EE 4610, Solution of Homework 1

Problem 2.2

4) The signal $\cos(t)$ is periodic with period $T_1 = 2\pi$ whereas $\cos(2.5t)$ is periodic with period $T_2 = 0.8\pi$. It follows then that $\cos(t) + \cos(2.5t)$ is periodic with period $T = 4\pi$. The trigonometric Fourier series of the even signal $\cos(t) + \cos(2.5t)$ is

$$\cos(t) + \cos(2.5t) = \sum_{n=1}^{\infty} \alpha_n \cos(2\pi \frac{n}{T_0} t)$$
$$= \sum_{n=1}^{\infty} \alpha_n \cos(\frac{n}{2} t)$$

By equating the coefficients of $\cos(\frac{n}{2}t)$ of both sides we observe that $a_n=0$ for all n unless n=2,5 in which case $a_2=a_5=1$. Hence $x_{4,2}=x_{4,5}=\frac{1}{2}$ and $x_{4,n}=0$ for all other values of n.

Problem 2.3

It follows directly from the uniqueness of the decomposition of a real signal in an even and odd part. Nevertheless for a real periodic signal

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(2\pi \frac{n}{T_0} t) + b_n \sin(2\pi \frac{n}{T_0} t) \right]$$

The even part of x(t) is

$$x_{e}(t) = \frac{x(t) + x(-t)}{2}$$

$$= \frac{1}{2} \left(a_{0} + \sum_{n=1}^{\infty} a_{n} (\cos(2\pi \frac{n}{T_{0}} t) + \cos(-2\pi \frac{n}{T_{0}} t)) + b_{n} (\sin(2\pi \frac{n}{T_{0}} t) + \sin(-2\pi \frac{n}{T_{0}} t)) \right)$$

$$= \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos(2\pi \frac{n}{T_{0}} t)$$

The last is true since $\cos(\theta)$ is even so that $\cos(\theta) + \cos(-\theta) = 2\cos\theta$ whereas the oddness of $\sin(\theta)$ provides $\sin(\theta) + \sin(-\theta) = \sin(\theta) - \sin(\theta) = 0$. The odd part of x(t) is

$$x_o(t) = \frac{x(t) - x(-t)}{2}$$
$$- \sum_{n=1}^{\infty} b_n \sin(2\pi \frac{n}{T_0} t)$$

Frequency shifting property:

We start with the inverse Fourier transform of $X(f - f_0)$,

$$\mathcal{F}^{-1}[X(f - f_0)] = \int_{-\infty}^{\infty} X(f - f_0)e^{j2\pi ft} df$$

With a change of variable of $u = f - f_0$, we obtain

$$\mathcal{F}^{-1}[X(f - f_0)] = \int_{-\infty}^{\infty} X(u)e^{j2\pi f_0 t}e^{j2\pi t u}du$$

$$= e^{j2\pi f_0 t} \int_{-\infty}^{\infty} X(u)e^{j2\pi t u}du$$

$$= e^{j2\pi f_0 t} \mathcal{F}^{-1}[X(f)]$$

$$= e^{j2\pi f_0 t} x(t)$$

Scaling property:

We start with

$$\mathcal{F}[x(at)] = \int_{-\infty}^{\infty} x(at)e^{-j2\pi ft}dt$$

and make the change in variable u = at, then,

$$\mathcal{F}[x(at)] = \frac{1}{|a|} \int_{-\infty}^{\infty} x(u)e^{-j2\pi f u/a} du$$
$$= \frac{1}{|a|} X\left(\frac{f}{a}\right)$$

where we have treated the cases a > 0 and a < 0 separately.

Note that in the above expression if a > 1, then x(at) is a contracted form of x(t) whereas if a < 1, x(at) is an expanded version of x(t). This means that if we expand a signal in the time domain its frequency domain representation (Fourier transform) contracts and if we contract a signal in the time domain its frequency domain representation expands. This is exactly what one expects since contracting a signal in the time domain makes the changes in the signal more abrupt, thus, increasing its frequency content.

Problem 2.11

$$\begin{split} \mathcal{F}[\frac{1}{2}(\delta(t+\frac{1}{2})+\delta(t-\frac{1}{2}))] &= \int_{-\infty}^{\infty} \frac{1}{2}(\delta(t+\frac{1}{2})+\delta(t-\frac{1}{2}))e^{-j2\pi ft}dt \\ &= \frac{1}{2}(e^{-j\pi f}+e^{-j\pi f}) = \cos(\pi f) \end{split}$$

Using the duality property of the Fourier transform:

$$X(f) = \mathcal{F}[x(t)] \Longrightarrow x(f) = \mathcal{F}[X(-t)]$$

we obtain

$$\mathcal{F}[\cos(-\pi t)] = \mathcal{F}[\cos(\pi t)] = \frac{1}{2}(\delta(f + \frac{1}{2}) + \delta(f - \frac{1}{2}))$$

