditional mutual infor-
mation I (a; b|z) can be directly related to the squared partial
correlation coefficient, which is defined as below [5],

ρ2
ab|z =

(σab − σazσ
−1
zz σbz)

2

(σaa − σazσ
−1
zz σaz)(σbb − σbzσ

−1
zz σbz)

= 1− e−2I (a;b|z) (2)

where σab = E[(a − μa)(b − μb)], the (a, b)-th element
of �, is the covariance value between variables a and b (with
both of them having zero mean). From (2), we can see that
the conditional mutual information is a monotone increas-
ing function of the squared partial correlation coefficient.
Hence, in the following, we use partial correlation coefficient

instead of the conditional mutual information as the security
and privacy metric. Hence, the corresponding max-min and
min-max values for a given Gaussian tree T = (V , E, W ) can
be restated as:

SM (T, W ) = max{a,b}min
z

ρ2
(ab|z,T ,W )

Sm(T, W ) = min
z

max{a,b} ρ
2
(ab|z,T ,W ) (3)

which will be used to compare and order different trees.

III. TOPOLOGICAL PROPERTIES OF GAUSSIAN TREES

A. Structural Properties of the Triplet (a, b, z) in Both
Max-Min and Min-Max Problems

Generally, to determine the security performance of a given
Gaussian graphical model, we should solve both min-max
and max-min cases, over all possible triplets (a, b, z). For
Gaussian trees, however, we show in Lemma 1 that this large
search space shrinks to a very small space, in which the triplet
(a, b, z) should have certain structural relationships.

Lemma 1: For any Gaussian tree T = (V , E, W ),
1) The max-min value SM (T, W ) is chosen from those set of

triplets in which a and b are adjacent, and z is adjacent
to either a or b [8].

2) The min-max value Sm(T, W ) is chosen from those set
of triplets in which the node z is any internal (non-leaf)
node, while a and b pick two adjacent nodes from the
remaining vertices.

Proof: See Appendix A.
As expected, using Lemma 1 we can narrow down the

large number of possible choices for both max-min and
min-max cases to small subsets. Using Lemma 1 we can
further simplify (2) and deduce the following formula for the
squared partial correlation coefficient,

ρ2
ab|z =

σ 2
abσ

2
bz − σ 2

abσbbσzz

σ 2
abσ

2
bz − σaaσ

2
bbσzz

(4)

Note that in (4) we implicitly assumed b is on the path from
a to z, hence if in any case a lies in between b and z, then
a and b should be switched in (4).

B. Pruning and Grafting Edges in Gaussian Trees

One simple way to produce all trees of given order is
to begin with any arbitrary structure and move one of its
leaf edges to somewhere else, in order to obtain new struc-
tures. Note that this method may result in many isomorphic
(redundant) tree structures, which should be eliminated from
the list. In particular, consider the trees shown in Figure 1.
Tree T2 is obtained from T1 by moving the edge e; we call this
particular operation as pruning and grafting (PG) operation.
In other words, we prune the edge e from the node n1 and
graft it to the node v ′, to obtain T2. For Gaussian trees,
we formally define the PG operation as follows:

Definition 2: Consider a Gaussian tree T1 = (V , E1, W1)
shown in Figure 1. The pruning and grafting (PG) operation
refers to cutting the leaf edge e from n1 and attaching
it to some other node, namely, v ′, to obtain the Gaussian
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Fig. 1. Pruning and grafting operation performed on edge e in tree T1.

tree T2 = (V , E2, W2). Note that W1 is any arbitrary set
of edge-weights, and W2 is obtained from W1 by chang-
ing the covariance values associated with the altered edge.
In particular, in PG operation we assume all the covariance
values (including all the variances) in the covariance matrix
remain unchanged, except those values that are related to the
altered node, namely, n2.

Note that since in PG operation we essentially only move
the edge e to some other place, all other structures shown
in Figure 1 (including everything in the clouds) remain
unchanged. As a result, it is reasonable to assume that all
the variances (including σn2n2 ) remain the same; also all
the covariance elements except those values that are related
to the altered edge remain unchanged. In particular, let us
define σvi n2 and σ ′vi n2

as the covariance values between any
node vi ∈ V \n2 in T1 and T2, respectively. Then in general
σvi n2 �= σ ′vi n2

, for all vi ∈ V \n2. The other elements
in both covariance matrices corresponding to the Gaussian
trees T1 and T2 are equal. In Lemma 2, whose proof can
be found in [16], we show how to compute these altered
covariances for a new tree.

Lemma 2: Consider any Gaussian tree T = (V , E, W ),
with order |V | = n. We denote |�T | as the determinant
of covariance matrix corresponding to T . Considering the
PG operation shown in Figure 1, which transforms the
Gaussian tree T1 into T2, with |�T1 | = |�T2 |. Let us denote
σn1n2 and σ ′v ′n2

as the covariance values between the pairs

(n1, n2) and (v ′, n2) in trees T1 and T2, respectively; then we
have σ 2

n1n2
/σn1n1 = σ ′2v ′n2

/σvv .
In the next sections, we discuss the importance of such

results in determining the security performance of different
Gaussian trees.

