Indoor Positioning System

EE 4820

'Robe‘rt Jarvis
Arthur Mason T RS G e S
Kevm Thornhlll i 3 oS B

My 1T i
AR ‘,‘:4‘4..-._
Ny b lv
X }&%f«{'\- P?v &
A O i‘

‘) (\\.'?

Jy 0 r J r?
{* { “1'k 4

Jy s n'u

Contents

N [A oo [N Tor i o] o TP OTPTOT OO U PR PR TPPUPRUPRRPO 6
2 HAPAWEIE. ..ttt ettt ettt et e sttt e ab e e s bt e s bt e e s a bt e e bt e e eabe e e b et e ea bt e sabe e e bee e e be e e nteeanreesbeeesareenn 7
D 4 =TI o 1=l | 1 Tr= Y d o 13 RPN 7

P A o [8 1T o To I o T=Tol | 1 or= Y o o IR 8

2. 2.1 ArdUiNO UNO ..ottt sttt ettt st st e be e s eae e e e s 8

2.2.2 ArdUINO FiO.ceuiiiiieeiieieetees ettt ettt st sttt e aeeene s 9

D Y\ o [V T o TN Y 1= == TSP 9

2.3 XBEE SHIEI...ccneeieieeeee ettt ettt et e s be e e s b e e et e e s abeesbeeesaree s 10

B THHAEEIATION .ottt et sttt e st e e s at e e s a b e e s bt e e sabeesbbeesabe e s bt e e sabeesabeeenteesbeeenns 11
3.1 Introduction £0 Trilaterationc.ceoiioriie e s 11

3.2 Trlateration iN 2D ...co.ieiiieeeeeee ettt st sttt et b e bt b sttt e e sre e shee st e 11

3.3 Trlateration iN 3D ...ceieciecieee ettt sttt b e b e sttt e b e saeesane e 13

3.4 Matlab code for Trilateration in 2D and 3Dccceeriiiiiriirieeeeeeeeee et 15

3.5 COLA (Complexity Reduced 3D Trilateration Localization Approach):.......ccccceevvvevieeecrneenee. 16

3.6 Matlab Code fOr COLA ...ttt ettt ettt sie e s e e e ne e sanesane e 18

3.7 Trilateration SIMUIALION RESUILS.......coiuiiiiiiiiiii ettt 18
3.7.1Simulation for 2D Trilaterationcccceereerieriire et 18

3.7.2 Simulation for 3D Trilaterationcccceereiiieniee e 19

3.7.3 SIMUIAtioN fOr COLA ...ttt st s 19

3.8 Reader Stands for Trilateration........cceoiireiriiiiie e e 20

3.9 Trilateration CONCIUSIONcocui ittt et s 21

4 RFID DeteCtiON DOVICE......eiiiiiiiiiiitiee ettt e s e s s e s s r e s sere e e s e sanenes 21
4.1 Introduction to the RFID Detection DeVICE........ccceerieeiiiiiiieeeiie et 21

4.2 RF Card 12 Digit UnNIQUE ID...uueeeeeeeieciiiieee e e ettt e e e s e e eettee e e e e e e e snaee e e e e e e e sennnseeeeeaseesennnnnns 21

4.3 Testing/Results for Finding 12 Digit UNIQUE IDcccviivieieerieeireectee e eereesteesreeveeveenres 22

4.5 Sending 12 Digit Unique ID to HOSt COMPULETeeiiieiiiiicieeecciee et et 23

4.6 Detection Device CONCIUSIONcociiiiiiieiieeeeeeeeerte et s 24

O3 2 E L =T =PTSRS PROT 25
5.1 Technical Specifications Of DatterieSccccueiiieiiiee e 25

I A= - | =] o €0 T o[o =Tt o] 3R 26

Rl T | d=] oY =TS o V- T T PP P TP 26

5. Battery STty .. i e e st e e e e ee e e enarees 27

RN 2 F Y =T oY N TP 27
NSl F L =] AN (o] - =< T O T PP P PP PR 29
5.7 Lithium-ion Polymer REChAIZING......c.uveeieiiiiee ettt et e e e 29
D8 RESUIES ..ttt et b e bt s he e sat e st e e bt e bt e he e et e et e et e e nbeesaeesaneea 30
Lo o N =T U] o o L PP 30
7 Battery POWET INAICAtON . .ciiiiiiiiieiiiie ettt et e et e e e s e e e e s bbae e e s abeeeesabeeessnbeeesenareeas 31
7.1 Battery Power INdicator REVISION 1cciiiiiiiiiiiiic ettt aree e s e 31
7.2 RESUIES .ttt ettt et e s bt e s bt e sat e st et e bt e bt e e bt e eat e et e e beenbeesheesanenas 32
7.3 Batter Power INdicator REVISION 2coiiiiiiiiiiiieieesiee ettt 33
7.4 Battery POWer INdiCator TESTING ..cciccuiii ettt e et e e e e abae e e eeabe e e s enraee s enraeas 33
7.5 RESUIES .ttt ettt ettt e s bt et e e st e s bt e e st esbe e e ea b e e s be e e sabe e e beeeateesbeeenares 34
8 XBEE PrOZIaMIMING ..veeeeiiiiiiiiiiiieeeeeeeieittte et e e e seitrtteeeeessssbsbeeeeeeesssasststeeeesssssssssssaaeeeesssssssssnnaeeesssnnns 34
8.1 Introduction to XBEe Programming........cccueeeeiiieieeiiieeeeciteeeeecireeeeetee e eenree e e eeaneeesesaraeeeennsaeas 34
8.2 Testing and Verification Of XBEEScoeccuiiiiiciiie ettt e e tre e et e e earae e e nreeas 34
82,1 RESUIES ettt ettt sh e sttt sttt b e b e s be e s ae e et e e beesbeesaeesareea 34

8.3 AT CommMaNd ProgrammMiNg.....c.uueeiiiiieeeeiiiieeeiiieeeesree e esre e e e sare e e esabreeeenbeeeesssbaeeessaseeesennsenas 34
8.3. 1 AT CoOMMAN TEST...eiiiieiieiieiee ittt ettt s s n e s e e sane e 35

8.3.2 RESUITS ettt st e s st sree e 36

8.4 AP PrOgramMMNG ...cceeeeeeieeiieeeeeeeeessssse e s s s ee e e s e e e e e e e e e s e e e s s e s e e s e s e s e s e eesaaeasaeasasasasaesasssassessesasesananeeanens 36
8.4.1 API Data Frames......coi ittt ettt et e s 36

8.4.1.1 AT COMMANG ..eeiiiiiiiiiieiieesree ettt e st e s esre e e sabeesreesemeeesareeenne 36

8.4.1.2 AT ComMMANA RESPONSEuvveeeeiiiiieiiiiieeeiireeeesireeessbeeeesssbeeeeesaseeessnasenas 37

8.4.1.3 TransmMit REQUEST......uuueieiiiiiiiiiiiiiiitiiiie e aaaaaees 37

8.4.1.4 ReCeIVE PaCKeT ..c..eeiiiiiiiieeie e 38

8.4.2 Arduino-XBee APl LIDrary.....ccco oottt e e e e e e e e 38

8.4.2.1 AP LIbrary TeST ...ttt e e e e e e e e e e 38

8.4.2.2 RESUIES ..ttt st e e sre e 38

8.4.3 API Library Programmingc..ceeiccuiieiieiieeeecciieee e eiieeeeestteee s stteeeesvteeessnraeessntaeeesnnns 39

8.4.3.1 Series 1 vs Digimesh Data Framescccoccuveeeeiieeeeciieee e e 39

8.4.3.2 APILIBrary TESE 2 ..cecueieeeeiieee ettt et rree e e re e e vae e e e e e e e areeas 40

8.4.3.3 RESUIES ..ttt 40

9 Tag/REAET DISTANCE TESTS....ueiiireiieteeeeteeeeteeeeteeeeteeeetteeeteeeseeeeteeeeseeessseeesseseaseeesatesensseesnsesensseesnseeenes 40

9.1 Tag/Reader Testing INtrodUCTIONccieiii e cie ettt ettt e teesteesbe e e e et e ebe e reesteesaaesaneens 40
9.1.1 DiStance FOIMUIAooiieiieieee ettt sttt s 40

0.2 TS Lttt ettt ettt b ettt b e e bt e h e sh e s at e et e bt e bt e be e e be e ea et et e e bt e nbeenheesaneeas 40
9.2, 1 RESUIES .ttt ettt ettt sttt sttt e e s b e sbe e sme e et e e beenbeenheesane e 41

9.3 SECONA DiSTANCE TS . uuviiiiiieiieertee et ste et st e et s e e st e e sab e sbe e e sabeesabeeesabeesareesnteesaneeesanes 41
9.3.0 RBSUIES et eutieeitee ettt ettt ettt et s et ettt e st e s be e e st e e e bt e e ab e e s be e e sareesbeeeneeesreeenns 42

9.4 Third DIStAnCE TEST ..ceeiuiiiiiiiiiiee ettt ettt e st e st e bt e e sbe e e sabe e sabeeemteesabeeesanes 42
9.4 1 RESUIES ..ttt ettt ettt et h e st sttt et e bt e bt sbe e eat e et e e beenbeesheenaneea 43

9.5 CONCIUSION ..ttt ettt e b e she e st s bt et e b e bt e s st e eaeeeabe e beenbeesaeesanenas 43

O o) (=T oY = @oT oY o F= T 1] o 3PNt 43
10.1 XBEE ANTENNGAS ...ttt e e s e e e e s e et e e e s a e e e e e e 44

10.2 TItANIS ANTENNAS ..eeiiiiiiiieieiieee ettt e st e e s st e e s s e e s sbeeeessbeeeessanaeeesaneeeessnneeessanee 45

10.3 RESUIES 1.ttt et b e sttt st et e bt e s bt e sbe e s a b e et e e nbeesheesatesabeebe e beenes 46

11 Distance Tests With NeW ANTENNGS.cccuiiiiiiiiieeeee ettt sttt sbe e st eeeeeees 47
I O 1= o PSP P PO PPPTTOPPRPROR: 47
L1000 RESUIES ettt ettt st et e bt e bt e s b e e s et s bt s bt e bt e b e e r e e ne e e ae e eareenreen 47
LA.2 TEST 2ttt ettt sttt et e e bt e R e ae e st e ar e e bt bt e bt e re e eae e eareenreen 47
1020 RESUIES ettt ettt st st et et e bt e s ae e s aa e san e e bt e r e r e re e e ne e e ae e eaeeenreen 48
12,3 CONCIUSION .ttt ettt b e bt sa e et e b e et e e be e sbeesaeesabeeabeebe e bt e nbeesmeeeaeeeneeentean 48
12 2-D Trilateration LOCAtioN TeSES......uiiiiiiieieeieesteeteest ettt ettt sttt st ettt e bt e sae e st eaeeeneeas 48
0 R 1= o PP ST PP PO PPPPOPPPRRON 48
12,01 RESUIES ettt ettt st sttt e b e b e s s ne s n e e r e s 48

L2.2 TEST 2ttt sttt et st b e R b et ettt e b e nhe e san e sane e r e e reenee 48
12.2.1 RESUIES .ottt ettt sttt e b e b e s ane s nesn e e neenes 49

2 =] S PP PP RO PPRROPPPRON 50
12,300 RESUIES .ottt st st sa e e e e sne e e saree s 50

A I =] o PP PP PR PPRROPPRRN 50
12,41 RESUIES .ottt et ettt st sttt e b e s be e s senesn e e neenes 51

T =T TP PSSO P PP PPN 52
12.5.1 RESUIES ettt ettt et b e s b e st s s r e b nes 52

12.6 INAOOF TESE L.ciiiiiiieeiiee ettt ettt ettt st e e bt e e st e s b e e e sabe e s be e e smeeesabeeesaneesareeeneeesareeanns 53

S T A 2 =T U TR 53

13 GraphiCal USer INTEITACE ..uiiiieiiiee ittt e s e e st e e s s bee e e s s bteeessnraeessanteeessanes 54
13.1 INtrodUCtioN tO GUI....eiieiiiiieieeteeseee ettt st sttt sbe e s s e b e b e ns 54

13,2 GUI IQYOUL .eveeeecciieee ettt e et e s et e e e e et e e e e ebte e e e eabtaeeeeasaeeesenbaaeeeestaeeesstaeeesnsteseesnnes 54
13.2.1 LAYOUL AESIZN ..ureieieiiiieeciiee ettt et e et e e e ere e e e et e e e s earae e e eabaeeseaseeeeennraeesennsenas 54

13.2.2 Information [QYOULccuuiiiiiiiie e s 55

13.2.3 RESUIES .ttt ettt s bt e sab e s b e e s b e e sne e e saree s 55

13.3 GUI BUIIE iN FUNCLIONS «..eeiiiiiieiiee ettt ettt et ettt e s b e sibeesabeeemeeesabeeenne 55
ST I R @ T oT=T o 11 V= (U] o Yo u o o IR SR 55

13.3.2 Additional Built-in FUNCLIONS......cccoiiiiiiiiieieeee e 56

13.4 Implementation into LOCAtion SYSTEM.......c.uiiiiiiiiiie ettt e e e enes 56

14 CONCIUSION .ttt ettt ettt e s e s bt e e s bt e s bb e e abeesabeeesabeesabbeesabeesabeeesabeesabeeenteesaneeenres 58
ST = 10 o o SRR 59
16 REFEIENCES: ...ttt ettt s a ettt e et et e e s bt e sheesab e sabe e bt e bt e bt e e beeeneeeneeenteentean 60
F YY1 oL [P D F Y =] g LT £ PSR 61
TIEANIS ANTENNG .t e e st e e s e e e e s s mee e e s senen e e s senrne e e nnee 61
LIthiUum [ON BAEEIY coueeieeeiciiiee ettt et e e e et e e e st e e e e s sbteeeesastaeessantaeeessteeeesanes 68
ID-12 RFID Detection DEVICE.....ccuiiiiiiiiiiiiiiciiiccttcitc et 74
MAXIMN B2L2 ...ttt sttt et et ettt st b e r e b sttt e r e sae e san e sn e e n e reenes 81
XBEE ANTENNG ..t e s 89
Appendix B: Matlalh COUE ..ot ae e e et e e e e bee e e e bre e e e areeas 96
B0 MmN o, 96
TEST2ZD Mttt e e a e s e e sanes 96

18 01T 1 1 0 PSPPSR 97
TESEZDM ettt e e e s sb s e e s saaes 98
(60 117 W2 SO OO ST P TRV TUPTUPTRURTRPON 99

(@10 17N =1 =4} 1 o o T SSRRNE 100
IMIATLAB GU L ..ttt e e e e e ettt e e e e e s bs bttt e e e e e e s assreeeeeeesesannneneaaeeseannnn 100
Matlab Distance FOrMUIA.....ccuiiiiiiiiieeer ettt et sn e saee s 104

RFID Matlab Serial INPULoiiiieiecce ettt e et e e e saea e e e esata e e e esataeeeennnaaeeean 104

FiY oY1= o Yo [P Q@ o [V 1 Vo J 6 Yo [T PRSP 106
ST AT oY= 2y | o Yol 1= o [106

SeNding RFID t0 Matlabcoioeiieii e e e e e 106

AT COMMANG. ..ttt ettt et e st e e s bt e e bt e e sabeesabeeesabeesbaeeaabeesabeeesabeesseeesnseesseeesaseesn 107
Series 1 APl SENAEr TEST COUE ...ouuiriiiiieieeteesteesiee ettt ettt st sbe e s s eaeeeneees 109
Series 1 API RECEIVET TEST COURiiiiiiiiiietiettente sttt sttt e eee s 110
Location System Tag FiNal COUE......couiiiiiiiee ettt ettt e e e eae e e et e e e aae e e e naeeeean 112
Location System Reader FINal COUE.......uiiiiiiiiiiie ettt e e e s snareeeeas 114
Location System Coordinator FiNal COOE.......uiiiiiiiiiiiie ettt sare e 117
Location System Arduino Mega FiNal COAEccuuviiiiiiiiiiiiiii et esaree e 120
Appendix D: XBEE API LIDIaryoeee ettt ettt e e e et e e e ett e e e e ebteeeeebeeeeeebaeeaesntaeaesanes 124
HEATET FIl ..ottt ettt sttt st et e b e bt e s ae e eateebeebeesbeesaeesanenas 124
OP P Rl h ettt be e bt sht e st ebe e b e e be e e beeeaeeeaeeentean 124

1 Introduction

Wireless technology is used in our everyday lives. It can be used for tracking objects within an enclosed
area. A popular wireless technology is RFID, which uses radio waves to exchange data between readers
and electronic tags that are attached to any object. Xbee is another wireless technology that uses radio
frequencies to transfer serial data. Most RF tracking systems only track whether the tagged object is in
a specific area, for this project the RF system will locate the exact position of a tagged object indoors.
Making a system convenient, easy to use and accurate are the general requirements. The device
components, such as the readers and the electronic tags are small, which makes the system convenient.
User friendliness will come from the RFID detection device, which will allow the user to scan a card to
find the object they are looking for. Detecting the tag within 1 meter of the actual location is the
accuracy is expected the indoor positioning system produce.

The Technical requirements consist of power, tracking, and time. The expected life time of the will be at
least one year off battery power. The system should also be able to hold and track at least 10 tags. The
last technical requirement is the system will provide real-time direction and distance to the user. The
marketing requirements consist of an estimated cost of $1000, which includes four readers and two
tags.

The final design review shows the progress of our work through the past year. Xbees and Arduinos are
integrated together using trilateration shows how the system will find the location of the object. This
review will also show how the RFID detection device is integrated into the system. Next, the battery
power indicator is created to make the power last at least a year for each tag. The graphical user
interface is also implemented into the system to show the user where the object is located. Tests and
results for each of the systems are explained in detail through this review.

2 Hardware

2.1 Xbee Specifications:

The Xbee, or Zigbee, RF module is an embedded solution that provides wireless connectivity between
devices. The modules use the Digimesh networking protocol for peer to peer networking using 2.4GHz
or 900Mhz frequency bands. The Xbee is connected to an Arduino (ATmega microcontroller) that
contains the programming on non-volatile memory. An Xbee mesh network can transfer data at a rate
of 250kb/s at a range of up to 100 feet indoors. The Xbee module also has lower power consumption
than the competing peer-to-peer communication technologies, such as Bluetooth and Wi-Fi. The Xbee
has a consumption of 30mA while transmitting and 3pA at rest while the similar Bluetooth device
consumes 40mA transmitting and 0.2mA while at rest. The reason for this difference in power
consumption is the fact that Xbee system stays in sleep mode, like active RFID tags, most of the time.
Bluetooth devices must always be transmitting or receiving and Wi-Fi devices are designed for high-
power devices and not suitable for long-term battery life. The XBees in use at the conclusion of this
project were using IEEE 802.15.4 (Series 1) networking protocol and also included an RPSMA connector
for use with the Titanis antenna.

Figure 1: Xbee Module

Mechanical Drawings for the RPSMA Variant

Xbee 210" SHORTLR
THAN XBee-PRO

1.03)
(0.312)

[0.375]

Figure 2: Mechanical Drawing of RPSMA XBee

2.2 Arduino Specifications

2.2.1 Arduino Uno

The Arduino Uno is a microcontroller board based on the ATmega328. The board contains 14 digital
input/output pins, 6 analog inputs, a 16 MHz oscillator, a USB connection for serial data communication,
and a power jack. The Arduino Uno board will be used for the host computer connection and used for
readers, or the locater nodes. For the Uno connected to the host computer, it will be able to
communicate with the computer, which includes transferring data from the Arduino and uploading code
to the Arduino, and powered using the USB connection. For the Uno used as locaters, power will
supplied by an AC to DC converted. The board contains 31.5 KB of usable Flash memory, 2 KB of SRAM, 1
KB of EEPROM.

To simplify the connection to an Xbee module, the Arduino Uno will use an XBee shield to interface. The
shield connects the serial pins (DIN and DOUT) of the Xbee to the serial pins (DO, D1) of the Arduino or
to any digital pins. The board has an on-board regulator that takes 5V from the Arduino and regulates to
3.3VDC before being supplied to the XBee. The shield will also take care of level shifting on the DIN pin
of the XBee. The shield also includes LEDs to indicate power and activity on the DIN, DOUT, RSSI, and
DIOS5 pins of the XBee.

Figure 3: Arduino Uno

2.2.2 Arduino Fio

The Arduino Fio is a microcontroller board based on the ATmega328P. The board is designed to
interface with an XBee module. It includes 14 digital input/output pins, 8 analog inputs, 8 MHz oscillator
and an on-board resonator. The power is provided either by USB connected or by a Lithium Polymer
battery. There is also an onboard battery charger to charge the battery over a USB connection. A user
can upload code with an FTDI cable or wirelessly through a modified USB-to-Xbee adaptor such as XBee
Explorer USB. The input voltage for operation is 3.35V — 12V. The input voltage to charge a lithium

polymer battery is 3.7 - 7V.

BAT CHG
-
+ -5 5U-

Sparkfun.com:

\-L

s .cr:/

bl W

& o,

> (]

@ GNDBLK <3u3

@ AREF © enD

®3v3 5 02

@ RXI w03
04

3

>
=
i
-

Figure 4: Arduino Fio

2.2.3 Arduino Mega

The Arduino Mega is a microcontroller board based on the ATmega1280. It has 54 digital input/output
pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a
16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button.

The ATmegal1280 has 128 KB of flash memory for storing code (of which 4 KB is used for the
bootloader), 8 KB of SRAM and 4 KB of EEPROM. The ATmega1280 provides four hardware UARTs for

TTL (5V) serial communication.

MADE IN ‘ .
My
o o5 ‘c;z‘
N

Arduino MEGA

wuwu.arduino.cc

Figure 5: Arduino Mega

2.3 XBee Shield

The XBee shield allows for an Arduino board to communicate wirelessly using XBee modules, series 1 or
series 2. The shield breaks out each of the XBee’s pins to a through hole solder pad. Female headers can
be soldered in this solder pad to simplify interfacing the Arduino with external hardware. The serial pins
of the XBee are connected through an SPDT switch, which allows the user to select a connection
between the DIN and DOUT of the XBee to either the UART pins, DO and D1, or any digital pins, D2 and
D3 by default. Power is supplied to the XBee by taking voltage from the 5V pin on the Arduino and
regulating it to 3.3 VDC and fed into the XBee Vcc pin. The shield also takes care of level shifting on the
DIN pin of the XBee. The shield also includes LEDs to indicate power and activity on the data pins, rssi
pin and DIO5 pin of the XBee.

Figure 7: XBee Shield Eagle Schematic

10

3. Trilateration

3.1 Introduction to Trilateration

To locate an object that is in the field a system was created that uses radio frequency signals. The
strength of the radio frequency signal is measured between the tagged object and the readers that are
stationed in the field. Once the signal strength is gathered, it can be converted into a distance using the
distance formula which will be explained in further detail later in this report. When the distances have
been calculated they are plugged into a system on quadratic equations called trilateration. Using
trilateration makes it is possible to find the tagged object on the XY plane and it will also allow us to find
the z axis of the object as well. There are two types of trilateration, the first one is 2-D trilateration,
which only allows you to find a tagged object on the XY plane and then there is 3D trilateration. 3D
trilateration allows you to find a tagged object on the X, Y, and Z coordinate system.

3.2 Trilateration in 2D

For the indoor location system 2D trilateration is used to find a tagged object that is located on a
surface, which will be on an XY plane. The location of three readers has to be known along with the
distances between the readers and the unknown tagged object for 2D trilateration to work correctly.
One can visualize this by looking at figure (x1), where the red dot in the center has an unknown location.
The red dot will represent the location of the object that is being searched for. The reference nodes,
also known as the readers, are labeled A;, A,, and As, the distances between the reference nodes and
the tagged node are labeled d,, d, and d;. The intersection between all three nodes is the location of
our unknown tag.

