# Glove Controlled Robotic Arm

COLLEGE OF ENGINEERING

Marshawna Guillory (ECE), Erick Perdomo (EE), Jermain Franklin (EE), Taylor Macaluso (EE), and David Duffy (ECE)

#### Motivation

Fifty-three million people in America have a disability and over four-tenths of mobility device users are unable to adequately perform daily tasks. A system that allows those with limited mobility to fully utilize their extremities can potentially improve their daily lives.

## Objective

The objective is to design a device that is capable of accurately measuring arm motions, utilizing the captured data as control signals, and applying it to an external system in real time.

## **Data Acquisition Unit**

The printed circuit board (PCB) will house the ATmega1284P microcontroller and creates a troubleshoot friendly interface with the sensors. It receives power from a rechargeable 5V USB battery pack, ensuring the user's mobility and access to multiple power banks. Through rigorous prototyping, the PCB effectively received, calibrated, and transmitted our sensor data.

- Flex Sensor Measures the linear displacement in one direction
- ADXL345 Measures the acceleration and angular rotation along the X and Y axis
- **HMC5883L** Measure's low magnetic fields in reference to Earth's poles



# **Glove Program**

This program loaded onto the ATmega1284P and is responsible for the following:

- ✓ Acquire Sensor Data
- ✓ Run Calibration on User's Movement
- ✓ Calculate Pitch, Roll, and Yaw
- ✓ Convert from User's Angles to Robotic Arm's Angles
- ✓ Filter Degree Range
- ✓ Send Data from PCB to Arduino Mega

#### **Robotic Arm**

The robotic arm is used to demonstrate the movements of the arm that are captured by the control device and is oriented on a wooden mount. The arm captures the anatomical movements: shoulder flexion, shoulder rotation, elbow flexion, wrist flexion, wrist rotation, and finger flexion.



# **Robotic Arm Program**

This program is loaded onto the Arduino Mega and is responsible for the following:

- ✓ Wait for data to be received
- ✓ Converts received data to numbers and characters
- ✓ Assign degree values to corresponding servo motors

## Results

- Response time of 21 milliseconds
- Calibrates to user's movement
- Successfully amplifies movement