C. Pruning and Grafting Certain Leaf Edges in
Gaussian Trees

In [13], Patra and Lal propose an operation called grafting
to order trees based on their algebraic connectivity, which is
the second smallest eigenvalue (λ2) of the Laplacian matrix.
Here, we introduce a new operation on Gaussian trees to
obtain the ordering among different structures. We specify
this operation as pruning and grafting of leaf with neighbor of
degree 2 (PGLN-2). We show that by PGLN-2 one can change
the security performance of Gaussian trees.

Definition 3: Consider a Gaussian tree T1 = (V , E1, W1)
shown in Figure 2. The PGLN-2 operation refers to cutting
the edge e and attaching it to the other end of its parent edge,
i.e., e′, to obtain the Gaussian tree T2 = (V , E2, W2).
In fact, we can interpret PGLN-2, as a particular opera-
tion φ(.) acting on edge e in T1, to produce the tree T2,

Fig. 2. T2 is obtained from T1 by PGLN-2 operation.

i.e., φ(T1, e) = T2. Note that all the constraints regarding
covariance values given in Definition 2 also hold in this case.

Note that φ(.) is not an injective mapping, since there might
be two distinct edges (with their neighbors having degree of 2),
say e, e′ ∈ E1 that φ(T1, e) is isomorphic to φ(T1, e′). Also,
by Lemma 2 we can conclude that σ 2

n1n2
/σn1n1 = σ ′2vn2

/σvv .
We have the following Lemma, whose proof can be found
in Appendix B.

Lemma 3: Consider the Gaussian trees shown in Figure 2,
where T2 = φ(T1, e). Note that W1 is any arbitrary set of
edge-weights, and W2 is obtained from W1 (by changing the
covariance values associated with the altered edge). Suppose
the max-min values for T1, and T2 are SM (T1, W1) and
SM (T2, W2), respectively. Also, Sm(T1, W1) and Sm(T2, W2)
are the corresponding min-max values for T1 and T2,
respectively. We have SM (T1, W1) ≥ SM (T2, W2) and
Sm(T1, W1) ≥ Sm(T2, W2).

Intuitively, for the max-min case using PGLN-2 operation
on the edge e we are essentially adding another neighbor to
the node n2, hence giving more options to the eavesdropper
to choose the best location to attack, resulting in smaller
max-min values. On the other hand, although in the min-max
case z cannot choose n1 anymore (since it became a leaf),
it can choose the node v (which has a higher degree
now), thereby decreasing the number of possible choices for
the pair (a, b). As we can see from Lemma 3, for any
given Gaussian tree structure, the PGLN-2 operation always
decreases both max-min and min-max values of the resulting
Gaussian tree. As a result, this specific operation generates a
certain ordering of Gaussian trees, in which the corresponding
structures are ordered with regard to their respective max-min
and min-max values. In the following, we formally define the
tree ordering using the results obtained in Lemma 3,

Definition 4: Consider the trees T1 = (V , E1, W1) and
T2 = (V , E2, W2), where T2 = φ(T1, e), for some leaf edge
e ∈ E1 that has a neighbor with degree two. We know from
Lemma 3 that SM (T1, W1) ≥ SM (T2, W2) and Sm(T1, W1) ≥
Sm(T2, W2). In this setting, we write T1 � T2, where the binary
relation “ � " shows the ordering of these trees, i.e., T1 is more
secure than T2.

As we will see shortly, the ordering defined in Definition 4
leads to an interesting concept: we can define several classes
for all Gaussian trees, and each class is a particular poset of
distinct Gaussian trees.

While from Lemma 3 one may anticipate that any general
PG operation results in less secure Gaussian trees, in the
following proposition whose proof can be found in [16], we
show that this is not the case.

Proposition 1: Consider the trees shown in Figure 1.
Given a Gaussian tree T1 = (V , E1, W1), if we perform
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PG operation on the edge e to obtain the Gaussian tree
T2 = (V , E2, W2), where v ′ �= v. Then, in general T1 � T2,
i.e., T1 is not always more favorable than T2.

From Proposition 1 we can see that if two trees are not
related through one or more PGLN-2 operations, then in
general they cannot be ordered using our defined binary
relation. In fact, without assigning a specific covariance matrix
to each Gaussian tree, these structures cannot be consistently
compared. This motivates us to search for certain structures
that cannot be compared with each other, and at the same time
they cannot be improved further, using PGLN-2 operation.
In particular, we form sets of Gaussian tree structures, where
each set contains a unique leader that is the most favorable
topology among all topologies in the same set. Other topolo-
gies in a poset might be comparable/incomparable with each
other. By classifying the trees into certain sets we can further
study both their topological and algebraic properties.