Each tag and reader will consist of a transceiver and an antenna. The tag transmits a signal and the
signal strength, also known as RSSI (Received Signal Strength Indication) is measured between the tag
and the stationed readers. The signal strength can be converted into distance, which gives us the three
known distances that are needed for trilateration. The downside for using signal strength is that the
calculated distance will not always have the exact distance between the reader and the tagged object.
The reason for this is because the signal strength coming from the tag could be interfered with other
signal frequencies, room temperature, humidity, construction within a building and metal interference.
The equation converting signal strength to distance can be tuned for some of the parameters listed
below, but there are some things that cannot be controlled, therefore with every distance that is
calculated there will be a small error.

Once the distance is calculated, trilateration will be used to find the position of the tagged object. The
way 2D trilateration works is shown below. In the following equations Xi and Yi represent the position
of Ai (readers), where i = 1,2,3.

11

AN

Figure 8: Trilateration in 2D

(x—x)% + (y—y)? = di (Equation 1)
(x—x)* + (y—y)* = d} (Equation 2)
(x—x3)*> + (y—y3)* = d} (Equation 3)

To simplify this system of quadratic equations, equation 3 will be substituted into equations 1 and 2,
which will leave two linear equations.

200 — x)x+ 2y, — y)y = (df — d3) — (xf — x3) — (vf — ¥3) (Equation 4)

2003 — x)x+2(ys— y)y = (df — dD) — (xf — x5) - — y§) (Equation5)

The X and Y coordinates are found by solving equation 4 and equation 5 using Cramer’s rule.

@i —d)—(f—x)-0f—vy) 202— y1)
(d% - d%) - (x12 - x%) - (3’12 - y_%) 2(y3 — y1)

X = E tion 6
2(x; — x1) 2(y2 — y1) (Equation 6)
2(x3 — x1) 2(y3 — ¥1)

206, — x1) (A — dP) —(xf — x3) — O — ¥3)
23— x1) (df— d3) — (xf — x3) — (v — ¥3) .

Y = Equation 7
2(x3 — x1) 2(y2 — ¥1) (Eq)

2(x3 — x1) 2(y3 — y1)

12

Equations 6 and 7 will be solved using Matlab. The simulation will be shown in the section called
Trilateration Simulation Results (Section 3.7).

3.3 Trilateration in 3D

A(Xz Var 22)

AL{XLI :VI.r ZI

e L

v
W
i —
T
1
I
i
]
]
T
1
'
]
==

L e e e e S o S T T

: : |
¥ h]
E' A Ay (s Y& z3)
b J)
0L R A .
! v 5(x, ¥, z) !
i e e e L e e e
=== u—xu=
: i i L L 1 1 X 1 LY 1 -
A S S S S E S W W NN \
v ri r i I 1 1 11 A 1 hY A"
Z i ri i 1 I 1 L 1 A A%

Figure 9: Trilateration in 3D

Originally, the indoor positioning system was supposed to find an object within a warehouse. With this
in mind, it was taken into consideration that there are items elevated in high placed that can’t be seen
or reached. To do this, a 3D system is needed that will have a Z component along with the Xand Y
components. Asyou can see in figure 9, there is a fourth reader. This fourth reader gives us an extra
component; therefore linear algebra can be used to find the height of the tagged object. The 3D
trilateration quadratic equations are similar to the 2D trilateration quadratic equations. Also, because
of the quadratic equations every reader can be at a different height. The equations for 3D trilateration
are as follows:

(x—x)% + (W=—y1)*+ (z— z)?* = d} (Equation 8)
(x—x)% + (y—¥)%+ (z—2z,)? = d3 (Equation 9)
(x—x3)> + (y—y3)%+ (z— z3)% = d3 (Equation 10)
(x—x)% + (W=v)? + (z— z,)? = d? (Equation 11)

The above equations can be simplified into 3 linear equations.
2(x, = x)x + 2y, —y)y + 2(z, — z)z = (df — d3) — (x{ —x3) — (¥ —¥3) — (2 — z3) (Eq 12)
203 = x)x + 2(y; =¥y + 2(z3 — z)z = (df —d3) — (xf —x3) — (v —¥3) — (2} — 2) (Eq 13)

206 —x)x + 20y — ¥y + 2(24 — 21)z = (d% —dj) — (x12 - x5) — (}’12 - yi)— (212 —-z3) (Eq 14)

13

Now, the X,Y and Z components are found by solving equations 11,12, and 13 using Cramer’s rule.

@} =d)D - =x)-Of =y -z - 2) 20—) 2(z—z)
(d% - d%)_(xf_ x%) _(Y12 - 3’32) _(212 - 232) 2(y3 — y1) 2(2z3—z)

_ @ -dD -G -) -G -y - - zE) 20— y) 2z —z)

X 206 — x1) 2012 — y1) 2(z2—7)
2(x3— x1) 2(y3— y1) 2(z3—7z1)
200 — x1) 2Qva— y1) 2(z4—2z1)
200, — x) (@ —d)—(f =) - i — y)) — (2 — z5) 2(z—z)
23— x) (@ —dD)—(f—x)—f -y — (28— 25) 2(z3—2z)
Y = 20— x) (@ —dD) - —xPH-0F -y — (= 2z5) 2(zs—21)
B 200 = x1) 20— y1) 2(z2—z1)
2003 — 1) 2(y3— y1) 2(z3—7)
204 — x1) 2(Va— y1) 2(24s—21)
2006 = x1) 20— y) (A —dD—(f— %) - i -y — (2 - 7)
2003 — x1) 2(yz— y1) (di—d5)—(xf— x3)—(yf — y3) — (zf — z3)
7= 2= x) 20s—) df —dd) —(xf = x§) —f — yi) — (2 — 2F)
20— x1) 2012 — y1) 2(z2—71)
2063 — x1) 2(y3— y1) 2(z3—2z)
2004 — x1) 2Qa— y1) 2(24a— 7))

(Equation 15)

(Equation 16)

(Equation 17)

Both 2D and 3D trilateration have its pros and cons. Adding an extra reader to the system will increase

the accuracy of the location of the tagged object in 2D. However in 3D trilataration, the fourth reader is

needed for the extra unknown z-component. 3D trilateration will also be less accurate and more

complex than 2D trilateration. The more complex the system is; the longer the computational time will

be, which is another advantage that 2D trilateration has over 3D trilateration. But there is a way to

execute a 3D system by expanding 2D trilateration and this system is called COLA, which will be

explained in further detail in a section called COLA (Complexity Reduced 3D Trilateration Localization

Approach) (Section 3.5).

14

3.4 Matlab code for Trilateration in 2D and 3D

The 2D trilateration Matlab code has to have two different Matlab files for it to work correctly. One file
is the actual trilateration code, which is called two_tri.m and is located in Appendix B, the other Matlab
file stores the distances between the node we are searching for and the known readers locations. The
file that stores the reader coordinates and distances will be called Test2D.m and is located in Appendix
B. The Test2D file has to have the known locations of the three readers and the node with the unknown
location. The location of the reader will be manually put into the host computer by the user when the
system is set up. However, the three distances will be fed to Matlab by the Arduino connected to the
host computer. The Arduino is converting the RSSI signal into distance and sending it to Matlab through
the serial port. Both Matlab files share information with each other, so, therefore once all the X and Y
components of the readers as well as the distances are known, the X and Y component of the unknown
node can be found using the two_tri.m file. When the program is done executing a screen will be
displayed with three circles, one around each reader node, intersecting at the location of the unknown
node.

The Matlab code for 3D Trilateration is very similar to the MATAB code for 2D trilateration. You can see
the 3D trilateration code in Appendix B, and see how much larger and complex it is compared to the 2D
trilateration code. This is why the 3D trilateration computational time is exponentially larger than the
2D trilateration computational time. Also you will notice in the simulations that there are circles around
each reader node in 2D trilateration and where those circles intersect is where the unknown object is
located, but for 3D trilateration there are no circles. That’s because for 3D trilateration there has to be
spheres instead of circles and since we were under time constraints we decided to put a dot where the
unknown object is located. Other than the computational time and the extra component, the basic idea
of the 3D trilateration code and the 2D trilateration code is the same. For 3D trilateration there are two
Matlab files, one Matlab file stores the distances between the node that is being searched for along with
the known reader nodes, and this Matlab file can be seen in Appendix B, the other Matlab file was
mentioned before and it has the actual 3D trilateration code. The simulation for both the 2D and 3D
trilateration are located in the section called Trilateration Simulation Results (Section 3.7.1 and 3.7.2).

15

3.5 COLA (Complexity Reduced 3D Trilateration Localization Approach):

A1(X1.Y1.21) 4

A3 (x,y1,71)

e

a

Figure 10: COLA 2D diagram

Ao Vo 2)

Yo%z v 23)
1)

Sz Vo)
§ _,,rrf%,.gg\:;f‘
T b | ?5,(*’34 Ya h)

Figure 11: COLA 3D diagram

As mentioned before in the section 3.3, COLA can be used for 3D applications. COLA’s computation time
is much shorter than the traditional 3D trilateration, but COLA is much more expensive. The reason why
it is more expensive is because three additional readers have to exist at the same XY axis as the original
3 readers, but have to be at an elevated location. This is the ideal method for tracking a tagged object
indoors due to the fact that it is 60 percent more accurate than trilateration in 3D, the more readers, the
more accurate the system will be. To find the height using COLA, complex algebra will be used and is
shown below. To make this process easier to understand, take figure 10 and dissect it into 3 parts. To

show how to find the height, the readers at Ai will be considered.

16

a+b

cosf = 4 (Equation 18)
a= dycosf— (z— z) (Equation 19)
di =12+ (a+ (z— z}))? (Equation 20)
d3 = d? +2(z; — z))dycosO — (z; — z})? (Equation 21)

Using equation 20, cosB can be solved for and gives the following equation:

dj — di + (z; — z))?
cosf = —2 ! (,l) (Equation 22)
Z(Zi - Zi)dZ

The height equation is the following:
height = z; — (a+ (z; — z)) (Equation 23)
where

(a+(z;— z))) = (dycosO — (z;— z)) + (z; — z]) (Equation 24)

dj — d? + (z; — z})*
2 RS)] (Equation 25)

(a + (z; — Z{)) =d, [Z(Zi — Z{)dz

Substituting equation 23 into 22 gives us the height of the tagged object:

di — di + (z;— z])?
e S)] (Equation 26)

2(z; — 7})

To find the distance(r;), which is the distance between the tagged object and the XY coordinate of the

height = z; — [

readers is as follows,

7= Jd%(l — (cos6)?) (Equation 27)

Substituting equation 20 in for d% and equation 21 in for cos 8 the distance can be calculated with the
formula below:

—d} — df + 2(zi —)" d} + 2(z — z{)°d} +2d}d} — (z - 2))"
4(z; - Zi')4

1= (Equation 28)

The last step of COLA is performing 2D trilateration using the distances (r) between the tagged object
and the reference readers.

17

3.6 Matlab Code for COLA

The COLA Matlab code has two Matlab files. One Matlab file is used for finding distance between the
known reader and the unknown tag, this Matlab file is called COLA.m and can be found in Appendix B.
The other Matlab file is used for finding height of the unknown tag, this Matlab file is called
Cola_Height.m and can be found in Appendix B. You can see that this code is less complex than the
traditional 3D trilateration code and this means that the COLA computation time is much faster. The
location of the unknown tag will be known so we can find the distances between the readers and the
tagged object. But when the whole Indoor positioning system is set up the distances will be known from
the RSSI signal strength conversion coming from the Arduino. Once the distances between the readers
and the tags are known, the distance between the XY coordinate of the reader and the unknown tag will
be known by using COLA.m. Once the distances between the readers XY coordinate and the unknown
tags are known then the two_tri.m file will be run to find the XY coordinate of the unknown tag. The
height of the object will be found using the Cola_Height.m file and it will take the data from the COLA.m
file to solve for height. Once the height is found it will be stored as a variable. After the program has
been completed, the location of the object will be displayed to the screen. The simulation results of
COLA will be shown in the section called Trilateration Simulation Results, Section 3.7.3.

3.7 Trilateration Simulation Results

3.7.1 Simulation for 2D Trilateration

Location of Reader 1: [-2, 2]
Location of Reader 2: [2, 1]
Location of Reader 3: [-1, -2]
Location of Unknown Tag: [1, 1]

In figure 12 each red dot symbolized one reader and the location of the unknown tag is located where
all three circles intersect.

<) Figure 1 =] =3

File= Edit Wiew Insert Tools Deskbop Window Help

S s k[DR 2 - 0B = m

L = T I I

Figure 12: Simulation for 2D Trilateration

18

3.7.2 Simulation for 3D Trilateration

Location of Reader 1:[-2, 2, 2]
Location of Reader 2: [2, 1, -1]
Location of Reader 3: [-1, -2, 2]
Location of Reader 4: [3, 3, 3]
Location of Unknown Tag: [0, O, 0]

For 3D trilateration, refer to figure 13. Each outer dot symbolized a reader. The location of the object is
not shown with the intersection of spheres, but it is shown by a dot within the outer dots. Also, note
that the readers are at different heights and the system still works correctly.

Figure 13: Simulation for 3D Trilateration

3.7.3 Simulation for COLA

Location of Lower Reader 1: [-2, 2, 2]
Location of Lower Reader 2:[1, 1, 2]
Location of Lower Reader 3: [-3, 0, 2]
Location of High Reader 1: [-2, 2, 4]
Location of High Reader 2: [1, 1, 4]
Location of High Reader 3: [-3, 0, 4]
Location of Unknown Tag: [4, 5, 1]

For the COLA simulation, refer to figure 14. Each red dot symbolizes a reader. Again, we are not able to

use spheres to show the location of the unknown tag because this is in 3D; therefore, we show the
location of the unknown tag with a black dot.

19

B Figure 1 — i ESRRE] >

File Edit View Insert Tools Desktop Window Help k]

FEFRD R P AEEE

ol kb h e 2w e oo

P

Figure 14: Simulation for COLA

3.8 Reader Stands for Trilateration

The reader stands were built originally for COLA, as you can see in figure 15, there is available space for
a lower reader and a higher reader on each of the three stands. The original design was only about 2ft
high. The reason for this design is because for COLA trilateration, as long as there are two different
readers at two different elevations and have the same XY coordinate, height of the unknown tag can be
found. With that in mind, the more compact the system is the more convenient it would be while we
were demonstrating the indoor positioning system. Although it would be more convenient to have
smaller stands, every time we tested the signal strength with the readers close to the ground the signal
strength was inconsistent and weak. After doing some further research we realized that the ground is a
good reflector of electromagnetic radiation. With the understanding that the earth could have possibly
been reflecting our signal, it was decided to build the stands at approximately 5ft high. The height of
these stands is where the lower readers will be. If COLA trilateration was to be tested, the stands would
have to be extended to approximately 9 to 10 ft high for it to work properly.

Figure 15: All Three Trilateration Stands Figure 16: Trilateration Stand 20

3.9 Trilateration Conclusion

Using trilateration was a success in this project and the actual testing and proofs will be shown in detail
later in this report. Although trilateration does not give us the exact location of the object in the actual
field, it does get the user in very close proximity. Throughout this semester we were not able to get the
COLA working in the indoor positioning system due to time constraints, but the 2D trilateration is
working better than expected. We hope another group can compound on our studies and hard work to
make COLA a success for the indoor positioning system. As | mentioned before, COLA is the ideal way to
locate an object. It’s just a system that uses 2D trilateration, and finds the height using trigonometry. It
also used six readers, which makes it much more accurate than the traditional 2D and 3D trilateration.

4 RFID Detection Device

4.1 Introduction to the RFID Detection Device

The detection device was created to make the Indoor positioning system much more user friendly. The
project had to keep in mind that not all people using our system will have computer skills and may not
have any type of technical background. Instead of a user typing in the object that they want to find, one
could use an RFID reader with RFID cards to bring up the location of a tagged object. The basic idea
behind the detection device is, for every item that is tagged in the field, it will have a RF card that is
linked to it. Each RFID card has a unique 12 digit hex number. For example, if RFID card #1 =
4500B8E95541 we can link Box #1 to RFID card #1 by referencing Box #1 with the same unique 12 digit
ID in our database. For this system to work correctly, it will need RFID cards, an ID-12 detection chip,
and an Arduino Uno. The datasheet for the ID-12 chip is listed in Appendix A. There were several issues
that came up while building the device. The first one that that will be discussed is figuring out the
unique ID for each RF card, the second challenge to overcome was sending the unique ID to Matlab so
the host computer would know which object the user is looking for. The project’s final challenge was
making the system where multiple unique ID’s are stored in the host computer, so the user can just scan
each card and find each item in the system.

4.2 RF Card 12 Digit Unique ID

Finding out the 12 digit unique ID was an unexpected challenge for this semester. It was assumed that
the manufacturer would give us the ID for each card, but this didn’t happen. To solve this problem, the
ID-12 chip was connected to an Arduino as shown in figure 17. The Arduino Uno can transmit serial data
using the TX pin and receive serial data using the RX pin, due to the built in serial communication library.
Pin 9, also known as the data 0 pin of the ID-12 chip, will output at 9600 baud serial every time it reads a
card being scanned. The data 0 pin is connected to the RX pin of the Arduino and the RF card data will
be stored into the Arduino’s 128 byte serial receive buffer. Once the 12 digit hex number is in the
buffer, the next goal is to display it to the screen.

To program the Arduino to display to the screen, we used the serial library that is already built into the
Arduino. There are some key functions that are used in the program and they are listed below.

e Serial.begin(), opens the serial port and sets the data rate at some value of bits per second, for
the serial data transmission.

21

e Serial.read(), tells the Arduino to read the incoming serial data.
e Serial.avaliable(), checks to see if there is any data in the 128 byte serial buffer
e Serial.print(), prints the data to the screen as a human readable ASCII character

The code that was used to find the 12 digit unique ID for the RFID cards is listed in Appendix C. The code
is written to open the serial port of the Arduino Uno and set the output rate at 9600 bps. Next, the code
will check to see if there is data in the serial receive buffer. If nothing is returned at this point the RFID
card was not detected and it will need to be rescanned. Otherwise, if it returns the number of bytes
available, the unique ID number will be read and printed out to the screen.

ID-12
Innovations

Figure 17: ID-12/Arduino circuit connection for Detection Device

4.3 Testing/Results for Finding 12 Digit Unique ID

The initial test with the circuit configuration in figure X10 and the original code, failed. At first,
troubleshooting started with the ID-12 chip. To test the chip we connected a resistor and a LED light to
PIN 5 of the Arduino Uno. A simple code was written to set pin 5 to a high voltage when a RFID card is
detected. The experiment was tested and when the RFID card was scanned the LED would come on 50
percent of the time and stay off 50 percent of the time. This led to the conclusion of a bad connection
within the breakout board or breadboard. With that in mind, the ID-12 chip was taken off the breakout
board and soldered the PINS of the ID-12 chip directly to the wires that are connected to the Arduino
Uno. Then we executed the test again and the LED light came on every time the RFID card was scanned.
The conclusion from this test was that the ID-12 chip had good connections now; therefore, the original
code was then uploaded to the Arduino. The original experiment was tested once again and when the
RFID card was scanned the 12 digit unique ID was displayed on the screen as shown in figure 18. This
allowed the group to move forward with the project knowing the ID number that will link the RFID card
to the tag that is out in the field.

22

send

Bring RFID cerd to reader
5T

4500BBES5541

ETH

| Autoscroll Noline ending » | | 9600 baud v:

Figure 18: Display of Unique ID

4.5 Sending 12 Digit Unique ID to Host Computer

Since the ID for each RF card is known, a database is made within the Matlab program and this will allow
us to run a comparison to know which tagged object the user is looking for. A 12 digit unique ID must be
sent to Matlab from the Arduino Uno through the serial port for comparison of tags in the database.
The newer versions of Matlab are capable of receiving and sending serial data using the communications
port on a computer. For the 12 digit unique ID to be sent serially, two separate codes were written; an
Arduino code and a Matlab code. Both codes are shown in Appendix C and B respectively.

For the Arduino code, additional code was added to the code that was written to display the ID number
on to the screen. Instead of displaying it on to the screen, it is sent to the Matlab program. This is done
by taking the ID number that is stored in the buffer and sent it through the communications port one
byte at a time. The reason why it’s sent one byte at a time is because that’s what the Arduino Uno is
programmed to do internally. For the Matlab code, Arduino COM port is opened as a file which allows
the Matlab program to receive the data coming from the communications port. The Matlab code is
written to receive the 12 digit ID one byte at a time since the Arduino is sending it at that rate. If both
the Matlab program and the Arduino program are not sending and receiving the data at the same rate, it
will not be effective. The proof that these two codes work together is shown below. In figure

18 located in the previous section, one can see the unique ID (4500BE9285EC) and the 12 digit unique ID
in Figure 19 are the same. The unique ID is sent to Matlab from the Arduino as a string of characters.
Therefore when the unique ID’s are programmed in to the Matlab database, they are stored as strings.
This allows the user to write a string comparison code to find the tagged object that the user is looking
for. Now that the unique ID’s are sent to Matlab, the system is able to compare them and know which
object the user is looking for.

23

R Workspace HOa X

B 4EBB | @ jf' b ‘ Stack: Base |@Novalid plots for: RFID(L,;) = D MK =] m & i B | Stack:| Base |@NOVE|\d plots for: RFID -
RFID <1:d3 char> Mame « Value Min Max
1 || RFID ' 4500BE9285EC

ll 4500BEJ285EC e arduino <1l serial>
E data 'Footer'
E data3 "
[at] end_str END'
E footer 'Footer'
L] header ‘Byte’
e out <14 instrument>

answer ><|[RHAD Xl

Figure 19: Display of Unique stored in Matlab

4.6 Detection Device Conclusion

The detection device is very simple to use. Once the user knows which object he/she wants to locate all
they have to do is select the RFID card that is linked to that specific object. The card will be scanned by
the ID-12 chip which is on the host computer box. After the card is scanned a graphical user interface
will be displayed with the location of the object. As you can see in figure 20, the ID-12 chip is mounted
on the outside of the host computer’s box for easy access. The host computer box includes one of the
readers, the host computer’s Arduino (the Arduino MEGA) and the ID-12 detection device. Although,
there were some difficulties with finding the unique ID numbers and sending that data to Matlab, the
challenges were overcome and the system was successfully completed.

Figure 20: Host Computer Box

24

5 Batteries

5.1 Technical Specifications of batteries

The battery used in the design will be a lithium-ion polymer (Li-poly) battery due to its high density, long
life cycles, and its ability to be thin. A typical Li-poly battery is essentially consisted of three parts or
layers: the negative electrode, separator, and the positive electrode. The negative electrode consists of
either LiCoO, or LiMn,0,. The typical reaction for the negative electrode is Li;_,CoO, + xLi* + xe” >
LiCoO,. The separator is a conducting polymer electrolyte that performs Li+ conductions. The positive
electrode is constructed with a Li or carbon-Li intercalation (the reversible inclusion of a molecule or
groups between two other molecules or groups) compound. The typical reaction to the positive
electrode is Li, > C + xLi" + xe™. Once each of the layers is constructed, an aluminum or laminate casing
is used to encase the full battery. Each of the layers is extremely thin and thus gives the battery its small
and unique shapes. Figure 21 shows a cross-section of a Li-poly battery and how each of the constructed
layers is built upon each other. Table 1 also shows the advantages and disadvantages of a lithium-ion
polymer battery.

@® Cross section

@ Casing / Aluminum laminate film \

@ Positive electrode collector
@ Positive electrode

0 Gel type electrolyte

® Separator

@ Negative electrode

® Negative electrode collector —~——

Figure 21: Cross Section of Lithium-ion polymer battery.

Table 1: Advantages and disadvantages of lithium-ion polymer battery.

Advantages Disadvantages
High energy density. Ageing on storage or use.
No memory effect. Protection circuit recommended.
Low self-discharge. Limited rate capability at low temperatures.
The design and size are easy and flexible. Generally the highest cost but much cheaper recently.
Long life cycles (more than 1000 cycles). Some safety issues (Flammable).
The lamination structure of electrode and
electrolyte has high reliability for impact
and vibration.