Note that $\sin(\pi t) = \cos(\pi t + \frac{\pi}{2})$. Thus

$$\begin{split} \mathcal{F}[\sin(\pi t)] &= \mathcal{F}[\cos(\pi (t+\frac{1}{2}))] = \frac{1}{2} (\delta(f+\frac{1}{2}) + \delta(f-\frac{1}{2})) e^{j\pi f} \\ &= \frac{1}{2} e^{j\pi \frac{1}{2}} \delta(f+\frac{1}{2}) + \frac{1}{2} e^{-j\pi \frac{1}{2}} \delta(f-\frac{1}{2}) \\ &= \frac{j}{2} \delta(f+\frac{1}{2}) - \frac{j}{2} \delta(f-\frac{1}{2}) \end{split}$$

Problem 2.17

(Convolution theorem:)

$$\mathcal{F}[x(t) \star y(t)] = \mathcal{F}[x(t)]\mathcal{F}[y(t)] = X(f)Y(f)$$

Thus

$$\begin{split} \operatorname{sinc}(t) \star \operatorname{sinc}(t) &= & \mathcal{F}^{-1}[\mathcal{F}[\operatorname{sinc}(t) \star \operatorname{sinc}(t)]] \\ &= & \mathcal{F}^{-1}[\mathcal{F}[\operatorname{sinc}(t)] \cdot \mathcal{F}[\operatorname{sinc}(t)]] \\ &= & \mathcal{F}^{-1}[\Pi(f)\Pi(f)] = \mathcal{F}^{-1}[\Pi(f)] \\ &= & \operatorname{sinc}(t) \end{split}$$

Problem 2.18

$$\begin{split} \mathcal{F}[x(t)y(t)] &= \int_{-\infty}^{\infty} x(t)y(t)e^{-j2\pi ft}dt \\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} X(\theta)e^{j2\pi\theta t}d\theta\right)y(t)e^{-j2\pi ft}dt \\ &= \int_{-\infty}^{\infty} X(\theta)\left(\int_{-\infty}^{\infty} y(t)e^{-j2\pi (f-\theta)t}dt\right)d\theta \\ &= \int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta = X(f)\star Y(f) \end{split}$$

Problem 2.12

a) We can write x(t) as $x(t) = 2\Pi(\frac{t}{4}) - 2\Lambda(\frac{t}{2})$. Then

$$\mathcal{F}[x(t)] = \mathcal{F}[2\Pi(\frac{t}{4})] - \mathcal{F}[2\Lambda(\frac{t}{2})] = 8\mathrm{sinc}(4f) - 4\mathrm{sinc}^2(2f)$$

b)
$$x(t)=2\Pi(\frac{t}{4})-\Lambda(t)\Longrightarrow \mathcal{F}[x(t)]=8\mathrm{sinc}(4f)-\mathrm{sinc}^2(f)$$

c)
$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt = \int_{-1}^{0} (t+1)e^{-j2\pi ft}dt + \int_{0}^{1} (t-1)e^{-j2\pi ft}dt$$

$$= \left(\frac{j}{2\pi f}t + \frac{1}{4\pi^{2}f^{2}}\right)e^{-j2\pi ft}\Big|_{-1}^{0} + \frac{j}{2\pi f}e^{-j2\pi ft}\Big|_{-1}^{0}$$

$$+ \left(\frac{j}{2\pi f}t + \frac{1}{4\pi^{2}f^{2}}\right)e^{-j2\pi ft}\Big|_{0}^{1} - \frac{j}{2\pi f}e^{-j2\pi ft}\Big|_{0}^{1}$$

$$= \frac{j}{\pi f}(1-\sin(\pi f))$$

d) We can write x(t) as $x(t) = \Lambda(t+1) - \Lambda(t-1)$. Thus

$$X(f)=\mathrm{sinc}^2(f)e^{j2\pi f}-\mathrm{sinc}^2(f)e^{-j2\pi f}=2j\mathrm{sinc}^2(f)\sin(2\pi f)$$

e) We can write x(t) as $x(t) = \Lambda(t+1) + \Lambda(t) + \Lambda(t-1)$. Hence,

$$X(f) = \operatorname{sinc}^{2}(f)(1 + e^{j2\pi f} + e^{-j2\pi f}) = \operatorname{sinc}^{2}(f)(1 + 2\cos(2\pi f))$$

f) We can write x(t) as

$$x(t) = \left[\Pi \left(2f_0(t - \frac{1}{4f_0}) \right) - \Pi \left(2f_0(t - \frac{1}{4f_0}) \right) \right] \sin(2\pi f_0 t)$$

Then

$$\begin{split} X(f) &= \left[\frac{1}{2f_0} \mathrm{sinc} \left(\frac{f}{2f_0} \right) e^{-j2\pi \frac{1}{4f_0}f} - \frac{1}{2f_0} \mathrm{sinc} \left(\frac{f}{2f_0} \right) \right) e^{j2\pi \frac{1}{4f_0}f} \\ &\quad \star \frac{j}{2} (\delta(f+f_0) - \delta(f+f_0)) \\ &= \frac{1}{2f_0} \mathrm{sinc} \left(\frac{f+f_0}{2f_0} \right) \mathrm{sin} \left(\pi \frac{f+f_0}{2f_0} \right) - \frac{1}{2f_0} \mathrm{sinc} \left(\frac{f-f_0}{2f_0} \right) \mathrm{sin} \left(\pi \frac{f-f_0}{2f_0} \right) \end{split}$$