D. Forming the Posets of Gaussian Trees

Based on the obtained results in Proposition 1 and
Lemma 3 we can form posets [17] of Gaussian trees. Each
poset is formed from its most favorable (MF) structure,
TM = (V , EM , WM ). In other words, TM is the poset leader
acting as the ancestor to all other Gaussian trees in the
same poset, i.e., all other Gaussian trees can be obtained
from TM using one or more PGLN-2 operations (composition
of several φ(.) functions). Also, in each poset given two
trees T and T ′, they are adjacent if T ′ = φ(T, e), for the leaf
edge e ∈ E(T ) that is connected to the a node having degree
of two. Note that by Definitions 2 and 3, via the PGLN-2
operation only the covariance values regarding to the altered
node will be changed, while the determinant of the covariance
matrix corresponding to the trees remain the same. Hence,
all trees in the same poset have a fixed determinant for their
corresponding covariance matrices. Moreover, in Lemma 4,
whose proof can be found in [16] we show the uniqueness of
LF structures in each poset.

Lemma 4: In any poset with a given TM = (V , EM , WM )
acting as a poset leader, we can find a unique least favor-
able (LF) structure, TL = (V , EL, WL ), which acts as a
descendant to all other trees.

Hence, we observe that our defined posets are certain classes
of posets, which have a unique MF and LF structures. Also,
from the results in Lemma 3 we know that TM has the most
secure structure, while TL has the least secure structure in
each poset. As an example, Figure 3 shows all six posets
of Gaussian trees on 8 nodes. The posets consist of several
unlabeled trees. Each poset consists of several Gaussian trees,
and while such trees are weighted and consequently labeled,
we consider them as being unlabeled. This is because by
considering labeled trees, we are producing Gaussian trees
(with isomorphic unlabeled structures) capturing different joint
densities but with exactly the same security performance, mak-
ing the obtained trees redundant. In Figure 3, the MF and LF
structures are placed at the top and bottom of each poset,
respectively. Note that in this figure, posets 1, 2, 3 and 6
are the special cases where posets are basically formed as

Fig. 3. All the possible posets for Gaussian trees with n = 8 nodes.

fully ordered sets, hence any tree structure in each of these
posets can be compared to other trees in the same poset,
through one or more PGLN-2 operations. On the other hand,
in each of the posets 4 and 5 there are some structures that
cannot be compared using the rules given in Lemma 3. Note
that beginning from any tree and performing several PGLN-2
(or performing reverse PGLN-2) we can obtain all other trees
in the same poset. However, if we begin from MF structure,
then by performing only PGLN-2 (and not its reverse) we can
produce all other structures in the poset. In other words, the
MF structures, acting as the poset leaders, can fully describe
the poset structure. On the other hand, we also know that the
MF topologies are the most secure trees in each poset. Hence,
finding such structures is of huge importance, and there should
be a method to systematically obtain these topologies. Thus,
in section IV, we propose an efficient algebraic approach to
enumerate all these structures systematically.

E. Directed Super-Graph Corresponding to Each Poset

From now on, for the simplicity of notations we call the
leaf edges that are connected to a node with degree two as
special leaf edges. Figure 3 gives us an intuition in order
to construct a directed super-graph containing Gaussian trees.
In particular, each poset can be converted into a directed super-
graph G = (Vs, Es), where Vs is the set of trees in a poset
acting as vertices, and Es is the set of directed edges between
the two nodes that can be related using PGLN-2. Using
this super-graph, we can easily identify the comparable tree
structures: If there is a directed path between two structures,
then they are comparable. Hence, we can conclude that both
MF and LF structures can be compared with any other tree in
a poset. For example, in Figure 3, in posets 1, 2, 3, and 6 there
is a directed path between any tree structure so all the trees
are comparable with each other, making each poset a fully
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ordered set. On the other hand, in posets 4 and 5 there are
certain trees with no directed path between them, making
such structures incomparable with each other under Lemma 3
conditions. In each poset, the MF structure has the maximum
number of special leaf edges, while the LF structure has
none of such edges. Also, observe that the poset leader fully
characterizes the structure of its super-graph. In particular, the
number of those special leaf edges in MF structure specifies
the length (number of consecutive grafting operations plus 1)
of the super-graph. Moreover, the structure of those special
leaf edges specifies the width of the super-graph. For example,
in Figure 3 we can see that the poset 2 has two special leaf
edges, hence the super-graph has length 3. Also, since these
special leaf edges are fully symmetric with respect to each
other (performing PGLN-2 operation on either of those edges,
results in an isomorphic tree structure), the poset 2 becomes
fully ordered. On the other hand, in poset 5 because of the
two asymmetric special leaf edges we obtain two different
topologies in the next level. Roughly speaking, if those special
edges become more symmetric, the poset tends to become
fully ordered.

Although converting each poset to its corresponding super-
graph simplifies the comparison between tree topologies in a
set, as it can be observed, for larger trees identifying these
special branches and ordering trees by grafting operation
becomes more challenging. Hence, in the following, we aim
to study the tree structures and their associated posets in a
more abstract and general way.