25

The selected battery for this design is the Polymer Lithium lon Battery SKU: PRT-08403 from
http://www.sparkfun.com/products/8483. The battery has 2000mAh (milliamp hours) and is extremely
light with a weight of 36g (1.270z.). The average battery size is about four quarters in a 2x2 matrix
configuration for reference with an actual dimension of 0.25x2.1x2.1" (5.8x54x54mm). The battery is
extremely thin and lightweight and would provide the needed power for our design and the flexibility to
be put in small confined spaces in order to design the most economic tags. Figure 22 shows a picture of
the battery that will be used in the design.

Figure 22: Lithium-ion polymer battery-2000mAh

5.2 Battery Connectors

The Arduino Fio/XBee combination will work correctly through the standard 2-pin JST connector, with
2mm spacing between the pins, from the battery to the Arduino Fio board. The high energy density cells
are able to output 3.7v at 2000mAh with a discharge rate of 0.2CsA discharge. The current tag system
requires only around 3.3-3.4v so the battery should be able to sustain the voltage with a little bit of head
room.

5.3 Battery Testing

According to the batteries’ datasheet, at high temperatures of about 60°C and low temperatures of 0°C,
the battery performed really well when the battery was initially charged and then discharged at a rate of
0.2CsA. At normal room temperatures and humidity, the battery had no distortion or electrolyte leakage
for a discharge rate of 0.2CsA. Temperature shock was also tested with the battery from -20°C for 2
hours to 50°C for 2 hours repeating ten times and no electrolyte leakage was detected. This means that
the battery is able to sustain both high, low, and shock temperatures without any problems. Since our
position system is designed for areas such as warehouses, extreme temperatures should generally not
be a problem. In case a situation does occur where extreme temperatures come into play, the battery
should not have any major issues. The mechanical performance was also looked at when determining

26

the battery for our design. Vibrations were tested on a vibration table for 30 minutes and no influence
to the batteries’ electrical performance and appearance were detected. Collision performance was also
looked upon in case backup batteries were needed to be encased in the tags. Multiple collisions were
tested and no influence to the batteries’ electrical performance and appearance were detected.
Dropping the battery was also tested with random drops 10m in height onto concrete multiple times
with no explosion or fire.

5.4 Battery Safety

Safety of the user must also be taken into consideration when generally dealing with lithium batteries
since they can be very volatile and dangerous when re-charged incorrectly or overheated. The data
sheet showed a multitude of tests conducted to determine the safety of the battery in case any of the
situations should arise. The first situation was over charging the battery by sending a constant voltage of
4.8v with a constant current of 3CsA till it declined to 0. There were no explosions or fire. The second
situation was over discharge with a rate of 0.2CsA continuously and no explosions or fires were
observed. A short circuit situation was also tested to see if it would cause any problems but no problems
were found. The next test was to add pressure to the battery of about 1kN and no fire or explosions
were also observed. Finally, the battery was subjected to thermal shock by being put into an oven and
the temperature was raised by 5°C for every minute until it reached 120°C and remained at that
temperature for 60 minutes. By looking at these tests, the battery seems to be a perfect fit for any types
of situations that may occur in a typical work area or warehouse. Therefore, it is safe to assume that the
battery should fit our and the users safety needs when dealing with power.

5.5 Battery Life

Once the safety requirements of the batteries were met, the amount of discharge that the battery
provides will need to be determined in order to determine the hours of battery life and the amount of
stress on the battery. Discharge rates must be taken into account since high discharge rates could
potentially shorted the lifespan and capacity of the battery. The battery must also not be discharged too
low or over discharge. For li-poly batteries, the general range is to have the equipment cut-off at around
2.7-3.0v per cell. Anything lower than the given range of the voltage and the battery would be severely
damaged and potentially put in a permanent sleep mode where even attempting to charge the battery
would not bring it back to a useable condition. Therefore, most battery manufactures will ship batteries
with around a 40% charge. In order to prevent to battery from reaching the state of no return, two
preventative measures will be taken. The first will be discussed in the sections below by having a battery
indicator ping the user that the battery has reached a certain percentage and must be replaced. The
second measure is to shut the device off when a voltage of 2.7v is reached which can be accomplished
through the Arduino Fio and programming code. The li-poly battery PRT-08403 for the indoor
positioning system design has a recommended average discharge rate of 0.2C;A and a maximum
discharge rate of 2.0CsA which is acceptable because the maximum discharge that will be needed is
52.1mA (45mA from the Arduino Fio and 7.1mA from the Xbee in transmitting mode) which should help
to prolong the battery life as well as provide less stress for the battery.

27

Once the discharge rates were determined from the tag design, the amount of hours that the battery
would be able to power the Arduino Fio and Xbee needed to be determined given the mAh that was
provided with the battery. The battery is able to provide a 2000mAh, but in order to determine the
amount of hours it would sustain; the amount of current will need to be determined. The best method
to this approach is to average the amount high and low current that the circuit will draw when the
Arduino Fio and the Xbee are in transmitting and non-transmitting mode. The Arduino Fio will use 45mA
when transmitting at 8 MHz and <50uA in Power-down mode (Cyclic sleep). The Xbee will have an
average current of 7.1mA when it is turned on and an average current of 1.1uA in sleep mode with WDT
(Watch Dog Timer) disabled. Since our indoor positioning system uses a cyclic sleep method, each of the
tags will only be transmitting for 1.932s then they will return to sleep or power-down mode. The hours
that the batteries are able to supply will be based on our cyclic sleep method and the set time for each
cycle. When the tags are not sleeping, they will be in idle mode in order to be ready to receive or send a
signal. Therefore, we must also calculate the idle current which is also 1.1uA. The general equation for
calculating current based on the cyclic method is:

1.932s Total Cycle Time (s)—Total Sleep Time (s)+ 2.364
= . * . * +
Current (52 1mA) Total Cycle Time (s) + (OSllmA) Total Cycle Time (s)
432s Total Sleep Time (s)

(50mA) * +(.0511mA) * (Equation 28)

Total Cycle Time (s) Total Cycle Time (s)

Once the total amount of current is found, the equation to determine hours based on mAh is:

.. 2000mAh .
Hours of battery life = —— (Equation 29)

Example:

If we have a cyclic sleep cycle of 2 minutes with a total cycle of 10 minutes at a frequency of 4
MHz, the previous equations should help determine the amount of hours a 2000mAh battery will last.

1.932s
600s

600s—122.364s 432
e (50mA) *
600s

2 4 (.0511mA) *

Current = (52.1mA) =
600s

+ (L0511mA) * lzoz (Equation 30)

600
Current =.255mA

2000mAh

Hours of battery life = —TomARn

(Equation 31)

Hours of battery life = 7853.59 hours (a little under one full year of battery life)

The life cycle of the battery will also need to be taken into consideration because if the battery can last
one year but only charge two times before it is rendered useless, it will cause a massive economic and
inconvenience to the consumer. It is also a bad idea to run the battery down past a certain percentage
as that will reduce the life cycle of the battery. The best way to keep a high life cycle for the battery is to
do a partial discharge. Unfortunately, this would limit the amount of battery hours we would be able to
sustain. The threshold in which we would run the battery down would be 3.4v even though the batteries
own charge would hold until 2.7v. This is due to the Xbee and Arduino Fio needing at least 3.35v in order
to function correctly. Therefore, we also would not run the battery all the way down which would

28

increase the life cycle of the battery. For a partial discharge, the li-poly has an estimate of 800-1000 life
cycle charges. It is believed that if the battery is kept at 3.35v as the end threshold; the battery should
also be able to obtain a life cycle of around 800-1000 charges and be able to function close to one year.

5.6 Battery Storage

When storing the batteries for a long time, it is generally a good idea to store it with a partial charge so
that even with a self-discharge; the battery is able to maintain a good capacity and life. The best
environment for long time storage of the batteries would be a temperature of around 20°C with a
humidity of 45-85% and the battery charged to 40-60% in order to maintain the best quality and
increase the life cycle of the battery.

5.7 Lithium-ion Polymer Recharging

Generally recharging a battery is done through a chemical reaction but in the li-poly batteries case it is
different. It is mainly the flow of ion movement between anode and cathode. The li-poly battery is a
“clean” system in that it only takes what it can absorb and anything more would put a high amount of
stress on the battery. Figure 23 shows the charge stages of a lithium-ion battery in which our design will

follow.
Voltage per cell
- Charge current
Stage 1 " Stage 2 , Stage3 Stage4
Constant current ! Saturation | Ready; Standby
charge : charge ; no current mode
1.25 1 J 1 5
\ ' i
; L i
A 1
- ! I i =
< 075 ;\ - * * 3 2
5 N)
LN 2
© 050 ! N Terminate 228 =
N charge when
\ \\ current < 3% of |
[} ted it |
0.25 ! - < ra curr:en ‘ 1
| -~ 1 '
1 2 3
Time (h)
Stage 1 Stage 2 Stage 3 Stage 4
Voltage rises at Voltage peaks Charge Occasional
constant current current decreases terminates topping charge

Figure 23: Charge stages of a lithium-ion battery.

If too much stress or an overcharge occurs on a li-poly battery; it could become unstable and catch on
fire. Fortunately the battery was already tested with over charge enabled and no explosions or fires
were detected. However, over charging could also cause damage to the cells which is why preventing
over charge is a large issue even if the battery does not catch on fire. The design will use the MAX1555
integrated circuit as shown in figure 24.

29

TOP VIEW AC ADAPTER i BAT T0 SYSTEM
3VTOV T _T 1 I+ LOAD
use [1] 5] o1 L == L Iw
CHARGE
MAX1551 s -
GND | 2 UsB us8
I: (MAX1555) avTo — T I | g TO LOGIC RAIL
FOK | 3 4| DC = LOGIC _POR
(CHG) E :I ANAXKLAA CONTROL | (EHE) -
MAX1551
THIN SOT23 (MAX1555) [eno
-

Figure 24: Pin configuration and typical operating circuit of MAX 1555

The design will able to charge through USB (pin 1) or DC Source (Pin 4) and the Arduino Fio already have
this chip implemented into its design. The Arduino Fio is capable of using this integrated circuit in its
system in order to charge the battery and it will automatically select between a USB or DC source if both
are connected. The max current will be limited to 300mA using an external wall supply (3.7v to 7v) to
prevent any problems that may occur. The PRT-08403 li-poly battery will charge at a constant current of
0.2C until the battery has reached 4.2vpc (the max voltage a cell can withstand before problems occur).
It will hold the voltage at 4.2v until the charge of the current has dropped to around 10% of the initial
charge rate (30mA) which is also known as trickle charging.

5.8 Results

In the end, the Spark fun Lithium-lon Polymer battery gave the best results and showed through
calculations that it was able to handle the load and abuse the system would put on the battery. It was
also very thin and mobile so it would make the tag much easier to move around and have a smaller form
factor. It would also be able to recharge very quickly using the Arduino Fio tags built in chip.

6 Power Supplies

The readers (Arduino Uno + Xbee) and the tags (Arduino Fio) will require different power sources for
each. The readers will be plugged into the wall using an external source which will operate at 5v. The
host reader will be powered and connected through USB connection which will help to power and
transmit data between the host computer and host reader. Both types of powered options are shown in
figure 25.

u-ﬁ- N
sxsme ARDUINO
. (m) - ee
» n.._.._..[ggg .

Figure 25: Arduino Uno reader. The red rectangle displays the USB power connection and the yellow
rectangle displays the external wall powered connection.

30

The tags will be powered by lithium-ion polymer batteries connected through JST connectors to the
Arduino Fio as shown in figure 26.

Figure 26: Arduino Fio and lithium-ion polymer battery JST connection.

Two batteries were initially ordered in order to test the products. The batteries have an average voltage
of 3.7v with a maximum of 4.2v and a charge of 2000mAh. The cut-off voltage for the battery is 2.75v.
Each of the batteries was tested with a multimeter to see if they were already charged and each battery
had around 4v. If the battery ever dropped to the cut-off voltage, it would need to be recharged. The
Arduino Fio already has an Integrated circuit which could recharge the battery. In order to determine
when the battery needed to be recharged, a battery power indicator would need to be built in order to
notify the user through the GUI that the battery would need to be changed.

7 Battery Power Indicator

The battery power indicator essentially uses a comparator and a voltage divider in order to determine
when it would notify the user of low power. Instead of completely building another circuit, the Maxim
8212 Integrated circuit was used instead shown in figure 27.

o
HysT it e

DIP/SO

Figure 27: Maxim 8212 chip and pin layout.

7.1 Battery Power Indicator Revision 1

By using the Maxim IC, the comparator was complete and the only thing that needed to be determined
was the values for the voltage divider and the hysteresis. In order to use the correct values for resistors,
we needed to determine all the voltage usage and cut-off points of the Arduino Fio and the lithium-ion
polymer battery. The Arduino Fio could operate from 1.8v to 5.5v but since our battery cut-off voltage
was 2.75v, it was decided that an estimate of 2.9v would be perfect. This leaves a little breathing room

31

in case the battery was not immediately taken and charged. For the voltage divider and hysteresis, we
chose R;=1MQ and used the equations:

R,=R{ x WiVen) Ry x Wi-1150) Equation 32: Determine R,
Ven 1.15v
R;=R,x % Equation 33: Determine Hysteresis

Thus, R,=1.44559MQ), and R3=43kQ. Once the values were determined the circuit was built using a
breadboard in case any changed needed to be made as show in Figure 28.

R3
47Kohm

1. N.C.
2. Hysteresis

i 3. Threshold

IMohm 4. Ouput

Output

Figure 28: First iteration schematic and built battery indicator on breadboard

In order to test the battery power indicator, a variable voltage supply was used simulating the lithium-
ion polymer batter. The voltage was set to 4v and gradually decreased until we hit a point in which the
output gave a high. Ideally, it would have been the calculated 2.9v. In reality, the point at which it gives
a high is 2.907v which is still extremely close to our ideal point. Then, the voltage supply was gradually
increased and once the voltage hit 2.951v it went back to low. By subtracting these two values 2.951v-
2.907v we notice that our hysteresis is .044v. This means that if the battery drained to 2.907v and
somehow received extra voltage to bump it to 2.922v it would still stay high instead of toggling between
low and high constantly causing false alarms and stress on the circuit.

7.2 Results

There were some issues when building this circuit. Originally an LED was put at the output so it would be
able to notify the user visually that the battery was low. It was realized that our Maxim 8212 chip was
inverted. In other words, the LED lit up when a low value was given and off when a high value was given.
This would cause too much of a drain on the battery if the LED was constantly on. In order to solve this
problem, an inverter was created using BS170 mosfet transistor. Unfortunately, under many tests and
circuit redesigns, the voltage needed to fire the LED was too low and the transistor was unable to
provide the voltage. Thus, the idea was finally scrapped and an LED will be routed and attached to the
Arduino Fio instead.

32

7.3 Batter Power Indicator Revision 2

The previous battery indicator needed to be revised since the team had underestimated the amount of
voltage that the Arduino Fio and XBee system used. Also, the previous battery indicator needed to be
adjusted into a much simpler version in order to be attached to the Arduino Fio for the device to be
more mobile and the resistors were adjusted to give a more precise value for our threshold. By using the
Maxim IC, the comparator was complete and the only thing that needed to be determined was the
values for the voltage divider and the hysteresis. In order to use the correct values for resistors, we
needed to determine all the voltage usage and cut-off points of the Arduino Fio and the lithium-ion
polymer battery. The Arduino Fio could operate at 3.3v but since our battery cut-off voltage was 2.4y, it
was decided that an estimate of 3.4v would be perfect. For the voltage divider and hysteresis, we chose
R1=1MQ and used the previous equations 31 and equation 32 to recalculate the resistor values. Thus,
R,=1.86957MQ, and R3=81kQ. Once the values were determined the circuit was built using a breadboard
in case any changes needed to be made as show in Figure 29. The battery indicator circuit was reduced
dramatically in size and the circuit works just as well as the previous iteration.

L
R3 B
T
81Kohm 1
LR R
e
1. N.C. 5. V+ | A s
LJ 2. Hysteresis 6. N.C. '. : : :
R2 3. Threshold 7..H.C. | K
1.8Mohm R4 4. Ouput &. Ground 1
1Mohm | B
_a
\

8

&

-
=
-
-
-
-
g
-
e

Cutput

F

Figure 29: iteration 2 revised schematic and built battery indicator on breadboard

7.4 Battery Power Indicator Testing

In order to test the battery power indicator, a variable voltage supply was used simulating the lithium-
ion polymer batter. The voltage was set to 4v and gradually decreased until we hit a point in which the
output gave a high. Ideally, it would have been the calculated 3.3v. In reality, the point at which it gives
a high is 3.308v which is still extremely close to our ideal point. Then, the voltage supply was gradually
increased and once the voltage hit 3.35v it went back to low. By subtracting these two values 3.35v-
3.308v we notice that our hysteresis is .05v. This means that if the battery drained to 3.308v and
somehow received extra voltage to bump it to 3.31v it would still stay high instead of toggling between
low and high constantly causing false alarms and stress on the circuit.

The power requirements for this design are one of the most important aspects due to the design. The
design must be able to incorporate a battery that is small enough to be lightweight and portable, to be
able to last an estimate of one full year before needing to recharge, and to be as cost-effective as

33

possible. Other components that would benefit the power design requirements are being able to notify
the user when the battery is low and the ability to recharge the battery when needed.

7.5 Results

The second revision battery indicated that was built fit every specification the team had for the
indicator. It was very small and mobile once attached to the Arduino Fio and the voltage requirement
was spot on and hit 3.3v with a hysteresis to prevent false alarms. Although, one issue was still not
resolved and that dealt with the battery indicator being inverted. This means that when the battery had
power then the light would stay on. This would drain the battery a lot. A mosfet was added during the
testing to see if it would reverse the situation but in the end, there was no LED that would power on
with a voltage that low. Thus, this shows that a proof of concept and it could work perfectly if we had
better components.

8 XBee Programming

8.1 Introduction to XBee Programming

Using factory default settings and the XBee shield interface to the Arduino, the Arduino can be
programmed to send and receive data between two XBee modules using the built-in Serial library. A
programmer can use serial.print() to send data and serial.available() , serial.read() to detect and read
data. The default factory settings also determine what ISM band the modules operates with, the
destination address (default is set to broadcast to all available nodes in range), and the channel the
module is in.

8.2 Testing and Verification of XBees

After the XBees were received from www.sparkfun.com, two modules were inserted in XBee shields
interfaced with Arduinos. One module was programmed to continuously broadcast a byte of
information. Another module was programmed to check the serial input buffer for any serial output
from the XBee, read this data into a variable, and output the variable to the serial monitor on the
desktop.

8.2.1 Results

The result from this test was every XBee module was verified for functionality upon arrival in the mail.

8.3 AT Command Programming

To change the settings of an XBee, you must put the XBee into AT command mode. This is done by
sending the 3-character command sequence “+++” to the XBee module and observing the guard times
before and after the command characters. The Guard Times parameters have a default value of Ox3E8 or
1 second.

Once the AT command mode sequence has been issued, the module responds by sending an “OK\r” out
of the DOUT pin. Once this response is received, AT commands can be sent to the XBee through the DIN

pin.

There are two separate ways of sending AT commands to the XBee module. The first way is to send an
AT command such as “ATDL” with no value. The module will respond to this command with the current

34

http://www.sparkfun.com/

destination low address. The second way is to send an AT command with a value such as
“ATDLOOOOFFFF”. This command will change the value of the 32 bit register holding the low part (32 bits
of 64 bit address) of the destination address to 0XO000FFFF. The module will respond with “OK” if the
command upon successful execution of the command or respond with “ERROR”.

Commands will not take effect until the AC (Apply Changes) command is issued or the WR (Write)
command is issued. The WR command will write the new value to non-volatile memory on the XBee
module so that the value will remain on the XBee after the XBee is powered down. To exit command
mode, the “ATCN” command must be sent.

"AT" + ASCII Space Parameter + Carriage
Prefix Command (Optional) {Optional, HEX) Return
| . —— |
1 L

|
Example: ATDL 1F<CR>

Figure 30: AT Command Syntax

8.3.1 AT Command Test

Using the AT command code in Appendix [x], AT commands were sent to an XBee module and 64 bit
destination address was changed from broadcast (DL = 0OxO000FFFF) to the 64 bit address of another
XBee module. Using the X-CTU software provided by Digi International, the non-volatile memory on the
XBee can be read and displayed. An XBee module was plugged into an XBee Explorer and connected to
X-CTU. An XBee explorer is a USB to serial base unit for the XBee line. Using a mini USB cable, the
explorer can be attached directly to a computer for use with the X-CTU software. The memory settings
were read into X-CTU as seen in figure 32 and confirmed to be correctly saved on the non-volatile
memory of the XBee. Data was then sent between two modules, similar to the test in 8.2. The sender
was the XBee with the updated destination address of the receiver. A third XBee was interfaced with an
Arduino to ensure that only the receiver received data from the sender. Since every XBee has a unique
64-bit address, the only module that should receive information is the receiver.

BB [com10] X-CTU = i
Modem Parameter Profile Remote Configuration... Versions...
PC Seltings | Riange Test | Teminal Madem Configuration |
Modem Parameter and Fiimuare — - Parameter View—| - Profle—— - Versions
Read | wite | Restore || ClearScieen ||| Save Donload new
I Always Update Fimmware Show Defauls| | Load versions...
Modem XBEE___ Function Set Version

[xB24 | |«BEE 602154 ~|[1iEs -]
EHZ3 Metwarking & Security -
B ICICH - Chanrel
B (333210 PN D
[l (5678] DH - Destination Address High
B (1234) DL - Destination Address Low
B 10044 - 16-bit Sowrce Acdress
B (134200) SH - Serial Number High
[[405DEDBT) SL - Serial Number Low
B 0] 4 - MAC Mods
B (0 RR -HBce Refries
0] AN - Random Delay Slots
191 NT - Nods Discover Time
0] HO - Nods Discover Optians
10) CE - Coordinator Enable
]
]

m

[1FFE) 5C - Sean Channels
4)5D - Soan Duration

0] &1 - End Deviee Association
[10) 42 - Coordinatar Assaciation
B (0] 41 - Assaciation Indication
B i EE _AFC Encaiction Exshle
Fread parameters. OF

=]
B
B
B
B
B
|

COM10 [3600 8-N-1 FLOW NONE XB24 Ver10EG

Figure 31: USB Explorer Figure 32: X-CTU Screenshot

35

8.3.2 Results

The result from this test was that AT commands were successfully saved into the memory of the XBee.
By using the X-CTU software and XBee explorer, the non-volatile memory was checked for correctness.
Also, the receiver successfully received information from the sender. While this was happening, the
third XBee received no information. This is the correct result because the sender is no longer
broadcasting the data to all available modules, only sending it to the 64 bit destination address.

8.4 API Programming

APl operation is an alternative to transparent (AT) operation. The frame-based APl extends the level to
which a host application can interact with the networking capabilities. When in APl mode, all data
entering and leaving the module’s UART is contained in frames that define operations or events within
the module. A host application, an Arduino for example, can send data frames to the module that
contain address and payload information instead of using command mode to modify addresses. The
module will send data frames to the application containing status packets; as well as source, and
payload. The reasons for the use of APl programming in the positioning system is: the transmission of
data to multiple destinations without entering Command Mode, to be able to identify the source
address of each received packet, and to retrieve the RSSI information from memory. The following data
frames are using the Digimesh networking scheme and modules.

8.4.1 API Data Frames

8.4.1.1 AT Command

The AT Command is same command used in Section 8.3. The frame as seen in figure 33 is what the host
application needs to use to query or set module parameters on the XBee. The APl command applies
changes after executing the command.

Start Delimiter 0 xTE
MSE 1| Ol
A Length 1587 0x0d Mumber of bytes between the length and the checksum
|P Frame Type 3| 0«08
Identifies the UART data frame for the host to correlate
P Frame 1D 4 (52 (R) | with @ subsequent ACK (acknowledgement). [f set fo 0,
- no response is sent.
¢ | Frame-specific Data = AT Command 3 042 (N} | Command Name - Two ASCII characters that identify the
k Bl Oxd@(H) | AT Command.
- !
t Parameter Value |f prezent, indicates the requested parameter valus to 2=t
. the given register. If no characters present, register iz
(optional) gueried.
Checksum 3 OlF (xFF - the 8 bit sum of bytes from offset 3 to this byte.

Figure 33: AT Command Digimesh AP| Frame

36

8.4.1.2 AT Command Response

In response an AT Command frame, an XBee will respond with an AT Command Response frame. This
frame will indicate if the settings were set successfully or will respond with register data if memory was
requested to be read. An example would be “DB” being sent as an AT Command and the module
responding with “0x4C” in the Command Data field.

e b

-0 0o

Number of bytes between the length and the checkzum

|dentifies the UART data frame being reported. Note: If
Frame ID = 0 in AT Command Mode, no AT Command
Response will be given.

Command Name - Two ASCII characters that identify the
AT Command.

0=0K

1=ERROR

2= Invalid Command
3 = Invalid Parameter

Register data in binary format. If the register was s=t,
then this field is not returned, as in this example.

(xFF - the 8 kit sum of bytes from offeet 3 to this byte.

Figure 34: AT Command Response Digimesh API Frame

8.4.1.3 Transmit Request

The Transmit Request API frame will cause the XBee module to send data as an RF packet to the
specified destination. A host application specifies a destination by the 64-bit address field in the data
frame. To send a broadcast signal, you can set the 64 bit address to 0x000000000000FFFF. In series 1
modules, you can also use a 16 bit address transmit request. Digimesh protocol only supports 64 bit
address transmit request frames.

~oxowmW —UO>

Number of bytes between the length and the checksum

Identifies the UART data frame for the host to correlate
with 3 subsequent ACK (acknowledgement). If set to 0,
no response is sent.

Setto the 64-bit address of the destination device. The
following address is also supported:
0x000000000000F FFF - Broadcast address

Setio (xFFFE

number of hops a broadcast
can ocour. If s2t to (1, the broadcast radius will

be set to the maximum haps value.
Bitfeld:

bit{): Disable ACK

bit 1: Don't attempt route Discovery.
All other bits must be set to 0.

Data that iz sent to the destination device

0xFF - the B bit sum of bytes from offset 3 fo thiz byte_

Figure 35: Transmit Request Digimesh APl Frame

37

8.4.1.4 Receive Packet
When an XBee received an RF packet, the data frame shown in figure 36 is sent out of the UART to the
host application.

Start Delimiter 0] 0<7E
B0
Length \C;g ; zig Number of bytes between the length and the checksum
Frame Type 3080
Identifies the UART data frame for the host to correlate
Frame ID 4 0x00 with 3 subsequant ACK (acknowledgement). f set o 0,
no response is sent.
V5B 5 0x13
B 02
4 B4.bit Source 7] 0:00
1 Address 8| 0x40 B4-bit address of sender
5[0x52
P 10] 022
a
¢ | Frame specific Data LSB 11 0xAA
k Reserved 12| xFF R "
o 13 OxFE e
o o 001 - Packet Acknowiedged
bt 4 00 002 - Packet was a braseast packet
) 052
) 078
. 17 0ol
Received Data - Received RF data
18{ Ox61
EC
70[0461
Checksum 21| 011 (xFF - the 8 bit sum of bytes from offset 3 to this byte.

Figure 36: Receive Packet Digimesh APl Frame

8.4.2 Arduino-XBee API Library

A user-made open source library that was made for APl mode operation was found
(http://code.google.com/p/xbee-arduino/) and researched. It supports both Series 1 and Series 2 XBee
modules with support for a majority of packet types (Transmit Request, etc) supported. To use this
library, the XBees must be set to APl mode 2 (escaped characters enabled).

8.4.2.1 API Library Test

Since the Digimesh modules have the specifications as the Series 1 modules, it was expected that the
library would work with the Digimesh modules. An Arduino program was written to send an APl AT
Command to a module and retrieve data from memory similar to the test done in section 8.3.1. Another
program was written to do a sender/receiver test similar to test done in section 8.2.

8.4.2.2 Results

The AT Command test was a success. The Arduino successfully sent an AT Command data frame and
successfully received an AT Command Response data frame back and read the data from memory. The
transmission test was a failure. Using example code from the library’s maker for the sender and receiver,
the receiver never received any RF data and did not connect with the sender XBee. The conclusion from
this test is that the library’s code for series 1 does not work with the Digimesh data frames.

38

http://code.google.com/p/xbee-arduino/

8.4.3 API Library Programming

From the results of the API Library Test, research was done to troubleshoot the transmission failure. The
result of that research indicated that the Series 1 module and Digimesh modules have different Transmit
Request and Receive Packet data frames. The user-made library did not support these Digimesh data
frames.

8.4.3.1 Series 1 vs Digimesh Data Frames

Comparing the Series 1 Transmit Request data frame in figure 37 to the Digimesh Transmit Request in
Section 8.4.1.3, the reserved bytes (OxFFE) and broadcast radius byte was inserted into the Digimesh
data frame.

Sitart Dellmiter Langih Frame Data Checkeum

‘ 0xTE | | M5B | LSB | ‘ APlspecific §tructune | | 1 Byte |
AP lderifer eniifier-apecific Data
0x00 | ‘ cmdData
Frame ID {Byte 3) Destination Address (Bytes 6-13) Options (Byte 14) RF Data |Byte(s) 15-n
Identifies the UART data frame for the host to MSE first, LSE last. (01 = Disable ACK
comelate with a subsequent ACK (acknowledgement). Broadcast = D04 = Send packet with Broadcast Pan 1D Up to 100 Byles per packet
Setting Frame |D to ‘0" will disabie response frame. (e D00000000DNOFFFF All other bits mist be setto 0.

Figure 37: Series 1 Transmit Request

Comparing the Series 1 Receive Packet in figure 38 to the Digimesh Receive packet in Section 8.4.1.4, the
RSSI byte was removed in the Digimesh data frame and the reserved bytes (OxFFFE) were inserted.

start Dedimiter Lengn Frame Data CheckeEum
| 0xTE | | M5B ‘ LSB ‘ | APl-specific Structurs | | 1 Byte |
&I igentiner Ideniifer-spacific Dais
080 | | cmdData
Source Address (Bytes 3-12) R551{Byte 13) Options [Byte 14) RF Data [Byte{s) 15-n)

Received Signal Strength Indicator - bit O [reserved]

MSE (most significant byte) first, Hexadecimal equivalent of (~dBm) value. bit 1 = Address broadcast

LSB (least significant) last (For example: If R signal strength = 40 | | bit 2 = PAN broadeast Up to 100 Bytes per packet
dBmn, “0x28" (40 decimal) i2 retumed) bitz 3-7 [reserved)

Figure 38: Series 1 Receive Packet

Using this information, the library was updated with the DMTxRequest and DMRxResponse functions
(seen in Appendix D).

39

8.4.3.2 API Library Test 2

A second transmission test was done using the updated API library. The programs used for the sender
and receiver were similar to programs used in section 8.4.2.1 except for the use of DMTxRequest
instead of Tx64Request and DMRxResponse instead of Rx64Response.

8.4.3.3 Results

The XBees correctly transmitted data between the sender and receiver modules. Data was read from the
receive packet and outputted to the serial monitor on the host computer. With APl transmission
working, distance testing can begin.

9 Tag/Reader Distance Tests

9.1 Tag/Reader Testing Introduction

In order to make sure the system worked correctly, a distance test was needed. This involved placing a
tag at a set distance away from the reader. And through computation and programming, obtaining a
hexadecimal value that will then be converted into meters in order to determine the distance. This
testing was necessary seeing how this is the main reason for our system; calculate the distance between
an object in the field in relation to readers throughout a given room or area.

9.1.1 Distance Formula
From previous testing, it was concluded that

(PO—Fm— Pr— 10#n* logm(f)+30*n—32.44)
d= 10 10+n (Equation 33)

was the most accurate distance formula available. The variables in the formula are as follows:
F, = Fade Margin = 10
N = Path — Loss Exponent = Variable(tuned)
P. = RSSI Received = RSSI Signal Read by Arduino
Py = RSSI Received at 0 meters = 23
f = frequency(MHz) = 2400

Using this formula, the next tests were performed where a distance was calculated between a reader
and tag using RSSI data.

9.2 Test 1

Testing of the system began inside one of the rooms located in the ERAD building. Every meter was
marked off using a tape measure and a yardstick. Also, blue scotch tape was used to designate each
meter. Over the course of a few weeks, the system was tested at least 10 times. Figure 39 shows the
results of the first test that involves the one tag and only one reader:

40

16

14 \
12

N
10 AN

\ —4—Test 1: 7.5m

\ =fll—Test 2: 1m

v Test 3:9m

6 k
\\/ =>é=Test 4: 5m
4 —

Facing Away Reader Facing, Tag Reader Away, Tag
Away Facing

Figure 39: Varying distance testing between tag and reader 1

9.2.1 Results

Test 1 was measured at a distance of 7.5 meters. Test 2 at 1m, test 3 at 9m, and test 4 at approximately
5m. As shown from figure 39, the results are non consistent, yet some are closer to their actual
approximated measurable values. It can be seen that test 3 produced the most accurate representation
of distance comparatively to how far apart the tag and the reader were. Test 4 also produced similar
results.

The system was tested at different lengths to also see how accurate the readings would be depending
on the distance between the tag and the reader. This is one of the main reasons to why the distances
vary each test. Another reason is to test the theory that at further distances, the readings would become
more accurate rather than at closer distances. For this test, that theory was proven to be true.

9.3 Second Distance Test

This test was conducted outside in the hallway of the ERAD building next to the main lab. This area was
chosen because of the open space as well as the possibility of less interference from metallic objects
such as lockers, wires, and metal stands. For this test, five distances were measured. Figure 40 displays
the results of each test:

41

16
14 /r\’
>K /
* /
10 /// —o—Test 1: 8m
|
3 — /. =fli=Test 2: 6m
/ / Test 3: 10.1m
6 7
=>=Test 4: 8.9m
4 Test5:13m
2
0
Facing Away Readers Facing, Tags Readers Away, Tags
Away Facing

Figure 40: Varying distance testing between tag and reader 2

9.3.1 Results

From the results in Figure 40, the conclusion is that the most accurate reading for each testing sequence
is when the devices are both facing away from each other. The one exception is when the distance is
stretched further than 9 meters such as that shown for test 3. However, once the reader was facing
away from the tag, which was facing towards the reader, the resulting distance shot up dramatically
leading to an inaccurate reading.

Throughout the testing process, it was observed that the system was not omni directional. This is
noticeable from there being empty results for the “Facing”, “Readers Facing, Tags Away”, and “Readers
Away, Tags Facing” results. These results were either very small, large, or too unstable to be read in as
actual results. In order to make sure of the results that were received, it was decided to do another

testing indoors which involved other methods.

9.4 Third Distance Test

For this testing series, our goal was to see if the devices would either read better or worse if they were
placed on their sides or held in the air. This was also attempted in order to obtain a better range from
the antennas as well as possibly increasing the accuracy of their radiation spans. Figure 41 shows the
results of the testing:

42

Distance Test 3

16

14 4 s 2

12

10

=@=Test 1: 10m

On Side; Facing On Side; Away Held Up (4in)

Figure 41: Single distance testing between tag and reader

9.4.1 Results

When the devices were placed on their sides, facing towards each other and facing away, they both
produced the same results of 14 meters. These results are obviously off by 4 meters for both sequences.
Therefore, placing the devices on their sides has a detrimental effect on the results of the system. Lastly,
the devices were held upward by at least 4 inches. However, numerous problems occurred. The values
tend to jump around rather than stay consistent. There was also an issue in which the signals strength
was not strong enough. Lastly, there could have been added interference from our hands holding the
devices upward. Consequently, holding the devices upward produced nothing as far as distance was
concerned for the project.

9.5 Conclusion

The conclusion from these tests was that the chip antennas that came with the Digimesh XBee 2.4 GHz
modules were not suitable for use in a location system. From the distance tests in Section 9, it was clear
that the antennas were not omni-directional, which is a requirement for a location system. This is a
requirement because the system will not know the orientation of the tag. Research was done (see
Section 10) and a decision was made to switch XBee modules and antennas to equipment provided by
the Cameron group.

10 Antenna Comparisons

In order to provide a better signal and receive all the data/packets from each of the Arduino Uno
readers we had use antennas designed for 2.4GHz applications. The team noticed a big difference
between the onboard chip antennas of the XBee and the dedicated external antennas that the Cameron
group helped purchase and fund. The main differences between the two antennas are the range and the

43

radiation pattern. The ideal or standard radiation pattern would be perfect oval shapes in all directions
but there are many environmental affects that could distort the radiation pattern.

10.1 XBee Antennas
Initially, the chip antennas were already embedded into the Digimesh XBee modules.

Figure 42: XBee with an integrated chip antenna show in the red box

Antenna location is very important for optimal performance. In general, the antennas radiate and
receive best perpendicular to the direction in which they are pointing. Therefore, a vertical antenna
radiation pattern is strongest across the horizon. Metal objected near the antenna may also distort the
radiation pattern of the XBee antenna. Metal objects between the readers and the tags will also block
the radiation path or reduce the transmission distance so all the readers and tags should be positioned
away from them if possible. When testing the antenna in a room. The team originally overlooked
ventilation ducts, metal poles and studs, and even concrete due to the metal reinforcement usually
embedded inside them. Thus, the readers should not be placed inside a metal enclosure and make sure
that the embedded XBee is placed at the edge of the host PCB where it is mounted. Due to all these
issues that were overlooked when testing and the radiation pattern was already distorted to begin with
as seen below in figure 43:

44

Chip Antenna

90

T
TRA
AN

Ll

180

-30
[IX RN
50

270

Figure 43: Chip antenna radiation pattern from XBee

By looking at the figure, the team decided that using these antennas were not going to give us the

precise and accurate measurements that we needed in order to make our indoor location system work.

During the many days testing our setup, we were never able to get any decent readings that were even

close to our percent error that the team had estimated.

10.2 Titanis Antennas

The new antenna is the Titanis 2.4 GHz Swivel SMA Antenna by Antenova. The Titanis antenna is also
designed for 2.4 GHz applications and meets the FCC regulation with high efficiency. The Texas
Instruments’ location system used for these antennas and these antennas were not in use. With the
backing of the Cameron group, new XBees were purchased and these antennas were put into use. A

model of the antenna can be seen below in figure 44:

45

W, W, ‘\—rb =l

Figure 44: Titanis antenna used to attach to the XBee

The Titanis antenna is very configurable and can swivel in any direction in order to provide the best
radiation pattern. The radiation patters for all the planes can be seen below in figure 45:

XY plane ZY plane XZ plane

Figure 45: Titanis antenna radiation pattern from different planes

With a dedicated antenna instead on the onboard antenna, the radiation patterns are much rounder
and stronger. Although the metal and concrete interference still apply, the Titans cover a larger area
than the regular XBee antennas and give us a much better and accurate reading.

10.3 Results

In conclusion, it was decided that the Titanis antenna was much more accurate and gave a much wider
range for our indoor positioning system. Due to flooding at Digi’s factory causing a shortage of Digimesh
modules, the decision to switch to 802.15.4 XBee modules for their RPSMA connectors was made.

46

11 Distance Tests with New Antennas

11.1 Test 1

Due to the bad radiation from the old antennas, new antennas were obtained from the Cameron group.
As mentioned, these antennas provided a better radiation allowing for a stronger signal between
devices. Also, due to the better radiation, testing the system at further distances was now possible.

Problems were encountered during the initial testing period. It was discovered that doing the distance
testing indoors with the new antennas caused for inaccurate results. This was mainly due to the new
antenna’s sensitivity to metal interference and WiFi interference, which operates on same ISM band.
Therefore, the testing was taken outside in front of CEBA. Table 2 displays the results:

Table 2: Distance testing with new antennas 1

Actual Distance Calculated Distance
10m 10.5m
6m em
19.1m 19m
21m 25m

11.1.1 Results

From these four testing sequences, it can be seen that the results were more accurate due to the new
antennas. None of the results match exactly the distance to which they were placed, but the degree of
error remained so small that it was not a big concern.

11.2 Test 2

Due to the fact that cars were passing by while the system was being testing in front of CEBA, testing
was postponed and resumed on the parade grounds. As testing commenced, it was noticed that the
measurements would vary off by at least 2 meters and at most 6. The environment was considerably
more humid and higher temperature than test 1. Figure 46 displays and shows the results:

40
30 —— —o—Test 1: 29m
25 == Test 2: 25m

20
X N Test 3: 20m

15
S =>é=Test 4: 15m

10
=ie=Test 5: 10m

0

Facing 1 Facing 2

Figure 46: Distance testing with new antennas 2

47

11.2.1 Results

The calculated distances were off by at least 2 meters to 6 meters. The changes in environment
attenuated the signal strength and made the signal strength weaker than Test 1 for the same distances
apart. The conclusion from this test was the distance formula needs to be tuned to the environment
every time we test.

11.3 Conclusion

From the distances tests, it was concluded that the Titanis antennas would work with a location system.
The antennas are omni-directional on the XY plane. The lesson learned from these tests was that the
distance formula path-loss exponent needs to be tuned to the environment. Factors that can affect RSSI
are: temperature, humidity, elevation, and interference from objects.

12 2-D Trilateration Location Tests

Every test below was conducted using the Arduino Tag, Reader, Coordinator, and Mega codes in
Appendix C and the Location System Matlab Code in Appendix B. The coordinator is reader 2, which is
connected to the Arduino Mega. Each of these tests is performed the same way: the coordinator will
send a signal to the readers and reset the RSSI array, coordinator will send a signal to tag, tag will send
150 packets to each reader and delay 1 second between every 50 packet burst cycle, and RSSI
measurements will be sent to coordinator and subsequently sent to Matlab through the Arduino Mega.

12.1 Test 1

This test was located at the parade grounds on university grounds. A 10 meter x 10 meter coordinate
system was measured out and marked. After measuring out 10 meters and tuning the distance formula
to the environment, the system was set up for 2-D trilateration. Reader 1 was placed at [10, 0], reader 2
was placed at [0, 10], and reader 3 was placed at [-10, 0]. A tag was placed at [0, 4] and the system was
started from the host computer with the Matlab program in Appendix [x] running. This test was done at
ground level and the antennas aimed orthogonally to the ground.

12.1.1 Results

The result of this test was inconclusive. The signal strength of signal strength of reader 3 was too low for
the actual distance of the reader to the tag. The conclusion from this test is that the water system and
pipes underground could be attenuated the signal from the tag to reader 3. The water meter for the
parade grounds was directly in between the tag and reader 3.

12.2 Test 2

Test 1 was repeated except every reader and tag was raised into the air 5 feet, thus still 2-D trilateration.
The location of the tag and readers did not change. The orientation of the antennas did not change. This
was done to eliminate any external attenuation of the signal from being ground level.

48

12.2.1 Results

This test was a success. As you can see in figure 47, the tag was shown at [1, 4]. This is within 1 meter of
the actual location of the tag and considered a success for our system. Comparing the actual result to
the simulated result, the actual result is relatively close to the simulated, perfect result. The reason for
this error is the error in the distance measurement of each reader. The error in the distance
measurement is ~.5meters for each reader. These errors compound with each other when the
trilateration algorithm is performed and provides an error of 1 meter in the tag location.

B Fque1 - - oo
file Edit View Inset Tools Deskiop Windew Help N

DEde | A0 EL- 2 |0EH D

=
=

Ebblioamwemo woo

S
LS bdNddn

Figure 47: Test 2 Result

Figure 1 = | B |3

File Edit View Insert Tools Desktop Window Help N

DEddS | 3 RVOPEAL- 2| 0EH =D

N N -

Bl &

R

-10-9 -8 -7 6 -5

Figure 48: Test 2 Simulated Result

49

12.3 Test 3

Test 3 was conducted in the parking lot of the electrical engineering building. The temperature was 75
degrees Fahrenheit and light humidity. Reader 1 was set up at [0, 10], reader 2 at [-10,0], reader 3 at
[10,0], and the tag was placed at the [0,0]. The readers were strapped to the reader stands facing
towards the origin while the tag was held up at the vertical level of the readers with its antenna
orthogonal to the ground. The distance formula was not yet tuned to the environment and the system
was tested using the same distance formula as test 2. For this test, the RFID reader was integrated into
the system. After the location process, the RFID card linked to the tag in the field would be scanned and
the plot would appear.

12.3.1 Results

The distance formula not being tuned affected the results greatly. Since there was less humidity during
the test than test 2, the signal strengths of each reader was smaller. Therefore, the distances were
calculated to be shorter than they actually are (as seen in figure 49). The small error in the calculated
location of the tag is an unexpected result since the distance formula calculated smaller distances than
the actual distances. The RFID integration was a success since the plot below only appeared after the
RFID card was scanned and its ID sent to the Matlab program.

Brourel - - | ||
File Edit View Insert Tools Desktop Window Help w

DO EHS | KRR ODEL-28 0EH 83

10
9

T
6

04

4
-6
-7

8
5
4
3
2
¢
;
2
3
5
8
9r--i
0

E

09876654321 012346678910

Figure 49: Test 3 Results

12.4 Test 4

Test 3 was repeated with the distance formula tuned to the environment.

50

12.4.1 Results

This test was a success. Once the distance formula was tuned to the environment, the distances
calculated were relatively close. Reader 1 and 2 calculated a distance of 12 meters between itself and
the tag instead of 10 meters. This caused the error in the calculated position of the tag of 1 meter, which
is acceptable for this test. Comparing the two figures below, one can see the accuracy of the actual
results against the simulated results.

Figure 1 - >— [B S
File Edit View Insert Tools Desktop Window Help k]

Ddde | k| ARKROBEN- (2|08 | ad

10
2
8
7
6
Bt
4l
3
2
1
0%

A
2
3f-
4
&f-
6
=
B
9f--+

gl N T T T A
0987 654321012345678910

Figure 50: Test 4 Results

Figure 1 = | B ||

File Edit View Inset Tools Desktop Window Help]

Dde M| RAODEL- |08 =Dd

=
=

.L.L',.,y‘\gl.g_.mm.hm:nwmw

=
LS bbb in

Figure 51: Test 4 Simulated Results

51

12.5 Test 5

In this test, the tag was moved to [2, 4] and the system was once again activated. The tag orientation is
the same as the previous 2 tests.

12.5.1 Results

The result was this test was once again a success. The tag was calculated to be at [1, 3], which gives an
error of 1 meter from the actual location. This was caused by reader 2’s RSSI reading having a 1 meter
error in its calculation.

Flgurel_
File Edit View Insert Tools Desktop Window Help k]

Ddde || ARODLL- (3 08 =1

] | S|

CoMNWEDm OO o

0T 1 o S S O {
0-98-7T654-32-1012345674%8791

Figure 52: Test 5 Results

B Figure 1 =SEcH x N

File Edit View Inset Tools Desktop Window Help e

DFde | F|ARODEL- |2 06 aD

I

R e R

L Bt T

1
0987654321 01234567388910

Figure 53: Test 5 Simulated Results

12.6 Indoor Test 1

This test was conducted at Zoar Baptist Church’s basketball indoor gymnasium. Reader 1 was located at
[0, 10], reader 2 at [-10, 2], and reader 3 at [10, 2]. The tag was located at [0, 5] and had the same
orientation as previous tests 3 through 5. The indoor environment included metal bleachers surrounding
the basketball court with metal basketball goals. A distance test was performed with a distance of 10
meters between tag and reader. Then, the distance formula was tuned to be correct for the indoor
environment. Once the distance formula was tuned, the system was set up and tested.

12.6.1 Results

These indoor tests were inconclusive. The system provided the correct location of the tag about one-
fourth of the time that the system was activated. For the rest of the tests done indoors, the tag was
calculated to be anywhere from 3-5 meters away from its actual location. This could be caused by the
interference of the metal bleachers and goals within the gymnasium. In figure 54 below, the best result
of the group of tests indoors is shown.

Figure 1 o | B ||

File Edit View Insert Tools Desktop Window Help El

Qe | k|ARROBDEM- |2 |0E | 0D

1

0
9
g
7
6
5
4
3
.