IV. ALGEBRAIC PROPERTIES OF GAUSSIAN TREES

A. Tutte-Like Polynomials for Gaussian Trees in Posets

In this section, in order to model the Gaussian trees
and the corresponding posets more systematically, we study
the algebraic properties of these models. As we may see in
the following, these properties will further help us charac-
terize the special leaf edges, and thus allow us to evaluate
the security robustness of any tree structure within a poset.
To achieve this goal, for each tree, we associate a two-variable
Tutte-like polynomial defined in [6], where Chaudhary and
Gordon modify the definition of the Tutte polynomial to obtain
a new invariant for both rooted and unrooted trees. Also, they
proved that this polynomial uniquely determines rooted trees.
For unrooted trees however, it is shown in [18] that certain
classes of caterpillars have the same polynomials assigned
to them. However, interestingly, we prove that in each poset,
in many cases the trees have unique polynomials.

Let R(T ) denote the collection of all subtrees of T , and
L E (S) denote the leaf edges in the subtree S, i.e., the edges
that are connected to leaf nodes, then we have [6],

fE (T ; t, z) =
∑

S⊆R(T )

t |E(S)|(z + 1)|E(S)|−|L E(S)| (5)

where |E(S)| is the total number of edges in the subtree S.
Note that z used in (5), is completely irrelevant to the
random variable z used in the previous sections. Basically,
this polynomial is a generating function that encodes the
number of subtrees with a given internal and leaf edges [18].

We next show that such polynomials can help us systematically
generate trees in a poset from the poset leader. The proof can
be found in [16].

Lemma 5: Suppose there is a directed path from the tree Tn

to Tn−m in a poset, i.e., Tn−m can be obtained from Tn through
m PGLN-2 operations. Then, their associated polynomials
have the following recursive relationship,

f (Tn; t, z) = f (Tn−m; t, z)+ t (1− tz)[m −
m∑

k=1

gn−k(t, z)]

(6)

where, gn−k(t, z) is the polynomial associated with the rooted
tree obtained from the tree Tn−k , after deleting the special
leaf edge e and its neighbor edge e′ (e.g., see e and e′ shown
in Figure 2 for the tree T1), in a given step k, and putting
their common node as a root (e.g., the node v in Figure 2).
Note that in (6), Tn−(n−1) = T1 becomes the LF topology.

Using the recursive equation derived in (6), we then have
the following corollary, whose proof is in Appendix C.

Corollary 1: In a poset, if one of the following cases
happens then two polynomials corresponding to the trees are
distinct: (1) If there exists a directed path between two trees;
(2) If both trees have the same parent tree; (3) If the
two structures lie at different levels (stages) in the super-graph.

Hence, by Corollary 1, we see that although Tutte-like
polynomial is not graph invariant in general, in many cases the
polynomials associated with trees in a same poset are distinct.
As an example, consider the poset 5 shown in Figure 3. Since
all trees satisfy at least one of the conditions in Corollary 1,
all of their associated polynomials are thus distinct. Follow-
ing (5), we have

f (TM ; t, y) = t7 y4 + t6(y4 + 2y3)+ t5(3y3 + 2y2)

+ t4(4y2 + 2y)+ t3(6y + 1)+ 7t2 + 7t + 1

f (Tl; t, y) = t7 y3 + t6(3y3 + y2)+ t5(2y3 + 4y2)

+ t4(5y2 + 3y)+ t3(6y + 2)+ 8t2 + 7t + 1

f (Tr ; t, y) = t7 y3 + t6(3y3 + y2)+ t5(3y3 + 3y2 + y)

+ t4(4y2 + 3y + 1)+t3(5y + 4)+9t2 + 7t +1

f (TL; t, y) = t7 y2 + 5t6 y2 + t5(8y2+y)+ t4(6y2+ 4y +1)

+ t3(5y + 5)+ 10t2 + 7t + 1 (7)

where TM and TL are the MF and LF structures in poset 5,
respectively. Also, Tl and Tr are the left and right structures,
respectively that located in the middle of poset 5. For the
simplicity of polynomials we replaced z + 1 with y. As we
expected, all the computed polynomials in (7) are distinct.

The Tutte-like polynomial can be used to evaluate cer-
tain topological properties of trees. In the following lemma,
whose proof is in [16], we propose an interesting result: the
Tutte-like polynomial can enable us to obtain the exact number
of special leaf edges in the corresponding tree. Hence, using
this result we estimate the security robustness of a tree
structure by computing its distance from LF structure.

Lemma 6: Given the polynomial f (T ; t, z) associated
with a tree T having |I | internal edges, the second highest
degree term has the form t |E |−1(α(1 + z)|I |−1 + β(1+ z)|I |).
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The coefficient α shows the number of leaf edges, which are
connected to a node with degree two.