2

4

-09-8-7-6-64-3-2-1012345678310

1
0
1
3
5
6
7
8
2l
0
1

|
L

Figure 54: Indoor Test Results

53

13 Graphical User interface

13.1 Introduction to GUI

It was decided that having one would not only allow the opportunity to easily utilize and use the system,
but also the end user once the system is up and operational. Ideally, the GUI should be able to operate
on any working computer that has the capabilities of handling the software.

13.2 GUI layout

The GUI was given a basic layout that would be easy to use and view. For viewing purposes, the GUI was
fitted with a gridded type layout along its X and Y-axes. A “Height” plane was also inserted into the GUI
once it was decided to try 3-D trilateration. By this, the GUI's gridded screen layout became a 3-D
representation of the field where the system will be set up and operational.

13.2.1 Layout design

Alongside a gridded system, the figure was also enabled to rotate in 3-D. This was to allow the user to
move the figure in any direction they want in order for them to better view the area and where the
object was in relation. One problem encountered was that during rotation, one would not be able to
notice which side or face was which. Therefore, the axes were colored and labeled accordingly. The X-
axis colored as red and the Y-axis colored as blue. The “Height” or Z-axis was left the same, black, in
order to have a base of color and not to make the figure too colorful or pigmented. Figure 55 shows the
resulting layout of the figure that is used in the GUI:

=

Height

So o M oW B o @ N @ ©

Wy

Y Axis R O X Axis

Figure 55: 3-D Figure

Each grid was labeled numerically in order to give the user an idea of distance. The numeric system is
depicted in meters because the system is set to read in as meters. Because the system is meant to work
indoor, 10 meters distance given for each axis, including the height or Z-axis. A dot was included into the
layout to depict where, in the given, area the object was. Once the system begins to run, it will send the

54

information as to where the object is in the field. Once that information is sent into the GUI, the GUI’s
code will plot that objects location on the figure within the gridded field. In order to distinguish the dot,
it was given a simple magenta color and blue outline. This was also done to allow it to stand out to the
user. As the figure is rotated, the object will remain in its same relative space without moving or
disappearing.

There was also a need to have a layout of the room and use it within the 3-D figure. To do this, a built in
Matlab rectangle function was used. By using this function, rectangular objects would be able to depict
tables, desk, and chairs. These rectangular objects would represent these pieces of furniture throughout
a given room. The only issue with using this function is that it worked only in 2-D models, therefore not
3-D. Figure X shows the 2-D figure in which the rectangular pieces were used:

13.2.2 Information layout

Along with the rotation figure, a small information gathering area was added on its left. This area
contained the spaces for the X, Y, and “Height”-axis. Once the system is online and triggered to begin
working, the readers will find the tag in the field. Once found, their coordinates, X, Y, and “height”, will
be sent through to the GUI via MATLAB. The actual numeric information or each axis will be placed in its
designated area. Information sent into these fields will be read in using a particular function that will be
discussed later. Appendix X shows the code used in order to make this happen

13.2.3 Results

The end result is the rotatable figure being represented on the left and the information field containing
the axis fields on the right. The layout was made simple in order to not over complicate anything or
confuse the user with clutter. The main goal was to make sure the basics were in line and working
before adding detail as far as its presentation was concerned.

13.3 GUI Built in Functions

The GUI comes equipped with preset functions in order to allow the programmer to program what they
want to have happen once the GUI is called on or made into an .exe file. The user also has the ability to
add functions to the GUI as such were added when the GUI was given X, Y, and Z-axis’s. There’s no set
limit on the amount of functions that can be added to the interface in the making of a GUI.

13.3.1 Opening function

The main function in which was used to program the GUI was the opening function as shown in Code x:

function GUI_RFID OpeningFcn (hObject, eventdata, handles, varargin)
Figure 56: Opening function for Matlab GUI

This function is the first function that gets called upon when the GUI opens. Therefore, everything that
needed to happen with the figure and the information needed to go in this area. Within this function,
the GUI was given its layout as well as the section where the information were to be placed. Appendix X
shows the code that was used.

55

In order to read in the information from the Arduino’s and Xbees, separate functions were included into
the opening function. Those functions controlled the information flowing into the GUI as well as the
distance configuration that measured the distances between the readers and the tag. These were placed
in the opening function because the system is needed to work automatically; once the GUI was called
on.

If the program were not configured to work this way, a push button command would be needed in order
to enable the indoor system to operate. This became problematic, mainly because the system runs off of
battery power. Meaning the system would have to remain on while draining power until called upon or
activated by the push button. The push button method would drain the battery power causing the
system to only operate for approximately days at a time. Hence, the automatic method was decided on.

13.3.2 Additional Built-in Functions

The GUI can have functions added to it by the programmer in the initial stage of its building based on
what they need. For this project, the GUI needed sections to read in information for the X, Y, and
“Height”-axis. There was also a need for the points on the figure to be plotted. Because of this, six
additional functions were created as shown in Code X:

function X plot Callback (hObject, eventdata, handles)
function X plot CreateFcn (hObject, eventdata, handles)
function Y plot Callback(hObject, eventdata, handles)
function Y plot CreateFcn (hObject, eventdata, handles)
function Height plot Callback (hObject, eventdata, handles)
function Height plot CreateFcn (hObject, eventdata, handles)

Figure 57: Functions for different elements of Matlab GUI

Each function is designed to handle the specifics of what they were made for. For instance, the function
X_plot is designed to handle how the object is plotted along the x-axis. For this portion, the group’s main
task was being able to have the built in X_plot function read in a function that was built that will bring in
the information from the Arduinos and Xbees.

13.4 Implementation into Location System

After 2D trilateration testing was completed, the only remaining step before the end of the semester
was to implement the Matlab GUI into the existing location system. This is done by calling the GUl as a
function and passing variables to the GUI as parameters. The GUI has a parameter named “varargin”
which is an array which holds a variable number of input arguments. The variables passed from a Matlab
program to the GUI will be held in this array. Using this knowledge, the calculated x-coordinate of the
tag, y-coordinate of the tag, reader coordinate matrix, and distance matrix variables were passed to the
GUI. The GUI will then plot and output information that is user-friendly. The code for this
implementation can be seen in Appendix B (Matlab GUI) and Appendix C (Location System).

56

Bl GULRAD

— Panel

Y Axis

Yellow = Chair
Purple = Table

M =-0.086901
¥=-1.1072

Height =5

10
09 8 7 6 5 4 3 2 A

0
X Axis

Figure 58: Example Implementation of Matlab GUI with Location System (not actual test)

57

14 Conclusion

Overall, the group considers our positioning system a success even though the system is inconsistent
indoors. The goal of the project changed from indoor to outdoor during the year with the partnership
with the Cameron group. Without their funds, this project so far would not have made any progress
during the semester.

When the system is setup, calibrated, and tested outdoors, the accuracy of the location of the tag is
within 1 meter, which is within our accuracy requirement. The system is completely user friendly by
being a one click operation in Matlab and easy to use RFID card system. The tag is small and light weight
for easy attachment to objects to be tracked. The system is easy to update and can easily handle up to
10 tags. The group met the marketing requirement by keeping the cost under 1000 dollars, as seen in
Section 15. The system also meets the technical requirement of real time location since it can find the
location of a tag in the field within 10 seconds of startup. These 10 seconds can be easily sped up
through editing tag and coordinator code of the Arduino, which are currently slowed down for
debugging.

The last technical requirement involves the battery life of the system. This is the one requirement of the
project that did not get completed during the semester. The reason for this is the switch of hardware
from Digimesh XBee modules to 802.15.4 (Series 1) modules. This switch of hardware types had to be
made during the semester due to the flooding of a Digi factory in Thailand during the semester. The
flood caused a shortage of modules with the RPSMA connector and the hardware switch had to be
made to series 1 because they were currently in stock. If the group waited for the Digimesh RPSMA
modaules, the project would not have been completed. The series 1 modules do not have the
synchronous sleep mode that was proposed to save the battery for the Project Design Review. In the
future, the group would like a wakeup circuit calibrated for 2.4 GHz attached to the tag and used for
battery life.

For the project moving forward, the group would like to see 3D trilateration for an outdoor
environment. This would involve adding another reader and stand and testing how the RSSI is affected
by the tag being higher/lower than the reader. Also, the Matlab GUI can replace the RFID card system
and become even more user friendly by having a drop down menu listing all the tags to find. Another
future goal of this project is to merge this project with the Cameron group’s augmented reality using a
SQL database to send coordinates of tags to their system.

Overall, this XBee location system is considered a reliable, working prototype for a location system used
in an outdoor environment.

58

15 Budget

Below is a table detailing the group’s budget during the semester. The 802.15.4 XBees, Titanis Antennas,
and adapters were provided by the Cameron group funds, thus costing our group nothing. This
collaboration was done because the Cameron group wanted to use our location system for their
augmented reality. The antennas were left over pieces from the Texas Instruments location system used
in the last year’s Cameron group. Also, an Arduino Mega and 2 Arduino Unos that were previously

owned by members of the group were used but not included in the budget.

Table 3: Budget for Parts Ordered

Product Individual Price Number Ordered Total Price
Lithium lon Polymer $16.95 2 $33.90
Batteries
Arduino Uno $29.95 3 $89.85
Arduino Fio $25.00 1 $25.00
Arduino Fio Cable $20.00 1 $20.00
Maxim 8212 Chip $3.75 2 $7.50
ID-12 Chip $29.95 1 $29.95
RFID Card $1.95 2 $3.90
DC Power Supplies $1.90 6 $11.40
Project Enclosure Box $5.95 1 $5.95
Digimesh XBee 2.4 GHz $21.00 4 $84.00
Xbee Shield $24.95 4 $99.80
802.15.4 Xbee 2.4 $21.00 8 $168.00
GHz(RPSMA)
Titanis Antenna $30.00 8 $240.00
RPSMA to SMA Adapter $6.99 8 $55.92
Total with Cameron support: $408.25
Total: $872.17

59

16 References:

"How to calculate battery run-time." Notes for Design Engineers: How to calculate how much
Battery capacity you need. Power Stream, 28 Apr 2011. Web. 2 May 2011.
<http://www.powerstream.com/battery-capacity-calculations.htm>.

"How to Prolong Lithium-based Batteries." Battery University. Isidor Buchmann, 02 May 2011. Web. 2
May 2011.
<http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries>.

"Lithium Polymer Charging/Discharging & Safety Information." MaxAmps. Traxxas, 02 May 2011. Web. 2
May 2011. <http://www.maxamps.com/lipo-care.php>.

N/A. September 23, 2008. MAX8211, MAX8212: Microprocessor Voltage Monitors with
Programmable Voltage Detection. Maxim-ic. April 19, 2011
www.maxim-ic.com/datasheet/index.mvp/id/1273

Pistoia, G. Batteries for Portable Devices. 1st ed. Rome, Italy: Elsevier, 2005. 1-309. Print.
Shih, Chia-Yen, and Jose Marron. "COLA: Complexity-Reduced Trilateration Approach for 3D Localization
In Wireless Sensor Networks." 2010 Fourth International Conference on Sensor

Technologies and Applications. (2010): 1-32. Print.

XBee & XBee-PRO OEM RF Module Antenna Considerations. 2005. MaxStream. Sept. 2005
<ftpl.digi.com/support/images/XST-ANO19a_XBeeAntennas.pdf>

Titanis 2.4 GHz Swivel SMA Antenna. 2011. Antenova. 11 Jan. 2011
<datasheet.elcodis.com/pdf/18/70/187086/b4844-01.pdf>

60

http://www.maxim-ic.com/datasheet/index.mvp/id/1273

Appendix A: Datasheets

Titanis Antenna

antenova’

Titanis 2.4 GHz Swivel SMA Antenna

Part No. B4844 / B6090 Product Specification

1 Features

+ Designed for 2.4 GHz applications: Bluetooth®, Wi-Fi® (802.11a/b/g/n), ZigBee®, etc. as
well as 2.3 GHz WiMAX ", 2.5 GHz WIMAX "™ and WiBro.

Antenna with a SMA male connector

Also available as SMA reverse thread to meet FCC regulations, part 15

High efficiency

Supplied in bulk

s & & @

2 Description
Titanis is intended for use with all 2.4 GHz applications. The antenna is fitted with a SMA
male connector and a blade made of flexible material that can be rotated 360 degree.

No external matching network required.

3 Applications

« Development tools

e Test equipment

* Access points, routers, etc

+ Printers

N,
J
Integrated Antenna and RF Solutions

1
Produet Specification AE030054-1

61

4 Part number

Titanis 2.4 GHz Swivel SMA Antenna

Titanis Standard SMA — male: B4844

Titanis Reverse thread SMA — male: B6090

5 General data

Part No. B4844 / BG090

Product name Titanis 2.4 GHz

Part Number B4844 (Standard SMA — male)
B6090 (Reverse thread SMA — male)

Frequency 2.4-25GHz

Polarization Linear

Operating temperature -40°C to +85°C

Impedance 500

Weight 719

Antenna type 'Swivel external

Dimensions 20 x 19.5 x 62.5 [mm]

"The blade of the antenna is the only part that swivels. DO NOT twist the plastic housing of the antenna
blade. The housing is NOT designed to twist or turn and any attempt to do so will likely result in permanent
damage to the antenna and its performance and will not be covered by warranty. Installation and removal of

the antenna should only be done by turning the metal SMA connector.

Titanis is not suitable for outdoor use or applications.

6 Electrical characteristics

Typical performance Conditions
Peak gain 2.2 dBi
Average gain -1.0 dBi
Average efficiency 80% Data given for the 2.4 — 2.5 GHz frequency range
Maximum Return Loss -13 dB
Maximum VSWR 1.6:1

Infegrated Antenna and RF Solutions

2
Product Specification AE030054-1

62

Titanis 2.4 GHz Swivel SMA Antenna
Part No. B4844 / B6090

7 Electrical performance

7-1 Return Loss

\v-/_/)
749200 2]‘00 2400 2500 2600 [MH??OO
7-2 VSWR
\f-/-/-"
21200 23‘00 2400 2560 2600 [MH;JND
Integrated Antenna and RF Solutions
3

Product Specification AE030054-|

63

Titanis 2.4 GHz Swivel SMA Antenna
Part No. B4844 / B6090

7-3 Antenna patterns

/ v ,“ oy
/ » s
| >
//' SN— e ~ \\"- = _\" ,_//
N : |

XY plane ZY plane XZ plane

Patterns show combined polarisations

Integrated Antenna and RF Solutions

64

8 Antenna dimensions

H,

Titanis 2.4 GHz Swivel SMA Antenna
Part No. B4844 / B6090

-

l\
e

5 OB g%
\ 9 |
‘_Frl \ /
\ /
H ‘ ’
\ /
\ /
\ /
N 7
L8 . =0 ¥
W, W. T==p---
A B H1 H2 H3 w1 W2
Height Height Height Width Width
7+0.2 125+05 | 625+05 | 483+05 | 95+0.5 20+0.3 19.5+0.3

Dimensions in mm

Warning: The blade of the antenna is the only part that swivels. DO NOT twist the plastic
housing of the antenna blade. The housing is NOT designed to twist or turn and any attempt
to do so will likely result in permanent damage to the antenna and its performance and is
not covered by warranty. Installation and removal of the antenna should only be done by
turning the metal SMA connector.

9 Hazardous material regulation conformance

The antenna has been tested to conform to RoHS requirements. A certificate of

conformance is available from Antenova’s website.

Integrated Antenna and RF Solutions

5
Product Specification AE030054-I

65

Titanis 2.4 GHz Swivel SMA Antenna
Part No. B4844 / B6090

10 Packaging

10-1 Optimal storage conditions

Temperature -10°C to 40°C

Humidity Less than 75% RH

Shelf Life 48 Months

Storage place Away from corrosive gas and direct sunlight

10-2 Packaging information

The antennas are delivered in bulk, enclosed in plastic bags.

10-3 Bag label information

antenova Antenova Ltd antenova Antenova Ltd

Far Field House, Albert Road, Far Field House, Albert Road,

Stow-cum-Quy, Cambridge, UK, CB259AR S Stow-cum-Quy, Cambridge, UK, CB259AR &

info@antenova.com / www.antenova.com g info@antenova.com / www.antenova.com g

Description:Titanis 2.4Ghz SMA Swivel antenna D Description: Titanis 2.4Ghz SMA Swivel antenna \p
Part Number: A4844 Part Number: B6090

Qty: XXXX Pieces Qty: XXXX Pieces

Date Code: Date Code:

Manufacturers code number: \ Manufacturers code number: {
- 90.00 - - 90.00 -

Dimensions in mm

Integrated Antenna and RF Solutions

6
Product Specification AE030054-1

Titanis 2.4 GHz Swivel SMA Antenna

Part No. B4844 / B6090

antenova’

www.antenova.com
Antenova Ltd. Antenova Ltd. Antenova Asia Ltd.
Far Field House Rogers Business Park 4F, No. 324, Sec. 1, Nei-Hu Road
Albert Road 2541 Technology Drive Suite 403 Nei-Hu District
Stow-cum-Quy Elgin, IL 60124 Taipei 11493
Cambridge Taiwan, ROC
CB259AR
+44 1223 810600 +1 (847) 551 9710 +886 (0) 2 8797 8630
+44 1223 810650 +1 (847) 551 9719 +886 (0) 2 8797 6890
info@antenova.com info@antenova.com info@antenova.com

Copyright® 2011 Antenova Ltd. All Rights Reserved. Antenova® and gigaNOVA® are trademarks of
Antenova Ltd. Any other names and/or trademarks belong to their respective companies.

The materials provided herein are believed to be reliable and correct at the time of print. Antenova does not
warrant the accuracy or completeness of the information, text, graphics or other items contained within these
information. Antenova further assumes no responsibility for the use of this information, and all such
information shall be entirely at the user’s risk.

ky

UKAS
QuALITY
MARAGEMENT

026
Certificate No: 4598

Integrated Antenna and RF Solutions

7
Product Specification AE030054-|
Release Date 11 January 2011

67

Lithium Ion Battery

585460

LI-POLYMER BATTERY PACKS

Specification

Type:585460 2000mAh

Prepared/Date Auditing/Date Approved/Date
WANG LI XIONG
MAR 16, 2006 MAR 16, 2006 MAR 16, 2006

68

Doc. No. 2006.3.16
UNIONFORTUNE Edition No 2.0
PRODUCT SPECIFICATION Sheet . 1,;5

1 Scope

This product specification describes UNIONFORTUNE polymer lithium-ion battery. Please using the test
methods that recommend in this specification. If you have any opinions or advices about the test items and
methods, please contact us. Please read the cautions recommended in the specifications first, take the credibility

measure of the cell’s using.

2 Product Type, Model and Dimension

2.1 Type Polymer lithium-ion battery

2.2 Model 585460

2.3 Cell Dimension(Max, ThicknessxWidthxLength mm?’) _ 5.8x54x60

Pack Dimension(Max, ThicknessxWidthxLength mm®) None
3 Specification
Item Specifications Remark
Nominal Capacity 2000 mAh 0.2CsA discharge
Nominal Voltage 3.7V Average Voltage at 0.2CsA discharge
Charge Current Standard 0.2 C;A Max 1CsA Working temperature 0 40
Charge cut-off Voltage 4.20+£0.03V
Standard Discharge Current 0.2CsA Working temperature -20 60
Max Discharge Current 2.0CsA Working temperature 0 60
Discharge cut-off Voltage 275V
Cell Voltage 3.7-39V When leave factory
Impedance <300 mQ AC 1KHz after 50% charge
Weight Approx: 37¢g
<Imonth =20 45
tezgﬁ:ﬁim =Smonth 030 Best 20+5 for long-time storage
<6month 2045
Storage humidity 65+20% RH

4 General Performance

Definition of Standard charging method At 20£5
0.2CsA till voltage 4.2V, then with constant voltage 4.2V till current declines to 0.05CsA.

charging the cell initially with constant current

Ttem Test Methods Performance
. After standard charging, laying the battery 0.5h, then discharging at .
41| 0.2C Capacity 0.2C;A to voltage 2.75V, recording the discharging time. 2300min
. After standard charging, laying the battery 0.5h, then discharging at .
4.2 1C Capacity 1C;sA to voltage 2.75V, recording the discharging time. 25Imin
Constant current 1CsA charge to 4.2V, then constant voltage charge
. . to current declines to 0.05CsA, stay Smin constant current 1CsA .
43 Cycle Life discharge to 2.75V stay Smin. Repeat above steps till continuously 2300times
discharging time less than 36min.
Callz::l];;y of 20+5 , After standard charging, laying the battery 28days,
44 elcctlraici%y discharging at 0.2CsA to voltage 2.75V, recording the discharging 2240min
time.

69

Doc. No. 2006.3.16

UNIONFORTUNE

Edition No. 2.0
PRODUCT SPECIFICATION
Sheet 2/5
5 Environment Performance
Item Test Methods Performance
Hioh After standard charging, laying the battery 4h at 60 ,
5.1 e then discharging at 0.2C;sA to voltage 2.75V, recording the 2270min
temperature . S e
discharging time.
Low After standard charging, laying the battery 4h at 0.2C;A,
5.2 then discharging at 0.2C;A to voltage 2.75V, recording the 2210min
temperature . . .
discharging time.
Constant No distortion

53 | humidity and After standard charging, laying the battery 48h at No electrolytes leakage

40+2 , RH 93+29%. Recording 0.2CsA discharging time

temperature 2270 min
Temperature After standard charging, battery stored at -20 for 2 i
54 shock hours, then stored at 50 for 2 hours. Repeat 10 times. No electrolytes leakage

6 Mechanical Performance

Item Test Methods Performance

After standard charging, put battery on the vibration
table. 30 min experiment from X.Y,Z axis. Scan rate: 1
oct/min; Frequency 10-30Hz, Swing 0.38mm; Frequency 30-
55Hz, Swing 0.19mm.

After vibration test, batteries were laying on the vibration
table about X, Y, Z axis. Max frequency acceleration:
100m/s%; collision times per minutes: 40~80; frequency
keeping time 16ms; all collision times 1000£10.

No influence to batteries'
electrical performance and
appearance.

6.1 | Vibration

No influence to batteries'
electrical performance and
appearance.

6.2 | Collision

Random drop the battery from 10m height onto concrete

6.3 | Drop one times.

No explosion or fire

7 Safety Test

Test conditions The following tests must be measured at flowing air and safety protection conditions. All

batteries must standard charge and lay 24h.

[tem Test Methods Performance

At 20£5 , charging batteries with constant current
3C;A to voltage 4.8V, then with constant voltage 4.8V till
current decline to 0. Stop test till batteries’ temperature 10
lower than max temperature.

At 20%5 | discharge battery with 0.2CsA continuously
12.5h.

At 205 , connect batteries” anode and cathode by
wire which impedance less than 50mQ, keep 6h.

At 2015 , put the battery in two parallel steal broad,
add pressure 13kN.

Put the battery in the oven. The temperature of the oven
7.5 | Thermal shock | is to be raised at 5t1 per minute to a temperature of | No explosion or fire
1302 and remains 60 minutes.

7.1 Over charge No explosion or fire

7.2 | Over discharge No explosion or fire

73 Short-circuit No explosion or fire

7.4 Extrusion No explosion or fire

Doc. No. 20063.16
UNIONFORTUNE Edition No. 20
PRODUCT SPECIFICATION Sheet 3/5

8 Cautions

1.

3.

Cautions of batteries’ operation

The batteries must be careful of proceed the operation for it’s soft package.

Aluminum packing materials

The aluminum packing material was easily damaged by the sharp edge part, such as nickel-tabs.
forbid to use the sharp part touching the battery;

should cleaning working condition, avoiding the sharp edge part existence;

forbid to pierce the battery with nail and other sharp items;
the battery was forbidden with metal, such as necklace, hairpin etc in transportation and storage.

Sealed edge

Sealing edge is very easily damaged and don’t bend it.
The Al interlayer of package has good electric performance. It’s forbidden to connect with exterior

component for preventing short-circuits.

Folding edge

The folding edge is formed in batteries’ processes and passed all hermetic tests, don’t open or
deform it. The Al interlayer of package has good electric performance. It’s forbidden to

connect with exterior component for preventing short-circuits.

Tabs

The batteries’ tabs are not so stubborn especially for aluminum tabs. Don’t bend tabs.

Mechanical shock
Don’t fall, hit, bent the batteries’ body.

Short-circuit

Short-circuit is strictly prohibited. It should damage batteries badly.

Standard Test Environment for polymer lithium-ion batteries

Environment temperature: 20+5
Humidity: 45-85%

Cautions of charge & discharge

charge

Charging current should be lower than values that recommend below. Higher current and voltage
charging may cause damage to cell electrical, mechanical, safety performance and could lead heat

generation or leakage.

Batteries charger should charging with constant current and constant voltage mode;
Charging current should be lower than (or equal to)1CsA;
Temperature O 40 is preferred when charging;

Charging voltage must be lower than 4.25V.

71

Doc. No. 2006.3.16

UNIONFORTUNE

Edition No. 2.0

PRODUCT SPECIFICATION

Sheet 4/5

discharge
Discharging current must be lower than (or equal to)2CsA;
Temperature 0 60 is preferred when discharging;
Discharging voltage must not be lower than 2.75V.
over-discharge
It should be noted that the cell would be at an over-discharge state by its self-discharge. In order to
prevent over-discharge, the cell shall be charged periodically to keeping voltage between 3.6-3.9V.
Over-discharge may cause loss of cell performance. It should be noted that the cell would not discharge
till voltage lower than 2.5V.
4.Storage of polymer lithium-ion batteries
The environment of long-time storage:
Temperature: 20+5
Humidity: 45-85%;
Batteries were 40 60% charged.
5.Transportation of polymer lithium-ion batteries
The batteries should transportation with 10 50% charged states.
6.0thers
Please note cautions below to prevent cells’ leakage, heat generation and explosion.
Prohibition of disassembly cells;
Prohibition of cells immersion into liquid such as water or seawater;
Prohibition of dumping cells into fire;
Prohibition of using damaged cells. The cells with a smell of electrolyte or leakage must be placed away
from fire to avoid firing.
In case of electrolyte leakage contact with skin, eye, physicians shall flush the electrolyte immediately
with fresh water and medical advise is to be sought.
9. Notice of Designing Battery Pack
9.1 Pack design
Battery pack should have sufficient strength and battery should be protected from mechanical shock. No
sharp edge components should be inside the pack contain the battery.
9.2 PCM design
The overcharge threshold voltage should not be exceed 4.25V.
The over-discharge threshold voltage should not be lower than 2.75V.
The PCM should have short protection function built inside.
9.3 Tab connection
Ultrasonic welding or spot welding is recommended to connect battery with PCM or other parts.

If apply manual solder method to connect tab with PCM, the notice below is very important to ensure battery
performance.

The electric iron should be temperature controlled and ESD safe;

Soldering temperature should not exceed 350 ;

Soldering time should not be longer than 3s, keep battery tab cold down before next soldering;
Soldering times should not exceed 5 times;

Directly heat cell body is strictly prohibited, battery may be damaged by heat above approx. 100 .

72

Doc. No. 2006.3.16
UNIONFORTUNE S—o -
PRODUCT SPECIFICATION : '
Sheet 515
9.4 Cell fixing

The battery should be fixed to the battery pack by its large surface area. No cell movement in the battery

pack should be allowed.

9.5 Cells replacement

The cell replacement should be done by professional people.

Prohibit short-circuit between cells’” Al package and exterior component.

10. Cell Drawing:

73

ID-12 RFID Detection Device

ID Innovations EM module series V21

ID SERIES DATASHEET MAR 01, 2005

| ID-2/ID-12 Brief Data |

The ID2. ID12 and ID20 are similar to the obsolete ID0,
ID10 and ID15 MK(ii) series devices, but they have extra
pins that allow Magnetic Emulation output to be included
in the functionality. The ID-12 and ID-20 come with
internal antennas, and have read ranges of 12+ cm and
16+ cm, respectively. With an external antenna, the ID-2
can deliver read ranges of up to 25 cm. All three readers
support ASCII, Wiegand26 and Magnetic ABA Track2
data formats.

ID2 /ID12 /1D20 PIN-OUT

GND

RES (Reset Bar)
ANT (Antenna)
ANT (Antenna)
CP

Future

A oW -

D1 (Data Pin 1)

DO (Data Pin 0)
BOTTOM VIEW

=
B OGO 00 N

-0

. #5V

+/- (Format Selector)

LED (LED / Beeper)

Operational and Physical Characteristics
Parameters ID-2 ID-12 ID-20
Read Range N/A (no internal antenna) 12+ cm 16+ cm
Dimensions 21 mm x 19 mm x 6 mm 26 mm x 25 mm x 7 mm 40 mm x 40 mm x 9 mm
Frequency 125 kHz 125 kHz 125 kHz

Card Format EM 4001 or compatible

EM 4001 or compatible

EM 4001 or compatible

Encoding Manchester 64-bit, modulus 64 Manchester 64-bit, modulus 64 Manchester 64-bit, modulus 64
Power Requirement 5VDC @ 13mA nominal 5VDC @ 30mA nominal 5VDC @ 65mA nominal
1/0 Output Current +/-200mA PK - -

Voltage Supply Range

+4.6V through +5.4V

+4.6V through +5.4V

+4.6V through +5.4V

Pin Description & Output Data Formats

Description ASCII

Magnet Emulation Wiegand26

Pin 1 Zero Volts and Tuning Capacitor GND 0V GND 0V GND OV
Ground

Pin 2 Strap to +5V Reset Bar Reset Bar Reset Bar

Pin3 16 Ext_ernal Antennaiand-Tuning Antenna Antenna Antenna
Capacitor

Pin 4 To External Antenna Antenna Antenna Antenna

Pin5 Card Present No function Card Present * No function

74

ID Innovations EM module series V21

Pin 6 Future Future Future Future
Pin7 Format Selector (+/-) Strap to GND Strap to Pin 10 Strap to +5V
Pin8 Data 1 CMOS Clock * One Output *
Pin 9 Data 0 TTL Data (inverted) Data * Zero Output *
Pin 10 3.1 kHz Logic Beeper/LED Beeper /LED Beeper / LED
Pin 11 DC Voltage Supply +5V +5V +5V
* Requires 4K7 Pull-up resistor to +5V
Circuit Diagram for the ID2
Power In u1 LM7805
+5 Volt
== 8 b = Daspe i D2
D1 c1 2 c2 LED
S
R1 2 R2
ID2
BOTTON VIEW
11
Tune O
Capacitor 1 10 i a1
=i 02 . G———Ad—H
c3 K] O O—
o3 S
Antenna
—o* 70—
—o0° 60—

Circuit Diagram

Fowar In

(=
&

f(?r EII‘E ID-12/1D20

5 Waln

Baspes

LR]
ID-12 £ g
TN
11 &
- o

75

ID Innovations EM module series V21

ID-2RW/ID-12RW Brief Data

The ID2-RW, ID12-RW and ID15-RW are a new series
of Read/Write modules for the Temec Q5 tag. It has full
functionality including password. They contain built-in
algorithms to assist customers programming the popular
Sokymat Unique type tag. Password protection is
allowed. Control is via a host computer using a simple
terminal program such as hyper terminal or Qmodem.

ID2 /ID12 /ID20 PIN-OUT

GND

RES (Reset Bar)
ANT (Antenna)
ANT (Antenna)
Future

Program LED
ASClIl in

Future

ASCII Out

Read (LED / Beeper)
+5V

..\..._
oo ede
.
CDLOBNONAWN

- O

BOTTOM VIEW

Operational and Ph

Parameters

sical Characteristics
ID-2RW

ID-12RW

ID-20RW

Read Range N/A (no internal antenna) 12+ cm (Unique Format) 15+ cm (Unique Format)
Dimensions 21 mmx 19 mm x 6 mm 26 mm x 25 mm x 7 mm 40 mm x 40 mm x 9 mm
Frequency 125 kHz 125 kHz 125 kHz

Card Format Temec Q5555 Temec Q5555 Temec Q5555

Read Encoding

Manchester modulus 64

Manchester modulus 64

Manchester modulus 64

Power Requirement

5 VDC @ 13mA nominal

5 VDC @ 30mA nominal

5 VDC @ 50mA nominal

1/O Output Current

+/-200mA PK

Voltage Supply Range

+4.6V through +5.4V

+4.6V through +5.4V

+4.6V through +5.4V

Coil Detail

L=0.6mH-1.5mH,Q= 15-30

Description

A simple terminal program such as Qmodem or Hyper-terminal can be used to send commands to the
module. The blocks are individually programmable. The command interface is simple to use and easily
understood. The programmer also has two types of internal reader. One of these is provided to read

Sokymat ‘Unique’ type tag configuration.

The module does not require a MAX232 type chip interface.

The module does not need an RS232 interface such as a MAX232 IC. The input pin7 goes to the computer

through a 4k7 resistor and the output goes to the computer through a 100R resistor.

76

ID Innovations EM module series V21

DATA FORMATS

Output Data Structure — ASCII
[stx(2n) [DpATA(10ASCI) | CHECKSUM@Asci) | crR [LF| ETX(03h) |
[The 1byte (2 ASCII characters) Check sum is the “Exclusive OR” of the 5 hex bytes (10 ASCII) Data characters.]

Output Data Structure — Wiegand26

1123145167 |8[9(10[11]12[13[14[15[16[17[18[19[20(21(22(23(24(25|26

PIE|E|E|E|E|E|E|E|E|E|E|E|[O|O[O|O[O|[O[O|[O|O|O|O|O|P
Even parity (E) Odd parity (O)

P = Parity start bit and stop bit

Qutput Data Magnetic ABA Track2

| 10LeadingZeros | ss | Data ES LCR 10 Ending Zeros |
[SS is the Start Character of 11010, ES is the end character of 11111, LRC is the Longitudinal Redundancy Check.]
Magnetic Emulation Waveforms

] MY

Start and End Sequences For Magnetic Timing

'— 18 Leading Clocks —l ‘— 18 Trailing Clocks—l

Clock Clock
Data Data
Card Present Card Present
Start of Magnetic Sequence End of Magnetic Sequence

DATA TIMINGS FOR MAGNETIC EMULATION

ID Innovations EM module series V21

The magnetic Emulation Sequence starts with the Card Present Line going active (down). There next

follows 10 clocks with Zero ‘0° data. At the end of the 10 leading clocks the start character (11010) is sent

and this is followed by the data. At the end of the data the end character is sent followed by the LCR.

Finally 10 trailing clocks are sent and the card present line is raised.
The data bit duration is approximately 330uS. The approximate clock duration is 110uS. Because of the

symmetry data can be clocked off either the rising or falling edge of the clock.

Dimensions (Top View) (mm)

. 11

Jooé

i
1

| |
W
l J——o oo n?
E—
]
ID-0/ID-2wr ID-10/ID-12wr ID-15/ID-20wr
Nom. Min. | Max. | Nom. | Min. [Max. | Nom. | Min. | Max
A 12.0 1.6 124 12.0 116 124 12.0 1.6 124
B 8.0 7.6 8.4 8.0 7.6 8.4 8.0 7.6 8.4
C 15.0 14.6 154 15.0 14.6 154 15.0 14.6 15.4
D 20.5 20.0 215 253 249 259 40.3 40.0 41.0
E 18.5 18.0 19.2 20.3 19.8 20.9 27.8 27.5 28.5
F 14.0 13.0 14.8 16.3 15.8 16.9 222 219 23.1
G 22.0 21.6 224 26.4 26.1 271 385 38.2 39.2
P 20 1.8 22 20 1.8 22 2.0 1.8 22
H 5.92 5.85 6.6 6.0 58 6.6 6.8 6.7 7.0
] 9.85 9.0 10.5 9.9 9.40 10.5 9.85 9.4 10.6
W 0.66 0.62 0.67 0.66 0.62 0.67 0.66 0.62 0.67

Note — measurements do not include any burring of edges.

NOTICE - Innovated Devices reserve the right to change these specifications without prior notice.

78

ID Innovations EM module series V21

Designing Coils for ID2

The recommended Inductance is 1.08mH to be used with an internal tuning capacitor of 1n5. In general
the bigger the antenna the better, provided the reader is generating enough field strength to excite the tag.
The ID-2 is relatively low power so a maximum coil size of 15x15¢m is recommended if it is intended to
read ISO cards. If the reader is intended to read glass tags the maximum coil size should be smaller, say
10x10cm.

There is a science to determine the exact size of an antenna but there are so many variables that in general it
is best to get a general idea after which a degree of ‘Try it and see’ is unavoidable.

If the reader is located in a position where there is a lot of heavy interference then less range cannot be
avoided. In this situation the coil should be made smaller to increase the field strength and coupling.

It is difficult to give actual examples of coils for hand wounding because the closeness and tightness of the
winding will significantly change the inductance. A professionally wound coil will have much more
inductance than a similar hand wound coil.

For those who want a starting point into practical antenna winding it was found that 63 turns on a 120mm
diameter former gave an inductance of 1.08mH. For those contemplating adding an additional tuning
capacitor it was found that 50 turns on a 120mm diameter former gave 700uH. The wire diameter is not
important.

Anybody who wishes to be more theoretical we recommend a trip to the Microchip Website where we
found an application sheet for Loop Antennas.

http://ww1.microchip.com/downloads/en/AppNotes/0083 1b.pdf

The Tuning Capacitor

It is recommended that the internal 1n% capacitor is used for tuning, however a capacitor may be also be
added externally. The combined capacitance should not exceed 2n7. Do not forget that the choice of tuning
capacitor can also substantially affect the quality of your system. The Id12 is basically an ID2 with an
internal antenna. The loss in an ID12 series antenna is required to be fairly high to limit the series current.
A low Q will hide a lot of the shortcomings of the capacitor, but for quality and reliability and repeatability
the following capacitors are recommend.

Polypropylene Good Readily available. Ensure AC voltage at 125kHz is sufficient.
COG/NPO Excellent. Best Choice

Silver Mica Excellent but expensive

Polycarbonate Good Readily available. Ensure AC voltage at 125kHz is sufficient.
Voltage Working.

A capacitor capable of withstanding the RMS voltage at 125KHz MUST be chosen. The working voltage
will depend on the coil design. I suggest the designer start with rugged 1n5 Polypropylene 630v capacitor
to do his experiments and the come down to a suitable size/value. The capacitor manufacturer will supply
information on their capacitors. Do not simply go by the DC voltage. This means little. A tolerance of 2%
is preferable. A tolerance of 5% is acceptable.

Fine Tuning

We recommend using an oscilloscope for fine-tuning. Connect the oscilloscope to observe the 125KHz AC
voltage across the coil. Get a sizeable piece of ferrite and bring it up to the antenna loop. If the voltage
increases then you need more inductance (or more capacitance). If the voltage decreases as you bring the
ferrite up to the antenna then the inductance is too great. If you have no ferrite then a piece of aluminum

79

ID Innovations EM module series V21

sheet may be used for testing in a slightly different way. Opposing currents will flow in the aluminum and
it will act as a negative inductance. [f the 125kH AC voltage increases as the aluminum sheet approaches
the antenna then the inductance is too high. Note it may be possible that the voltage will first maximize
then decrease. This simply means that you are near optimum tuning. If you are using ferrite then the coil is
a little under value and if you are using an aluminum sheet then the coil is a over under value.

ID Innovations
Advanced Digital Reader Technology
----Better by Design

80

Maxim 8212

19-0538; Rev 3 1/95

IMNAXI N

Microprocessor Voltage Monitors
with Programmable Voltage Detection

General Description

Maxim's MAX8211 and MAX8212 are CMOS micropower
voltage detectors that warn microprocessors (pPs) of
power failures. Each contains a comparator, a 1.5V
bandgap reference, and an open-drain N-channel output
driver. Two external resistors are used in conjunction with
the internal reference to set the trip voltage to the desired
level. A hysteresis output is also included, allowing the user
to apply positive feedback for noise-free output switching.

The MAX8211 provides a 7mA current-limited output sink
whenever the voltage applied to the threshold pin is less
than the 1.5V internal reference. In the MAX8212, a voltage
greater than 1.5V at the threshold pin turns the output
stage on (no current limit).

The CMOS MAX8211/MAX8212 are plug-in replacements
for the bipolar ICL8211/ICL8212 in applications where the
maximum supply voltage is less than 16.5V. They offer sev-
eral performance advantages, including reduced supply
current, @ more tightly controlled bandgap reference, and
more available current from the hysteresis output

Applications

pP Voltage Monitoring
Undervoltage Detection
Overvoltage Detection
Battery-Backup Switching
Power-Supply Fault Monitoring
Low-Battery Detection

Pin Configuration

Features

+ pP Power-Fail Warning

4 Improved 2nd Source for ICL8211/ICL8212

+ Low-Power CMOS Design

¢ 5pA Quiescent Current

¢ On-Board Hysteresis Output

¢ £40mV Threshold Accuracy (£3.5%)

4 2.0V to 16.5V Supply-Voltage Range

+ Define Output Current Limit (MAX8211)

¢ High Output Current Capability (MAX8212)

Ordering Information
PART TEMP. RANGE PIN-PACKAGE

MAX8211CPA 0°Cto +70°C 8 Plastic DIP
MAX8211CSA 0°Cto +70°C 850
MAX8211CUA 0°Cto +70°C 8 UMAX
MAX8211CTY 0°Cto +70°C 8 TO-99
MAX8211EPA -40°C to +85°C 8 Plastic DIP
MAX8211ESA 40°C to +85°C 850
MAX8211EJA -40°C to +85°C 8 CERDIP
MAX8211ETY -40°C to +85°C 8 70-99
MAX8211MJA 55°C10 +125°C 8 CERDIP
MAX821TMTV 55°C 1o +125°C 8 T0-99

Ordering | 1 on last page.

Typical Operating Circuit

Coniact factory for dice specifications,

TOP VIEW
B N
ne. [1] o]
HYST E MMAAX;ﬂIM 7| NC
MAX8212

THRESH E E‘ N.C.
ot E 5] onp

DIP/SO

Pin Configurations continued at end of data sheet

R3

HYST

R maam ! Ml
MAX8211
THRESH
GHD

Rl

:

L

LOGIC-SUPPLY UNDERVOLTAGE DETECTOR
(Detailed Circuit Diagram-Figure 5)

MNAXIV

Call toll free 1-800-998-8800 for free samples or literature.

Maxim Integrated Products 1

CcLZ8XVIN/LLZBXVIN

81

MAX8211/MAX8212

Microprocessor Voltage Monitors
with Programmable Voltage Detection

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ...
Output Voltage
Hysteresis
Threshold Input Voltage ..

.-0.5Vt0 +18V

L [T -0.5Vto +18V
+0.5V to -18V with respect to (V+ + 0.5V)
0.5V to (V+ + 0.5V)

MAX821_C_

Current into Any Terminal. e £ DOMA MAX821_E_
Continuous Power Dissipation (T, = +70°C) MAX821_M_ _
Plastic DIP (derate 9.09mW/°C above +70°C) L12TmwW
SO (derate 5.88mW/°C above +70°C) L A7TmwW

CERDIP (derate 8.00mW/*C above +70°C)...........
TO-99 (derate 6.67mW/°C above +70°C) -
Operating Temperature Ranges

Storage Temperature R;ange.. -
Lead Temperature (soldering, 10sec

-55°Cto
-65°C to

.640mwW
.533mwW

.0°Cto +70°C
40°C 1o +85°C

+125°C
+150°C

.+300°C

Stresses beyond those listed under "Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device al these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device refiability.

ELECTRICAL CHARACTERISTICS

(V+ = 5V, Ta = +25°C, unless otherwise noted.)

MAX8211 MAX8212
PARAMETER SYMBOL CONDITIONS MIN TYP MAX|MIN TYP MAX UNITS
VeV <165V, |Ta=+25°C 5 15 5 15
Supply Current ! A
PPy © | GNDEVIHE VS [Ta - Tonn Tox 20 0| "
V+ = 16.5V, | = 4mA
Ta = +25°C — Oioc 1 119111 119
Threshold Trip Voltage Vi v, our = S v
Ta=TunOT Ve @ 185V lour = 3mA_ |, o 1.25/1.05 125
A= TMNO T = TouT = 5000A 5 5(1.0¢ :
Threshold Voltage | ~4mA
Disparity between Output | vipp | 20T 7 % +0.1 +0.1 mv
and Hysteresis Output HysT =
Guaranteed Operating Ta=+25'C 20 16520 16.5
. Vsupp v
Supply Voltage Range Ta = Thin 10 Tiax 22 16522 16.5
Typical Operating N N
Supply Valtage Range Vsupp 15 16515 165 V
Threshold Voltage - N . . I
Temperature Coefficient AVTHIAT | See Figure 4 200 200 pom/C
Variation of Threshold a
voltage with Supply Voltage, AVIH [V = 45V 1055V 1.0 02 mv
QV S VTH € V+, Ta = +25°C 0.01 10 001 10
Threshold Input Current ITH nA
Ta = TN to Timax 20 20
Vout = 16.5V, V1 = 1.0V 10
Ta = Tmin to Tvax| YouT = 16.5V, Vry = 1.3V 10
CIE temp. ranges [Voyt = 5V, Vi = 1.0V 1
Vout = 5V, VTH = 1.3V 1
Output Leakage Current | 1A
P & rout VouT = 16.5V, Vi = 0.9V w | F
Ta = Thain to Tiax| VouT = 16.5V, VTH = 1.3V 30
Mtemp. range Vout = 5V, VTH = 0.9V 10
VouT = 5V, ViH = 1.3V 10
2 MM

82

Microprocessor Voltage Monitors
with Programmable Voltage Detection

ELECTRICAL CHARACTERISTICS (continued)

(V+ = 5V, Ta = +25°C, unless otherwise noted.)

MAX8211 MAX8212
PARAMETER SYMBOL CONDITIONS MIN TYP MAX|MIN TYP MAX UNITS
lout = 2mA, V11 = 1.0V 017 04
Output Saturation Voltage VoL - - \%
lout = 2mMA, VTy = 1.3V 017 04
Maximum Available C temp. range, I VTH = 1.0V (Note 1) 4 170
loH mA
Output Current Vout = 5V [VTr = 1.3V (Note 2) 12235
Ta = Tpin to Timax. C/E temp. ranges,
V+ = 16.5V, Vi = 1.0V, 0.1 0.1
Hysteresis Leakage VHysT = -16.5V with respect to V+
Current Lhvs HA
Ta = Thin to Tiax, M temp. range.
V+ = 16.5V, VTH = 0.9V, 3 3
VHysT = -16.5V with respect to V+
Hysteresis Saturation VHys IHysT = 0.5mMA, VTH = 1.3V,
Voltage (MAX) | measured with respect to V+ 01 02 0.1 -02 v
Maximum Available VHYs a L .
Hysteresis Current (MAX) VTH = 1.3V, Vhys = OV 2 10 2 10 mA

Note 1: The maximum output current of the MAX8211 is limited by design to 30mA under any operating condition. The output voltage
may be sustained at any voltage up to +16.5V as long as the maximum power dissipation of the device is not exceeded
Note 2: The maximum output current of the MAX8212 is not defined, and systems using the MAX8212 must therefore ensure that the

output current does not exceed 50mA and that the maximum power dissipation of the device is not exceeded

Detailed Description

As shown in the block diagrams of Figures 1 and 2, the
MAX8211 and MAX8212 each contain a 1.15V refer-
ence, a comparator, an open-drain N-channel output
transistor, and an open-drain P-channel hysteresis out-
put. The MAX8211 output N-channel turns on when the
voltage applied to the THRESH pin is less than the
internal reference (1.15V). The sink current is limited to
7mA (typical), allowing direct drive of an LED without a
series resistor, The MAX8212 output turns on when the
voltage applied to THRESH is greater than the internal
reference. It is not current limited, and will typically sink
35mA

Compatibility with ICL8211/ICL8212
The CMOS MAX8211/MAX8212 are plug-in replacements
for the bipolar ICL8211/ICL8212 in most applications.
The use of CMOS technology has several advantages
The quiescent supply current is much less than in the
bipolar parts. Higher-value resistors can also be used

MAXIMN

Vi

THRESH
HYST
outr
115
REFERENCE
Figure 1. MAX8211 Block Diagram

CLZBXVW/LLZBXVYIN

83

MAX8211/MAX8212

Microprocessor Voltage Monitors
with Programmable Voltage Detection

THRESH

out

Vi v

Vi

R?