Corollary 2: The coefficient α defined in Lemma 6 shows
the distance between the tree T and LF structure. Also,
if α = 0 then T is the LF structure.

Example 1: Consider the tree topologies in poset 5 of
Figure 3, and their associated polynomials that are computed
in (7). The MF tree TM has two special leaf edges, hence in
its corresponding polynomial, the second highest degree term
has the form t6(y4 + 2y3). Hence, α = 2. The two middle
trees in the same poset, each have one special leaf edge, and
in this case we have t6(3y3 + y2) for both second highest
degree terms, in which α = 1. On the other hand, the LF tree
TL has no such leaf edges. From (7) we can see the second
highest degree term for f (TL; t, y) is 5t6y2, hence α = 0.

The results obtained in Lemma 6 and Corollary 2 show
a strong correlation between the Tutte-like polynomial and
security robustness of a Gaussian tree. In particular, being
closer to LF structure, hence having smaller values for α
(comparing to others in the same poset), makes the Gaussian
tree less favorable comparing to other structures in the same
poset.

B. Enumerating Poset Leaders: Restricted Integer
Partition Approach

In the previous sections, we studied certain properties of
tree topologies in the same poset. In this section, we find a
systematic method to generate different poset leaders, which
is further related to restricted integer partition problems. The
following example will demonstrate new ways to quickly
enumerate these MF structures. First consider the following
example:

Example 2: Consider the MF structure in poset 5 shown
in Figure 3. For a moment, picture the node r5 as a junction
to three branches. In particular, these branches are chain
structures each having 1, 2, and 4 nodes (excluding r5),
hence we assign the string (1 + 2 + 4) to this topology.
Note that, each summand in a partition is also called a part,
e.g., here the parts are 1, 2, and 4. Here, we name r5 as the
anchor node to this MF structure. Similarly, in poset 3 and 4
having anchor nodes r3 and r4, respectively; we can assign the
strings (1 + 3 + 3) and (2 + 2 + 3) to these structures. The
MF structure in the poset 6 has four branches that come out
of the anchor node r6. Therefore, we can assign (1+2+2+2)
to this structure. Next, consider the MF topology in poset 1.
This is a special case (i.e., an integer partition having
two parts), where any internal node can be an anchor node.
Here, we arbitrarily choose r1 as the anchor node, hence
obtaining (3+ 4) for this structure. However, one can choose
other internal nodes to obtain equivalent partitions such as
(2 + 5) or (1 + 6). Note that in all MF structures above
we have only one anchor node, hence all the parts in
each string sums up to |V | − 1 = 8 − 1 = 7. Lastly,
consider the MF structure in poset 2. Here, there are two
anchor nodes r2 and r ′2, each having two branches with
lengths 1 and 2. Therefore, the integer partition is separated
into two sections, i.e., (1 + 2)+ (1 + 2), where each section

Algorithm 1 Enumerating Poset Leaders
Input: n, as the order of Gaussian trees
Output: P , as the list of all poset leaders
P ← ∅
for A := 1 to Amax do

Given n − A, find the subset of all AIPs
PA = {p1, p2, . . . , pm A } each having A parts;
for i := 1 to m A do

Find those parts in pi that can be further
partitioned to obtain new and AIPs and add them
to PA;

end
Check for any permutation of parts that gives a new
AIP and add them to PA;
Check for redundant AIPs in PA and eliminate them
from the list;
P ← P ∪ PA;

end

corresponds to one anchor node. In this case since we have
two anchor nodes, the parts sum up to |V | − 2 = 6.

Based on this example, we propose an effective algorithm to
enumerate all poset leaders of a given order. As we anticipate,
integer partition methods [7] can be very helpful in order
to quickly reach this goal. However, this method should be
systematically implemented. In particular, we use restricted
integer partitions to find all poset leaders. Each integer parti-
tion should satisfy the following constraints: (1) Each section
should have at most a single 1; (2) The parts in the leftmost
(first) and rightmost (last) sections should each sum up to
values larger than or equal to 3. Essentially, the first constraint
is to ignore the non-poset leader cases, while the second
constraint is to ignore the cases where two or more sections
can be merged and form already produced sections, hence,
making this method more effective. In this case, the partitions
that satisfy the above constraints are defined to be acceptable
integer partitions (AIP). Algorithm 1, effectively finds the
list of all AIPs corresponding to poset leaders of given
order n:

Here A shows the number of anchor nodes; and Amax can be
determined by combining the two aforementioned constraints.
In particular, given |V | = n as the order of trees, then
Amax = n − (3 + 3) = n − 6. For example, each of the
MF structures shown in Figure 3 have only one anchor node,
except the MF structure in poset 2 that has two anchor
nodes, and we know in this case Amax = 2. Also, note that
unlike normal integer partitions the position of parts matters,
so we should count some of permutations of different parts.
In particular, two non-isomorphic poset leader topologies may
have identical integer partitions, but with different ordering of
parts.