HYST ouT |— Vour
MAXIMN
MAX8211
MAX8212
THRESH GND

R1

<

Figure 2. MAX8212 Block Diagram

in the networks that set up the trip voltage, since the
comparator input (THRESH pin) is a low-leakage
MOSFET transistor. This further reduces system current
drain. The tolerance of the internal reference has also
been significantly improved, allowing for more precise
voltage detection without the use of potentiometers.

The available current from the HYST output has been
increased from 2TpA to 10mA, making the hysteresis
feature easier to use. The disparity between the HYST
output and the voltage required at THRESH to switch
the OUT pin has also been reduced in the MAX8211
from 8mV to 0.1TmV to eliminate output "chatter” or
oscillation.

Most voltage detection circuits operate with supplies of
15V or less; in these applications, the MAX8211/
MAX8212 will replace ICL8211/ICLB212s with the per-
formance advantages described above. However, note
that the CMOS parts have an absolute maximum sup-
ply-voltage rating of 18V, and should never be used in
applications where this rating could be exceeded.
Exercise caution when replacing ICL8211/ICL8212s in
closed-loop applications such as programmable
zeners. Although neither the ICL8211/ICL8212 nor the
MAXB211/MAX8212 are internally compensated, the
CMOS parts have higher gain and may not be stable
for the external compensation-capacitor values used in
lower-gain ICL8211/ICLB212 circuits.

Figure 3. Basic Overvoltage/Undervoltage Circuit

Applications Information

Basic Voltage Detectors
Figure 3 shows the basic circuit for both undervoltage
detection (MAX8211) and overvoltage detection
(MAXB212). For applications where no hysteresis is
needed, R3 should be omitted. The ratic of R1 to R2 is
then chosen such that, for the desired trip voltage at Vi,
1.15V is applied to the THRESH pin. Since the com-
parator inputs are very low-leakage MOSFET transis-
tors, the MAX8211/MAX8212 can use much higher
resistors values in the attenuator network than can the
bipolar ICL8211/ICL8212. See Table 1 for switching
delays.

Table 1. Switching Delays

TYPICAL DELAYS MAX8211 MAX8212
Yon) 40ls 250ps
L) 1.5ms 3ms

Voltage Detectors with Hysteresis
To ensure noise-free output switching, hysteresis is
frequently used in voltage detectors. For both the
MAX8211 and MAX8212 the HYST output is on for
threshold voltages greater than 1.15V. R3 (Figure 3)
controls the amount of current (positive feedback) sup-
plied from the HYST output to the mid-point of the resis-
tor divider, and hence the magnitude of the hysteresis,
or dead-band.

MAXLN

84

Microprocessor Voltage Monitors

with Programmable Voltage Detection

1.250
1.230
1210 %
1.190
1w Ve = 1657
= ——
= 1150
S Vi=2V
1110
1.090
1070
1.050
55 25 25 75 125
Ta ("C)

R3
48.7k
1%

- MAXIMN
ST waxez11
R2 Vour
J0M out f— (LOWFOR
1% Vi< 45V)
THRESH

Rl
750k
1%

GND —‘

Figure 4. MAX8211/MAX8212 Threshold Trip Voltage vs
Ambient Temperature

Calculate resistor values for Figure 3 as follows:
1) Choose a value for R1. Typical values are in
the 10kQ to 10MQ range.
2) Calculate R2 for the desired upper trip point
V|, using the formula:
VU =VTH) gy MU=115Y)
VTH 1.15V

R2 = R1 x

3) Calculate R3 for the desired amount of
hysteresis, where V| is the lower trip point:

R3 = R? x V+ — VTH) - R? x (V+ - 1.15V)
My -v) vy -v)
or, if V=V
R3 = R? x M -VrH) . (V| -1.15V)
Vy -vp) My -w)

Figure 5 shows an alternate circuit, suitable only when the
voltage being detected Is also the power-supply voltage
for the MAX8211 or MAX8212.

MAXIMN

Figure 5. MAX8211 Logic-Supply Low-Voltage Detector

Calculate resistor values for Figure 5 as follows:

1) Choose a value for R1. Typical values are in
the 10kQ to TOMQ range.

2) Calculate R2:

Rz = Rl x MLZVTHL | gy MZTISY)
VTH 1.15V
3) Calculate R3:
R3 = R1 x =D
1.15V

Low-Voltage Detector for Logic Supply
The circuit of Figure 5 will detect when a 5.0V (nominal)
supply goes below 4.5V, which is the Vy,y normally
specified in logic systems. The selected resistor values
ensure that false undervoltage alarms will not be gener-
ated, even with worst-case threshold trip values and
resistor tolerances. R3 provides approximately 75mV of
hysteresis.

CLZ8XVIN/LLZBXVIN

85

MAX8211/MAX8212

Microprocessor Voltage Monitors
with Programmable Voltage Detection

Pin Configurations (continued)

TOP VIEW

TOP VIEW

—
our [} 6] 1hesn
-7 mmam [,
ve e} A 1 et
NCE maxgziz |51 e
Gho L4 5] v
GND
LMAX TO-99*

* CASE IS CONNECTED TO PIN 7 ON TV PACKAGE
CASE IS CONNECTED TO PIN 4 ON TY PACKAGE.

_Ordering Information (continued)

PART TEMP. RANGE PIN-PACKAGE
MAX8212CPA 0°Cto +70°C 8 Plastic DIP
MAXB212CSA 0°Cto +70°C 850
MAXB8212CUA 0°Cto +70°C 8 PMAX
MAX8212CTY 0°Cto +70°C 8T0-99
MAXB21Z2EPA -40°C 1o +85°C 8 Plastic DIP
MAX8212ESA -40°C 1o +85°C 850
MAXB212EJA -40°C 10 +85°C 8 CERDIP
MAXB212ETY -40°C to +85°C 8 TO-99
MAX8212MJA 55°Cto +125°C 8 CERDIP
MAX8212MTV 55°C 1o +125°C 8T0O-99

* Contact factory for dice specifications.

MAXLN

86

Microprocessor Voltage Monitors
with Programmable Voltage Detection

Package Information

INCHES MILLIMETERS
MIN MAX MIN MAX

=]
=

A 0.036 0.044 0.91 1.11
A1 | 0.004 0.008 0.10 0.20
B 0.010 0.014 0.25 0.36
C 0.005 0.007 0.13 0.18
D 0.116 0.120 2.95 3.05
E 0.116 0.120 2.95 3.05
e 0.0256 0.65
H 0.188 0.198 4.78 5.03
L 0.016 0.026 0.41 0.66
o [6° 0° 6"
—
E H
.
o 8-PIN LMAX
MICROMAX SMALL OUTLINE
PACKAGE
D
INCHES MILLIMETERS

DIM MIN MAX MIN MAX

0.053 0.069 1.35 1.75
0.004 | 0.010 0.10 0.25
0.014 | 0.018 0.35 0.49
0.007 | 0.010 0.19 0.25

=)
2
.
-]
e
|T|e|m|o|o|Z|>

A
* LJl J\L \‘ 0.150 | 0.157 | 3.80 | 4.00
O 'y 7 0.050 1.27
- |- | - .:1 + oo \ 0228 | 0244 | 580 | 6.20
B c L |- 0.016 | 0.050 | 040 | 127

T
4
7]

@

o|o|o
E1EY

— INCHES _ |MILLIMETERS
SO DIM [PINS| N [MAX | MIN_| MAX

l H SMALL OUTLINE 0.189 [0.197 | 4.80 | 5.00
i PACKAGE 0.337 [0.344 | 855 | 8.75
. 0.386 | 0.394 | 9.80 | 10.00

I (0'1 50 In‘) 21.0041A

MAXIMN 7

CLZ8XVIN/LLZBXVIN

MAX8211/MAX8212

Microprocessor Voltage Monitors
with Programmable Voltage Detection

Package Information (continued)

INCHES MILLIMETERS

- PMI"MIN_ | mAX | miIN_| max

o -1 —] A| - [o0200] - 5.08
v A1 0015 | - 038 -

A2 | 0.125 | 0.175 3.18 4.45
A3 | 0.055 | 0.080 1.40 203
B | 0.016 | 0.022 0.41 0.56
B1 | 0.045 | 0.065 1.14 1.65
C]0.008 | 0.012 0.20 0.30
D1 | 0.005 | 0.080 0.13 2.03

>
w

e 0715 h E | 0300 | 0325 | 762 | 826

] <] E1 | 0240 | 0310 | 610 | 7.87

L —B1 eA e | 0.100 - 2.54 -

" eA 0300 | - | 762 | -

——eB—— eB | - | 0400 - 10.16

=1 L [0415 | 0150 | 292 | 381
N N N N N . INCHES _ |MILLIMETERS

T

Plastic DIP DIM |PINS| i T MAX

PLASTIC D | 8 [0.348 [0.390 | 8.84 | 9.91

DUAL-IN-LINE D | 14 [0.735 [0.765 | 18.67 | 1943

KA D | 16 [0.745 [0.765 | 18.92 | 19.43

PAC _GE D | 18 [0.885 | 0.915 | 22.48 | 23.24

T (0.300 in.) D | 20 |1.015 | 1.045 | 25.78 | 26.54

D | 24 | 1.14 |1.265 | 28.96 | 32.13

INCHES __| MILLIMETERS
Y | MILLIMETERS |

90 DIM ™MiN_ [mMAX | MIN_| mAX

k—om—ﬂ A | 0.165 | 0.185 | 419 | 470

¢ob [0016 | 0.019 | 041 0.48
¢b1 | 0.016 | 0.021 041 0.53

a F L1 ﬁ oD [0335 [0375 | 851 | 9.40
* * L2 * oD1 | 0.305 0.335 7.75 8.51
i oD2| 0.110 | 0.160 | 279 | 406
Al | ¢ s
e A %
s @ oo 0 0o L ¥ F| - Joow| - [102
BEANE k | 0027 | 0.034 | 069 | 086

k1 | 0.027 | 0.045 0.69 1.14
L |0.500 [0.750 | 12.70 | 19.05

L1 = 0.050 - 1.27
L2 | 0.250 - 6.35 -
Q | 0.010 | 0.045 0.25 1.14
o 45° BSC 45° BSC
45° BSC 45° BSC
21-0022A
8-PIN
T0-99 METAL CAN
PACKAGE

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1995 Maxim Integrated Products Printed USA MAXIM s aregistered trademark of Maxim Integrated Products

XBee Antenna

XBee & XBee-PRO OEM RF Module
Antenna Considerations

Contents

ABSETACE swvuvismnininss v s R
XBee and XBee-PRO Product Comparison
Link Quality Evaluationccoovviviiiiiiiiiinnnnnns
Discussion

P PO IV U 0130ttt e miaim s e

g MaxStream

Application Note
XST-ANO19a
September 2005

Website: www.maxstream.net
Email: rf-xperts@maxstream.net

89

g MaxStream

Abstract

This document presents practical information regarding the performance of the XBee
and XBee-PRO RF Modules. The focus will be on the attributes of the different antenna
options that are available to the modules. This information is intended to assist the
designer in selecting the most appropriate module/antenna combination for their
application. Indoor and outdoor systems will be covered.

XBee and XBee-PRO Product Comparison

XBee and XBee-PRO OEM RF Modules are small, high-performance, low-cost, wireless
data transceivers. Both operate in the 2.4 GHz ISM band and because they have agency
approvals (FCC, ETSI approvals pending), both can be operated without a station
license. The XBee and XBee-PRO are pin-compatible with one another, though the XBee-
PRO is slightly longer than the XBee. Both modules are available with a whip antenna, a
low-profile chip antenna or a U.FL connector (to which an external antenna can be
connected). The XBee transmits up to 1 mW of power, while the XBee-PRO transmits up
to 60 mW of power. In addition to transmitting more power, the XBee-PRO is capable of
receiving weaker signals than is the XBee; which means the XBee-PRO has better
receiver sensitivity. Because the XBee-PRO is both more sensitive and transmits more
power, it can send and receive data over longer distances than the XBee.

Link Quality Evaluation

In an effort to provide some practical information to the reader, as it relates to the
distance of various XBee/XBee-PRO wireless links, a series of range tests (both indoor
and outdoor) were performed. The indoor range tests were carried out in an office
building and in a large warehouse (containing aisles of storage shelving). The outdoor
range tests were completed near a business park (interspersed with multilevel buildings,
young trees, parking areas and bordering a residential area).

Link distance, or range, was determined by measuring packet delivery from a
transmitter to a receiver. The transmitter resided in a fixed location, while the receiver
was moved to a number of different locations. Receiver locations were chosen such that
the distance between the transmitter and receiver could be gradually increased until the
link quality began to suffer. Most of the outdoor receiver locations were within visual
line-of-sight of the transmitter (refer to application note “XST-AN010a” for more
information regarding line-of-sight conditions). Some of the outdoor receiver locations
were not within RF line-of-sight of the transmitter; however, they were within visual
line-of-sight of the transmitter.

The transmitter was programmed to transmit packets containing a number that was
incremented from one packet to the next (1, 2, 3 and so on...). The receiver (and
associated lap-top PC) was configured to quantify successful packet delivery as a
percentage of the total number of packets sent. The transmitter and receiver were
alike, meaning that the module-type and antenna-type were identical. The modules
were mounted to host interface boards. 99% successful packet delivery was chosen as
a benchmark for comparison purposes. The receiver did not acknowledge to the
transmitter when a packet arrived successfully. Furthermore, the transmitter sent each
packet only once.

XST-ANO19a ©2005 MaxStream, Inc. Page 2 of 7

5 MaxStream

The table below summarizes the results of the evaluation. The distances presented in
Table 1 represent what a user might expect to achieve in his application”.

Figure 1. Wireless link performance for various module/antenna/environment scenarios

[Benchmark of 99% Packet Throughput]

Activation of
retries on the modules will improve packet delivery reliability in the presence of
interference at the expense of overall data throughput (effective data rate).

Module Antenna Outdoor Distance Indoor Distance Indoor Distance
Type (Visual Line-of-Sight) (Office Building) (Warehouse)
Chip 470 ft. (143 m) 80 ft. (24 m)

XBee

Whip 845 ft. (268 m) 80 ft. (24 m) 84 ft. (26 m)
Chip 1690 ft. (515 m) 140 ft. (43 m)

XBee-PRO
Whip 4382 ft, (1335 m) 140 ft. (43 m) 385 ft. (108 m)

A dipole antenna was also tested. The dipole and whip antennas perform similarly.

The radiation pattern for the whip antenna is similar to that of a dipole. That is to say, it

is shaped like a donut. Thus, the performance of a module using a whip antenna, is
relatively insensitive to its orientation in the plane that is perpendicular to the whip

antenna. On the other hand, the radiation pattern of the chip antenna is not as uniform

as that of the whip antenna. Therefore, certain orientations will achieve better
performance than others. As our evaluation was performed, the orientation was

selected to achieve the best performance. Because the radiation pattern will be affected

by the antenna’s immediate surroundings, MaxStream recommends range testing be
performed with the module installed in its final assembly.

Observations

After reviewing Table 1, we can make several important observations.

+« The whip antenna has a range advantage over the chip antenna, but only outdoors.
+ The XBee-PRO can achieve more range than the XBee.
+ The XBee-PRO and XBee both achieve more range outdoors than they do indoors.

" Actual performance depends on many factors in the environment. Consequently, individual results may vary.

Factors include: antenna orientation; antenna height, proximity of antenna to other objects such as an

enclosure, PCB, or other mounting structures; trees; rain; snow, sleet; hail; bushes; shrubbery; flocks of

birds; swarms of bees; moving vans; parked cars, trucks and vans, cars, trucks and vans in maotion;

intentional or unintentional interferers; etc. Longer distances may be possible with reduced throughput.
Obstructions in the propagation path will affect performance. Other wireless networks or systems may affect

performance.

XST-ANO19a

©2005 MaxStream, Inc.

Page 3 of 7

91

g MaxStream

Discussion

The whip antenna on the XBee module affords additional range in outdoor applications.
However, it also occupies more space. If more range is required, and space is a
constraint, then the XBee-PRO with a chip antenna may be more appropriate. On the
other hand, if more range is a requirement and cost, not space, is the constraint, then
the XBee with a whip antenna may be the best choice.

It should also be clear that the XBee-PRO can achieve superior range when compared to
the XBee. Thus, if the application requires more range than the XBee can provide, then
the XBee-PRO with a whip or a chip antenna could be used. Again, the chip antenna is
best for tight spaces, while the whip antenna achieves more range.

More Information

The information presented above has been given to help the reader understand the basic
performance of the XBee and XBee-PRO wireless transceiver modules under various
operating conditions. More information and resources are available by visiting
www.maxstream.net. Antenna radiation patterns are available for both the chip and
whip antennas and can be found in Appendix A. More detailed information associated
with the link quality evaluation is also available. Thank you for considering MaxStream
for your wireless data needs.

XST-ANO19a ©2005 MaxStream, Inc. Page 4 of 7

g MaxStream

Appendix A

new picture

Dipole Antenna

90
0
AN _;;B
NAXN
e
-40

- Neas il

-

Radiation pattern of a dipole antenna connected to an XBee-PRO. The pattern is
normalized to its peak. The chamfered end of the XBee-PRO points toward zero degrees
as shown in the figure.

2

XST-ANO19a ©2005 MaxStream, Inc. Page 5 of 7

93

g MaxStream

new picture

Whip Antenna

0
— -1(2)8

[JX TN
180 I

270

Radiation pattern of a whip antenna connected to an XBee-PRO. The pattern is
normalized to the peak of the dipole antenna on the preceeding page, permitting an
easy comparison.

XST-ANO19a ©2005 MaxStream, Inc. Page 6 of 7

94

g MaxStream

new picture

Chip Antenna

90

0dB

Radiation pattern of a chip antenna connected to an XBee-PRO. The pattern is
normalized to the peak of the dipole antenna on the first page of this appendix, again,
permitting an easy comparison.

XST-ANO19a ©2005 MaxStream, Inc. Page 7 of 7

Appendix B: Matlab Code

two_tri.m
function [x, y] =
%$2-D trilateration function
% Inputs: Readers 1-3 (x,V)

- 2

(x172 - x272) -
(172 - x3"2) -

% x nl =

T x n2 = 2*(y2 - yl)*(dl"2 - d3"2)
T x d=2%(x2 - x1)*2*(y3 - yl)
$ x = (xnl - xn2)/x d

5y = 2;

x nll = (d1"*2 - d2"2) -

x n2l = (d1~2 - d3"2) -

x nl2 = 2*(y2-yl);

X n22 = 2*(y3-yl);

dll = 2*(x2-x1);

d21 = 2*(x3-x1);

dlz = 2*(y2-yl);

d22 = 2*(y3-yl);

[d11, d12; d21, d22]

x = x n/d
x = det (x)

= dll
= d21
x nll
= x n2l

<
3
—
N

I

ly_nll,
y_n/d
= det (y)

y nl2; y n21,

end

Test2D.m

[x n1l, x nl2; x n2l, x n22]

y n22]

two tri(xl, x2, x3, yl, y2, y3, dl, d2, d3)
and Distances to Tag

(d172 - d272)-(x1"2 - x272)—-(y1"2 - y272)*2*(y3 - yl)

- (x1"2 - x372) -
*(y2

(yl72 - y372)
- yl)*2*(x3-x1)

(ylrz - y272);
(ylnz - y37°2);

%prevents rounding when displaying fractions

format long

%$Reader 2-D Coordinates
Reader = [-2, 2; 2, 1;

[x,
_l,

v]
-21;

%$plot reader locations

scatter (getcolumn (Reader(1:3,1:2),1
]

[1 0 0], '"MarkerFaceColor',

$x = 0;0;0;

sy = 0;0;0;

$x = getcolumn (Reader(1:3,1:2),1)

%y = getcolumn (Reader (1:3,1:2),2)
e = [1;1;1]
hold on

%errorbar (x,y, e,
%axis([-5 5 =5 51])
set (gca, 'XTick',
set (gca, 'YTick',

'Og',

-5:1:5);
-5:1:5);

'Marker', '
%set axis for 2-D graphs

) ,getcolumn (Reader(1:3,1:2),2),

[1 0 0]);figure(gct)

+')

'MarkerEdgeColor',

grid on;

%distances to Tag from Reader (i)
$Distance = [2.82842715;2.236067977;2.236067977]; %(0, 0) tag

Distance = [3.16227766; 1; 3.60555127]; %(1, 1) tag

%error circles

circle([-2, 2],Distance(l), 1000, '-");figure (gcf)
$http://www.mathworks.com/matlabcentral/fileexchange/2876-draw-a-circle
circle([2, 1],Distance(2),1000, '-');figure (gcf)

circle([-1, -2],Distance(3), 1000, '-');figure(gct)

pause;

x = 0;

y = 0;

%$Reader (row, col)

(
[x, y] = two_tri(Reader(l,1), Reader(2, 1), Reader(3,1), Reader(l, 2), Reader (2,
Reader (3, 2), Distance(l), Distance(2), Distance(3));

$plot tag

scatter(x,y, 'MarkerEdgeColor', [0 O 0], 'MarkerFaceColor', [0 O 0]);figure(gcf)
circle([x, y],.5,1000,'-");figure (gcf)

pause;

clf;

three_tri.m

function [x, y, z] = three tri(x1, yl1, z1, di, x2, y2, z2, d2, x3, y3, z3, d3,
v4, z4, di)

%$3-D trilateration. 4 anchor nodes

% x1 = x coordinate of reader 1

% yl = y coordinate of reader 1

% z1l = z coordinate of reader 1

% dl = distance from tag to reader 1

o\

Function signature is done this way to make the functions below easier
to type and understand and debug. Harder to call the function but
easier to edit/understand the equations below

o

o\

%x_numerator elements

x nll = (d172-d272) - (x172-x2"2) - (yl1"2-y2"2) - (z1"2-z2"2); %sigma
x n2l = (d1"2-d3"2) - (x1"2-x3"2) - (yl"2-y3"2) - (zl1"2-z3"2); Sbeta
x n3l = (d172-d4"2) - (x1"2-x4"2) - (y1"2-y4"2) - (z1"2-z4"2); Sphi

x nl2 = 2*(y2-yl);

X n22 = 2*(y3-yl);

x n32 = 2*(y4-yl);

x nl3 = 2*(z2-z1);

X n23 = 2*(z3-zl);

X n33 = 2*(zd-z1);

%all the individual elements in M(COLA ieee document)

dll = 2*(x2-x1);
d21 = 2* (x3-x1);
d31l = 2*(x4-x1);

(

()

()

dlz = 2*(y2-yl)

d22 = 2*(y3-yl);

d32 = 2*(y4-yl)
()
()
()

dl3 = 2*(z2-z1);
d23 = 2*(z3-z1);
d33 = 2*(z4-z1);

$bringing M together into [3, 3] matrix
d = [dl1, d12, d13; d21, d22, d23; d31, d32, d33];

2),

x4,

97

$bringing numerator together for x

x n = [x nll, x nl2, x nl3; x n2l, x n22, x n23; x n3l1, x n32,

o

$finding x by dividing matrix operation and then determinant
x =xn/ d;
x = det(x);

%$individual y elements
y nll = 2*(x2-x1);

y n2l = 2*(x3-x1);

y n3l1 = 2*(x4-x1);

y nl2 = x nll; S%sigma
y n22 = x n2l; S%beta

y n32 = x n3l; %phi

y nl3 = 2*(z2-z1);

y n23 = 2*(z3-z1);

y n33 = 2*(z4-z1);