Figure 4 shows two different permutations of integer parti-
tions for n = 12. As we can see from the figure, these two
structures are non-isomorphic, but they have the same parts
and sections. Also, observe that both integer partitions sum up
to (1+2)+(0)+(1)+(1+3)= (1+2)+(1)+(0)+(1+3)= 8,
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Fig. 4. Two different structures of poset leaders on n = 12 nodes.

Fig. 5. All the possible locations for the eavesdropper given the fixed
correlates.

since based on the algorithm we do not count the anchor nodes
(here there are 4 of them) in the partitions.

V. CONCLUSION

In this paper, we studied the problem of comparing security
performance of Gaussian trees in both max-min and min-max
scenarios. First, we introduced the PGLN-2 operation to obtain
a partial ordering among such trees. The poset of Gaussian
trees is defined as equivalence classes containing certain
Gaussian trees that can be transformed into each other using
one or more PGLN-2 operations. Also, each poset consists
of unique MF and LF structures with the best and worst
security performances, respectively. Second, we assigned a
polynomial to each Gaussian tree, and showed that using such
polynomials one can estimate the relative security performance
of a Gaussian tree with respect to other structures within the
same poset. We also obtained an effective approach, based on
restricted integer partitions, to enumerate the MF structures.

APPENDIX A
PROOF OF LEMMA 1

First, consider the max-min case, in which Alice and Bob
choose a pair of nodes, under the pessimistic assumption that
Eve chooses the best possible node to minimize the conditional
mutual information I (a; b|z). Figure 5 shows all the possible
cases that a particular eavesdropper can take, in a fixed path
between the nodes a and b. In other words, Eve may pick
any node z1, z′1, z2, z′2, z3, z′3 or z4. Note that there might be
several edges on a path between any pair of nodes.

We use the results provided in Theorem 1 and Theorem 2,
which are proposed in [5, pp. 348–349]. Essentially, Theo-
rem 1 is a conditional version of the well-known information
inequality and holds in general for mutual information of
any distribution [15]. Intuitively, for the Gaussian trees the
condition in Theorem 1 is satisfied when b lies on the path
between a and b′, where b′ is the alternative choice for Bob.
In other words, the longer path implies weaker dependence.
On the other hand, Theorem 2 holds in general for the
Gaussian joint density. The first part of Theorem 2 shows that
if a, b, and z are pairwise separated given x , then conditioning
always reduces the mutual information between a and b.

In Gaussian trees, the second part of the Theorem 2 shows
that for the fixed correlates a and b, the eavesdropper z wants
to be closer to the path between them.

From Figure 5 we can see that there are totally four possible
choices for Eve: When z is connected to the path pab through
one of the nodes a or b; when z is connected to pab through
the node x ; and when z lies on the path between a and b.

Recall that the objective is to find the value for z that mini-
mizes the mutual information between a and b: minz I (a; b|z).

Cases 1 and 2: When z is along the path pab, i.e., the
case z1 or z2: First, consider the case z1, the analysis for z2
is exactly the same. From Theorem 1 we know that because
a ⊥ z′1|z1 we have: I (b; z1) ≥ I (b; z′1). Now we want to
compare two values for the mutual information. First, observe
that b ⊥ z1|a. So we can conclude that I (b; a, z1) = I (b; a).
The same condition holds for z′1: I (b; a, z′1) = I (b; a).

I (b; z1) > I (b; z′1)
→ I (b; a)− I (b; z1) < I (b; a)− I (b; z′1)
→ I (b; a, z1)− I (b; z1) < I (b; a, z′1)− I (b; z′1)
→ I (b; a|z1) < I (b; a|z′1) (8)

Eq. (8) shows that I (a; b|z1) ≤ I (a; b|z′1). In other words, the
eavesdropper wants to be as close as possible to the path pab.

Case 3: Now consider the case when z is a branch node,
i.e., it is connected to pab through the node x : It is obvious
that by replacing z3 with z and z′3 with z′ in the Theorem 2’s
conditions, we can satisfy all the constraints in this theorem.
Hence, we can conclude that I (a; b|z3) ≤ I (a; b|z′3). Again,
we conclude that z wants to be closer to the path pab.

Case 4: When z lies on the path pab: In this case it is
obvious that a ⊥ b|z4. As a result we have I (a; b|z4) = 0,
which is not desirable choice for a and b.

Next, we find possible cases that maximize the mutual
information between a and b, given the fixed node for z.
We show that to maximize the conditional mutual information,
a and b should be close to each other. Consider the case
where Bob has two choices b or b′, where b is on the path
between b′ and Alice’s choice a. Then for any given subset
of choices Z for Eve, by data processing inequality [15] we
have I (a; b|Z) ≥ I (a; b′|Z) Hence, we can immediately see
that Alice and Bob pick the pair of nodes that are adjacent.
Also, it can be argued that if a and b are not adjacent, then the
eavesdropper wants to pick the best node: z picks any node
on the path pab. As a result I (a; b|z) becomes zero. This
validates the first result in Lemma 1.

Next, consider the min-max case, in which Eve chooses a
particular node, assuming that Alice and Bob choose the best
pair of nodes to maximize the conditional mutual information
I (a; b|z). Similar to the max-min case, observe that regardless
of Eve’s choice, Alice and Bob choose adjacent nodes, since
otherwise based on Theorem 1, I (a; b|z) becomes either zero,
or it can be improved further. Furthermore, let us assume that
Eve picks a leaf node, say z, which is adjacent to z′. Now,
the min-max value for this particular case is computed by
ρ2

ab|z = max(a,b)∈E\(z′,z). On the other hand, if the eaves-
dropper picks z′, the min-max value becomes ρ′2ab|z′ =
max(a,b)∈E\(z′,ad j (z′)), where ad j (z′) is the set of adjacent
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nodes to z′, which contains z as well as some other nodes.
Hence, using Theorem 2 clearly ρ′2ab|z′ ≤ ρ2

ab|z and since Eve
chooses the minimum between all possible cases, so it rules
out all the leaf nodes. This completes the proof.

APPENDIX B
PROOF OF LEMMA 3

First, note that since PGLN-2 changes the local structure,
most of the parts in both trees T1 and T2 shown in Figure 2
remains the same. This in turn results in both max-min values
to be equal in many cases. Let us denote the squared partial
correlation coefficients for trees T1 and T2 as ρ2

ab|z and ρ′2a′b′|z′ ,
respectively, then we have the following cases for the max-min
scenario:

1. Suppose in tree T1, Alice and Bob choose a pair
(a, b) ∈ EC(T1), where EC (T1) is the set of all edges
inside the cloud other than v. Then, according to Lemma 1,
Eve chooses z from appropriate nodes in VC (T1), i.e., the set of
nodes inside the cloud (including v). Now, if (a′, b′) ∈ EC(T2)
then since EC(T2) = EC(T1) and VC(T2) = VC(T1), so the
max-min values for this case are equal.

2. Suppose in tree T1, Alice and Bob choose the pair
(a, b) = (xi , v), where xi ∈ ad j (v) is adjacent to v. Then
z ∈ {ad j (xi), n1}. Now, if in T2 the pair (a′, b′) ∈ (xi , v),
then z′ ∈ {ad j (xi), n1, n2}. In T2, Eve has one more option
(i.e., n2) to choose from, comparing to its choices in T1, hence
we can immediately conclude that for this case ρ2

ab|z ≥ ρ′2a′b′|z′ .
3. Suppose in T1, Alice and Bob choose the pair

(a, b) = (v, n1). In this case z ∈ {ad j (v), n2}. Now, if in
T2 the pair (a′, b′) = (v, n1), then z′ ∈ {ad j (v), n2}. Now
we know σ 2

n1n2
/σn1n1 = σ ′2vn2

/σvv , then if we replace σ ′2vn2

with σ 2
n1n2

σvv/σn1n1 in the equation regarding to ρ′2vn1|n2
we

can conclude that ρ2
vn1|n2

= ρ′2vn1|n2
. As a result, the max-min

values for both trees in this case are equal.
4. Suppose in T1, Alice and Bob choose the pair

(a, b) = (n1, n2). Then Eve has only one option, which is
choosing v. Now, if in T2, (a′, b′) = (v, n2), then z′ ∈ ad j (v),
where ad j (v) consists of the set of vertices inside the cloud, as
well as n1. Now, using similar arguments as in case 3, and by
σ 2

n1n2
/σn1n1 = σ ′2vn2

/σvv , we can show that ρ2
n1n2|v = ρ′2vn2|n1

.
Since, in T2, Eve can choose any z′ other than n2, hence in
this case ρ2

ab|z ≥ ρ′2a′b′|z′ .
Following discussed cases, showing that T1 � T2 is straight-

forward: for example, suppose SM (T1, W ) is chosen from
case 1, then if SM (T2, W ) is chosen from the same case,
we know SM (T1, W ) = SM (T2, W ). Otherwise, if SM (T2, W )
is chosen from any other case (let’s name this value as
S′M (T2, W )), then since Eve chooses the minimum among
the four cases, so S′M (T2, W ) ≤ SM (T2, W ) = SM (T1, W ).
As another example, suppose SM (T1, W ) is chosen from
case 2, then if SM (T2, W ) is chosen from the same case,
we know SM (T1, W ) ≥ SM (T2, W ). Otherwise, if the max-
min value, say S′M (T2, W ) is chosen from any other case, using
the same arguments S′M (T2, W ) ≤ SM (T2, W ) ≤ SM (T1, W ).
Similar arguments can be used for the remaining cases.

Next, similar to the max-min problem, we can conclude the
following cases for the min-max problem:

1. Suppose in T1, the eavesdropper picks a (non-leaf)
node vc from inside the cloud, where vc ∈ VC(T1). Then,
the possible choices for the pair Alice and Bob are (a, b) ∈
{EC(T1), (v, n1), (n1, n2)}. If we also assume z′ = vc,
then (a′, b′) ∈ {EC(T2), (v, n1), (v, n2)}. We know since
EC(T1) = EC(T2), hence the only difference is the pair
(n1, n2) ∈ E(T1) versus (v, n2) ∈ E(T2). Using the fact that
σ 2

n1n2
/σn1n1 = σ ′2vn2

/σvv and using (4) it is not hard to show

that ρ2
n1n2|vc

≥ ρ′2vn2|vc
for all vc ∈ VC(T1). As a result, for this

case we have ρ2
ab|z ≥ ρ′2a′b′|z′ .

2. Suppose in T1, the eavesdropper picks the node v.
Then, for the pair of legitimate nodes we have (a, b) ∈
{EC(T1), (n1, n2)}. If we also assume that z′ = v, then
(a′, b′) ∈ EC (T2). Now, we know the Alice and Bob want
to maximize their security; since in T1 they have one more
option (i.e., (n1, n2)) to choose from, therefore for this case
again we have ρ2

ab|z ≥ ρ′2a′b′|z′ .
3. Suppose in T1, Eve picks the node n1. Then,

(a, b) ∈ EC(T1). Note that in the tree T2 the node z′ �= n1,
since it is a leaf. Hence, again suppose z′ = v. So, similar
to case 2 we know (a′, b′) ∈ EC(T2). Note that the node z′
lies on the path from the pairs (a′, b′) (inside the cloud in T2)
to n1. Therefore, using Theorem 2 in [5, p. 349] we conclude
that ρ2

ab|z=n1
≥ ρ′2a′b′|z′=v .

Now, we show T1 � T2: for example, suppose SM (T1, W )
is chosen from case 1, then if SM (T2, W ) is chosen from the
same case, we know SM (T1, W ) ≥ SM (T2, W ). Otherwise,
if the max-min value, say S′M (T2, W ) is chosen from the other
case (i.e., case 2), since (a, b) in T1 have chosen the case
with maximum value SM (T1, W ) ≥ ρ2

ab|z=n1
, where ρ2

ab|z=n1
corresponds to case 3 in T1. But we know from above that
ρ2

ab|z=n1
≥ ρ′2a′b′|z′=v = S′M (T2, W ), hence SM (T1, W ) ≥

S′M (T2, W ). We can use similar arguments for the other cases
as well. This completes the proof.

APPENDIX C
PROOF OF COROLLARY 1

First, suppose f (Tn; t, z) = f (Tn−m; t, z) then using (6)
we should have t (1 − tz)[m − ∑m

k=1 gn−k(t, z)] = 0,
or

∑m
k=1 gn−k(t, z) = m. Recall that all gn−k(t, z) are poly-

nomials associated with rooted trees, so the only possibility is
gn−k(t, z) = 1, for all 1 ≤ k ≤ m, a contradiction.

Second, consider two trees Tn−m and Tn−l , at different levels
having nearest common ancestor Tn . Then using (6) we have
the following:

f (Tn; t, z) =
{

f L(Tn−m; t, z)+ t (1− tz)[m −∑m
k=1 gL

n−k]
f R(Tn−l; t, z)+ t (1− tz)[l −∑l

k=1 gR
n−k]

suppose, f L(Tn−m; t, z) = f R(Tn−l; t, z) then we obtain,

m∑

k=1

gL
n−k −

l∑

k=1

gR
n−k = m − l (9)

If m = l = 1, i.e., both trees Tn−m and Tn−l are obtained
from Tn by a single grafting operation. But, since they have
two different structures, the corresponding polynomials for
the rooted trees gL

n−1 and gR
n−1 are distinct, because in [6]
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it is shown that Tutte-like polynomial for rooted trees is
graph invariant. Hence, f L(Tn−1; t, z) and f R(Tn−1; t, z) are
distinct. So, the trees at the same level that are obtained from
their parent through one grafting operation are distinct.

Finally, suppose we have m �= l. Let’s define yi = gi − 1
for all polynomials gi(t, z). Now, using (9) we have,

m∑

k=1

y L
n−k −

l∑

k=1

y R
n−k = 0 (10)

The highest degree term corresponds to the rooted trees
resulted by eliminating the edges e and e′ and putting the
common node between these two edges as a root. Also, the
highest degree terms are resulted from the subtrees associated
to y L

i and y R
i and no other proper subsets of these trees. Hence,

from (10) and assuming that original tree Tn has the size |E |,
then we can conclude,

t |E |−2
m∑

k=1

(1+ z)Ln−k = t |E |−2
l∑

k=1

(1+ z)Rn−k (11)

where Ln−k and Rn−k are non-negative integer powers, which
show the largest number of internal edges for each tree
associated to polynomials yL

n−k and y R
n−k .

Equation (11) should hold for all values of t and z. Let’s
set t = 1 and z = 0, we obtain m = l, a contradiction.
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