$bringing numerator together for y

y n= [y_nll, y_n12, y_nl3; y_n21, y_n22, y_n23; y_n31, y_n32,

)

%$finding y by dividing matrix operation and then determinant
y=yn/ d;
y = det(y);

%$individual z elements
z nll = 2*(x2-x1);

z n21l = 2*(x3-x1);
z n3l = 2*(x4-x1);
z nl2 = 2*(y2-yl);
z n22 = 2*(y3-yl);
z n32 = 2*(y4-yl);
z nl3 = x nll; %sigma

z n23 = x n2l; %beta
z n33 x n31; %phi

$bringing z numerator together
z n = [z nll, z nl2, z nl3; z n2l, z n22, z n23; z n3l, z n32,

$finding z by dividing matrix operation and then determinant
=zn/ d;
= det(z);

N N

end

Test3D.m

$prevents rounding when displaying fractions
format long

%$Reader 3-D Coordinates [x, vy, z]
Reader = [-2, 2, 2; 2, 1, -2; -1, -2, 2; 3, 3, 31;:

$plot reader locations

x n33];

y_n33];

z n33];

scatter3 (getcolumn (Reader(1:4,1:3),1),getcolumn (Reader(1:4,1:3),2),

getcolumn (Reader(1:4,1:3),3), 'MarkerEdgeColor', [1 0 0], 'MarkerFaceColor'

01);figure (gctf)

$x = 0;0;0;

sy = 0;0;0;

%$x = getcolumn (Reader(1:3,1:2),1)
%y = getcolumn (Reader(1:3,1:2),2)

98

$e = [1;1;1]

hold on

%errorbar(x,y, e, 'og', 'Marker', '+');
axis([-3 3 -3 3 -3 3]) S%set axis for 2-D graphs
set (gca, 'XTick', -3:1:3);

set (gca, 'YTick', -3:1:3);

set (gca, 'ZTick', -3:1:3);

grid on;

%distances to Tag from Reader (i)
$Distance = [2.82842715;2.236067977;2.236067977]; %(0, 0) tag

Distance = [3.464101615; 3; 3; 5.196152423]; %(0, 0 , 0) tag

%initialize variables

x = 0;

y = 0;

z = 0;

[x, y, z] = three tri(Reader(l, 1), Reader(l, 2), Reader(l, 3), Distance(l), Reader(2,

1), Reader (2, 2), Reader(2, 3), Distance(2), Reader (3, 1), Reader (3, 2), Reader (3, 3),
Distance (3), Reader (4, 1), Reader (4, 2), Reader (4, 3), Distance(4));

scatter3(x, vy, z, 'MarkerEdgeColor', [1 1 0], 'MarkerFaceColor', [1 1 0]);figure(gctf)

COLA.m

%prevents formatting of decimals
format long

%super—-node lower level nodes
%$3-D coordinates [x, vy, z]
lowReader = [-2, 2, 2; 1, 1, 2; -3, 0 , 2]; %all z-values must be the same

%x, y values must be same as lowReader values.
%7 values must be > lowReader values and equal to each other
highReader = [-2, 2, 4; 1, 1, 4; -3, 0, 41;

$tag x y z for testing purposes
tag = [4; 5; 1];

low dl = sgrt((lowReader(l, 1)- tag(l))”2 + (lowReader(l, 2)- tag(2))"2 +
(lowReader (1, 3) - tag(3))"2);
low d2 = sqgrt((lowReader (2, 1)- tag(l))”2 + (lowReader (2, 2)- tag(2))"2 +
(lowReader (2, 3)- tag(3))"2);
low d3 = sqgrt((lowReader (3, 1)- tag(l))”2 + (lowReader (3, 2)- tag(2))"2 +
(lowReader (3, 3)- tag(3))"2);

%$find distances for tag (0, 0, 0)

high dl = sqgrt((highReader(1l,1)- tag(l))”2 + (highReader(1l, 2)- tag(2))"2 +
(highReader (1, 3)- tag(3))"2);

high d2 = sqgrt((highReader(2,1)- tag(l))”2 + (highReader (2, 2)- tag(2))"2 +
(highReader (2, 3)- tag(3))"2);

high d3 = sqgrt((highReader(3,1)- tag(l))”2 + (highReader(3, 2)- tag(2))"2 +
(highReader (3, 3)- tag(3))"2);

lowDistances = [low dl; low _d2; low d3];
highDistances = [high dl; high d2; high d3];

$height of tag

z = colaHeight (lowReader, highReader, lowDistances, highDistances)
sarray for 2-D trilateration

distances = [0; 0; 0];

99

distances = findDistance (lowReader, highReader, lowDistances, highDistances);

[x, y] = two tri(lowReader(l, 1), lowReader(2, 1), lowReader (3, 1), lowReader(l, 2),
lowReader (2, 2), lowReader (3, 2), distances(l), distances(2), distances(3))

COLA_height.m

function [tagHeight] = colaHeight (lowReader, highReader, lowDistances,
highDistances)

$COLAHEIGHT Find height of tag

% Using supernode distances, use trig to determine height of tag

$heightDifference = difference in height of readers in supernode
%$same for every node
heightDifference = highReader(l, 3) - lowReader(l, 3);

height = [0; 0; 0];

%see cola page 28 to get formula for h
for i = 1:3
height (i) = highReader (i, 3) - ((highDistances(i)”~2 - lowDistances(i)”"2 +
heightDifference”2)/ (2*heightDifference)) ;
end

oo

DID NOT WORK: Mistake in formula derivation. See cola page 28 where
cos (theta is found. multiple each side by d2 to get the height of tag +
height of lower reader node.
for i = 1:3
$numerator and denominator for cosine law

oC o o°

oo

% num = heightDifference”2 + lowDistances(i)”2 - highDistances (i) "2;
% den = 2*lowDistances (i) *heightDifference;

% theta = acos (num/den) ;

% phi = 180 - theta;

% x = cos (phi) * lowDistances (i)

% height (i) = lowReader (i, 3) - x

% end

$set x = 0 for below

x = 0;

$find average height found by the 3 super-nodes for more accurate results
for i = 1:3
x = x + height(i);
end
x = x/3;
tagHeight = x;

MATLAB GUI

function varargout = GUI RFID(varargin)

GUI_RFID MATLAB code for GUI_RFID.fig
GUI RFID, by itself, creates a new GUI RFID or raises the existing
singleton*.

H = GUI RFID returns the handle to a new GUI RFID or the handle to
the existing singleton*.

GUI RFID('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in GUI RFID.M with the given input arguments.

A° 0° o° o o° J° d° d° o° oP

100

o\

GUI RFID('Property', 'Value',...) creates a new GUI RFID or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before GUI RFID OpeningFcn gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to GUI RFID OpeningFcn via varargin.

o 0P d° oP° oe

o\

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° oo

o\°

See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help GUI RFID

o

Last Modified by GUIDE v2.5 19-Sep-2011 15:33:57

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui_ Singleton,
'gui OpeningFcn', QGUI RFID OpeningFcn,
'gui OutputFcn', @GUI_RFID OutputFcn,
'gui LayoutFcn', 1,
'gui Callback', (1

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
guil mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes just before GUI RFID is made visible.
function GUI_RFID OpeningFcn (hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

o\

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

varargin command line arguments to GUI RFID (see VARARGIN)

x=varargin{l}
y=varargin{2}
z=5;

$plot3(x,y,z, 'o', 'MarkerFaceColor', 'm');figure(gcf);

scatter (getcolumn (varargin{3}(1:3,1:2),1),getcolumn (varargin{3}(1:3,1:2),2),
'MarkerEdgeColor', [1 0 0], 'MarkerFaceColor', [1 0 0]);figure(gcf)

set (gca, 'Xcolor', [0 O 01);

set (gca, 'Ycolor', [0 O 0])
axis ([-10 10 -10 10]) %set axis for 2-D graphs
set(gca, 'XTick', -10:1:10);

’

101

set (gca, 'YTick', -10:1:10);
grid on;
hold on;
%set (gca, 'Zcolor', [0 O 0]);

xlabel ('X Axis'"),
ylabel ('Y Axis'),
%zlabel ("Height'),

rectangle('Position', [-1,3,2,2], 'FaceColor', [1,1,0], 'EdgeColor',
[11110]);

circle ([0, 10],varargin{4} (1), 1000,'-");figure(gct)
$http://www.mathworks.com/matlabcentral/fileexchange/2876-draw-a-circle
circle([-10, 0],varargin{4}(2),1000, '-');figure(gcft)
circle([10, 0],varargin{4} (3), 1000, '-');figure(gcft)

scatter(x,y, 'MarkerEdgeColor', [0 O 0], 'MarkerFaceColor', [0 O
0]);figure (gct)

o

axis manual;

axis([-10 10 -10 10 0 10]);
grid on;

rotate3d on;

o° oo

oe

stringx = num2str (x);
stringy = num2str(y);

stringz = num2str(z);

str x = 'X = ';

str y = 'Y = ';

str z = 'Height = ';

output x = strcat(str_x, stringx);
output y = strcat(str_y, stringy);
output z = strcat(str_z, stringz);

set (handles.X plot, 'String', output x);
set (handles.Y plot, 'String', output y);
set (handles.Height plot, 'String', output z);

% Choose default command line output for GUI RFID
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes GUI RFID wait for user response (see UIRESUME)
% uiwait (handles.figurel);

% —--- Outputs from this function are returned to the command line.
function varargout = GUI RFID OutputFcn (hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT) ;
hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

o\

102

% handles structure with handles and user data (see GUIDATA)

[

% Get default command line output from handles structure
varargout{l} = handles.output;

function X plot Callback (hObject, eventdata, handles)

% hObject handle to X plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of X plot as text
% str2double (get (hObject, 'String')) returns contents of X plot as a
double

% —--- Executes during object creation, after setting all properties.
function X plot CreateFcn (hObject, eventdata, handles)

hObject handle to X plot (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oP

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

end

function Y plot Callback(hObject, eventdata, handles)

% hObject handle to Y plot (see GCBO)
$ eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o\°

Hints: get (hObject, 'String') returns contents of Y plot as text
str2double (get (hObject, 'String')) returns contents of Y plot as a

o\°

double

% —--- Executes during object creation, after setting all properties.
function Y plot CreateFcn (hObject, eventdata, handles)

hObject handle to Y plot (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oe

o° oo

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o° oo

end

103

% —--- Executes on button press in Find pushbuttonl.
function Find pushbuttonl Callback (hObject, eventdata, handles)

% hObject handle to Find pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

function Height plot Callback (hObject, eventdata, handles)

% hObject handle to Height plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of Height plot as text
str2double (get (hObject, 'String')) returns contents of Height plot as
double

oe°

]

oe

--- Executes during object creation, after setting all properties.

function Height plot CreateFcn (hObject, eventdata, handles)

% hObject handle to Height plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'"),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, '"BackgroundColor', 'white');
end

o

Matlab Distance Formula

function [distance] = rssiDistance(rssi)
SUNTITLED Summary of this function goes here
Detailed explanation goes here

o

$COLA formula

$P_o = 17; %RSSI at 0 meters

P o = 23;

f = 2400; Sfrequency (2.4 GHz = 2400 MHz)

%n = 3.5; S%Spath-loss exponent

n = 3.3;

f m = 6; %$fade margin

distance = 107 ((P_ o - £ m - rssi - (10*n*loglO(f)) + (30*n) - 32.44)/(10*n));

RFID Matlab Serial Input

$Taking in Serial Data from Arduino
clear all;

Arduino = serial ('COM9'"); %define serial
Arduino.BaudRate = 9600; %baud rate

104

end str = 'END';

header = 'Byte';
footer = 'Footer';
RFID = "';

fopen (Arduino); %opens up serial port for reading

out = instrfind('Port', 'COM9'); %Port and COM3 are the objects

while (1)
try
data = fscanf (Arduino, '$s'); %takes in data as a string and returns it to data
if (strcmp(data, footer)) %if Serial takes in the string "End" close the serial
port and exit loop
fclose (Arduino) ;
delete (Arduino) ;
break; %$terminate loop

else
if (strcmp (data, header))
data3 = fscanf (Arduino, '%s');
RFID = strcat (RFID, data3);
end
end

catch exception
fclose (Arduino) ;
delete (Arduino) ;
break;
end
end

105

Appendix C: Arduino Code

Printing RFID to Screen
//#include <NewSoftSerial.h>

int resetPin = 13;

const int serln = 2;

const int serOut = 3;
//NewSoftSerial port(serin, serOut);
char incomingByte;

void setup()
{
Serial.begin(9600);
pinMode(resetPin, OUTPUT);
digitalWrite(resetPin, HIGH);
//port.begin(9600);
Serial.printIn("Bring RFID card to reader");
}

void loop()
{
boolean reading = false;
incomingByte= 0;
if (Serial.available())
{
incomingByte = Serial.read();
if(incomingByte == 2)
{
Serial.printIn("STX");
}
if(incomingByte == 3)
{
Serial.printin("ETX");
}
else
{
Serial.print(incomingByte, BYTE);
}
}

}

void resetReader()

{
digitalWrite(resetPin, LOW);
delay(150);
digitalWrite(resetPin, HIGH);

}

Sending RFID to Matlab
//#include <NewSoftSerial.h>

int resetPin = 13;
const int serin = 2;
const int serOut = 3;

106

//NewsSoftSerial port(serin, serOut);
char incomingByte;

void setup()
{
Serial.begin(9600);
pinMode(resetPin, OUTPUT);
digitalWrite(resetPin, HIGH);
//port.begin(9600);
Serial.printIn("Bring RFID card to reader");
}

void loop()
{

boolean reading = false;

incomingByte= 0;

if (Serial.available())

{
incomingByte = Serial.read();
if(incomingByte == 2)
{

Serial.printin("Header");
1
if(incomingByte == 3)
{
Serial.printin("Footer");

1
else
{
Serial.print(incomingByte, BYTE);
Serial.print(incomingByte);
h

1

}

void resetReader()

{
digitalWrite(resetPin, LOW);
delay(150);
digitalWrite(resetPin, HIGH);

}

AT Command

String xb1_DH="ATDHO013A200\r";

String xb1_DL= "ATDL40715D91\r";

String xb2_DH="ATDHO0013A200\r";

String xb2_DL="ATDL40715D34\r";

String api = "ATAPO\r"; //sets APl mode to 1
boolean configured = false;

boolean configureRadio() {
Serial.print("+++");

String ok_response = "OK\r";
String addressLow = String("");
String addressHigh = String("");

107

String response = String("");

while (response.length() < ok_response.length())

{
if(Serial.available() > 0)

{
response += (char) Serial.read();
}
}

if (response.equals(ok_response))
{
Serial.print("ATSH\r");
delay(200);
while(Serial.available() > 0)
{
addressHigh += (char) Serial.read();
}
Serial.print("ATSL\r");
delay(200);
while(Serial.available() > 0)
{
addressLow += (char) Serial.read();
}
Serial.print(xb1_DH);
delay(10);
Serial.print(xb1l_DL);
delay(10);
Serial.print(api);
delay(10);

Serial.flush(); //flushes the reponses from changing addresses

Serial.print("ATDH\r");

delay(20); //minimum delay for waiting for 8 bytes

while(Serial.available() > 0)

{
addressHigh += (char) Serial.read();

h
Serial.print("ATDL\r");

delay(20); //minimum delay for waiting for 8 bytes

while(Serial.available() > 0)
{
addressLow += (char) Serial.read();
}
Serial.print("ATWR\r");
delay(10);
Serial.print("ATCN\r");
Serial.printin("");
Serial.print("Coordinator = ");
Serial.printin(addressHigh);
Serial.print("Address low =");
Serial.printin(addressLow);
Serial.printIn(response);
return true;
}
else {
return false;
}
}

108

void setup()

{
Serial.begin(9600);
configured = configureRadio(); //AT commands

}

void loop()

{
if(configured) {
Serial.print("Hello!");
delay(3000);

}

else {
delay(30000);
configureRadio();
}
}

Series 1 API Sender Test Code

#include <XBee.h>
XBee xbee = XBee();

unsigned long start = millis();

// allocate two bytes for to hold a 10-bit analog reading

uint8_t payload[] ={0,0};

// with Series 1 you can use either 16-bit or 64-bit addressing

// 16-bit addressing: Enter address of remote XBee, typically the coordinator
//Tx16Request tx = Tx16Request(0x1874, payload, sizeof(payload));

// 64-bit addressing: This is the SH + SL address of remote XBee

XBeeAddress64 addr64 = XBeeAddress64(0x0013a200, 0x4008b490);

// unless you have MY on the receiving radio set to FFFF, this will be received as a RX16 packet
Tx64Request tx = Tx64Request(addr64, payload, sizeof(payload));

TxStatusResponse txStatus = TxStatusResponse();
int pin5 =0;

int statusLed = 11;
int errorLed = 12;

void flashLed(int pin, int times, int wait) {

for (inti=0;i<times; i++) {
digitalWrite(pin, HIGH);
delay(wait);
digitalWrite(pin, LOW);

if (i + 1 < times) {
delay(wait);
}
}
}

109

void setup() {
pinMode(statusLed, OUTPUT);
pinMode(errorLed, OUTPUT);

xbee.begin(9600);
}

void loop() {
// start transmitting after a startup delay. Note: this will rollover to 0 eventually so not best way to handle
xbee.send(tx);

// flash TX indicator
flashLed(statusLed, 1, 100);
}

// after sending a tx request, we expect a status response
// wait up to 5 seconds for the status response
if (xbee.readPacket(5000)) {

// got a response!

// should be a znet tx status
if (xbee.getResponse().getApild() == TX_STATUS_RESPONSE) {
xbee.getResponse().getZBTxStatusResponse(txStatus);

// get the delivery status, the fifth byte
if (txStatus.getStatus() == SUCCESS) {
// success. time to celebrate
flashLed(statusLed, 5, 50);
}else {
// the remote XBee did not receive our packet. is it powered on?
flashLed(errorlLed, 3, 500);
}
}
}else {
// local XBee did not provide a timely TX Status Response -- should not happen
flashLed(errorLed, 2, 50);
}

delay(1000);
}

Series 1 API Receiver Test Code

#include <XBee.h>

XBee xbee = XBee();

XBeeResponse response = XBeeResponse();

// create reusable response objects for responses we expect to handle
Rx16Response rx16 = Rx16Response();

Rx64Response rx64 = Rx64Response();

int statusLed = 11;
int errorLed = 12;
int datalLed = 10;

110

uint8_t option =0;
uint8_t data=0;

void flashLed(int pin, int times, int wait) {

for (inti=0;i<times; i++) {
digitalWrite(pin, HIGH);
delay(wait);
digitalWrite(pin, LOW);

if (i + 1 < times) {
delay(wait);
}
}
}

void setup() {
pinMode(statusLed, OUTPUT);
pinMode(errorLed, OUTPUT);
pinMode(dataLed, OUTPUT);

// start serial
xbee.begin(9600);

flashLed(statusLed, 3, 50);
}

// continuously reads packets, looking for RX16 or RX64
void loop() {

xbee.readPacket();

if (xbee.getResponse().isAvailable()) {
// got something

if (xbee.getResponse().getApild() == RX_16_RESPONSE | | xbee.getResponse().getApild() == RX_64_RESPONSE) {
// got a rx packet

if (xbee.getResponse().getApild() == RX_16_RESPONSE) {
xbee.getResponse().getRx16Response(rx16);
option = rx16.getOption();
data = rx16.getData(0);
}else {
xbee.getResponse().getRx64Response(rx64);
option = rx64.getOption();
data = rx64.getData(0);
}

// TODO check option, rssi bytes
flashLed(statusLed, 1, 10);

// set dataLed PWM to value of the first byte in the data
analogWrite(dataled, data);
}else {
// not something we were expecting
flashLed(errorLed, 1, 25);
}
}

111

Location System Tag Final Code

#include <XBee.h>
XBee xbee = XBee();

uint8_t payload[] = {102, 0, 2, 66, 47};
unsigned long start = millis();

boolean started;

XBeeAddress64 tag = XBeeAddress64(0x0013A200, 0x407BABCO); //Arduino 2009
XBeeAddress64 readerl = XBeeAddress64(0x0013A200, 0x40715D34); //Arduino UNO

XBeeAddress64 reader2 = XBeeAddress64(0x0013A200, 0x4077939A);
XBeeAddress64 reader3 = XBeeAddress64(0x0013A200, 0x407BACD9);

TxStatusResponse txStatus = TxStatusResponse();

//DMTxRequest rd1 = DMTxRequest(readerl, payload, sizeof(payload));
//DMTxRequest rd2 = DMTxRequest(reader2, payload, sizeof(payload));
//DMTxRequest rd3 = DMTxRequest(reader3, payload, sizeof(payload));

//Tx64Request rd1 = Tx64Request(readerl, payload, sizeof(payload));
//Tx64Request rd2 = Tx64Request(reader2, payload, sizeof(payload));
//Tx64Request rd3 = Tx64Request(reader3, payload, sizeof(payload));
Tx16Request rd1 = Tx16Request(0x0001, payload, sizeof(payload));
Tx16Request rd2 = Tx16Request(0x0002, payload, sizeof(payload));
Tx16Request rd3 = Tx16Request(0x0003, payload, sizeof(payload));

Rx16Response rx16 = Rx16Response();
uintl6_t received_16 =0;
int count =0;

void setup() {
Serial.begin(9600);
xbee.begin(9600);
delay(5000);

}

void loop() {
xbee.readPacket();

if (xbee.getResponse().isAvailable())

{
if (xbee.getResponse().getApild() == RX_16_RESPONSE)
{
xbee.getResponse().getRx16Response(rx16);
received_16 = rx16.getRemoteAddress16();
if(received_16 == 2)

{
for(intj=0;j<9;j++)
{

if (count == 0)

{

for(inti=0;i<=49;i++)

112

{
xbee.send(rd1);
if (xbee.readPacket(5000))
{
Serial.printin("Readerl");
}
delay(8);
}
count++;
}
else if (count == 1) {
for(inti=0;i<=49;i++)
{
xbee.send(rd2);
if (xbee.readPacket(5000))
{
Serial.printIn("Reader2");
}
delay(8);
}
count++;
}
else
{
for(inti=0;i<=49;i++)
{
xbee.send(rd3);
if (xbee.readPacket(5000))
{
Serial.printIn("Reader3");
}
delay(8);
}
count =0;

}

// if (xbee.readPacket(5000))
/1
// if (xbee.getResponse().getApild() == TX_STATUS_RESPONSE) //
/1A
// xbee.getResponse().getZBTxStatusResponse(txStatus); //get acknowledge response
// if (txStatus.getStatus() == SUCCESS) { //txResponse received
// // Serial.printin("Acknowledge packet received");
// lelse{
// Serial.printIn("Acknowledge packet NOT received");
/l}
/1)
// }Yelse{
// Serial.printIn("Acknowledge packet did not get here in 5 seconds");
//'}

delay(1000);

}
}
}

}

}

113

Location System Reader Final Code

#include <XBee.h>
#include <NewSoftSerial.h>

XBee xbee = XBee(); //make instance of xbee

NewsSoftSerial nss(2,3);
uint8_t rssi[149];

uint8_t payload(] = {0};

XBeeAddress64 tag = XBeeAddress64(0x0013A200, 0x407BABCO);
XBeeAddress64 readerl = XBeeAddress64(0x0013A200, 0x40715D34);
XBeeAddress64 reader2 = XBeeAddress64(0x0013A200, 0x4077939A);
XBeeAddress64 reader3 = XBeeAddress64(0x0013A200, 0x407BACD9);
XBeeAddress64 received;

XBeeResponse response = XBeeResponse();

uint16_t received_16;

//DMTxRequest coord = DMTxRequest(reader2, payload, sizeof(payload));
//Tx64Request coord = Tx64Request(reader2, payload, sizeof(payload));
//DMTxRequest respond = DMTxRequest(tag, payload, sizeof(payload));

//Tx64Request respond = Tx64Request(tag, payload, sizeof(payload));
Tx16Request coord = Tx16Request(0x0002, payload, sizeof(payload));

Rx16Response rx16 = Rx16Response();
Rx64Response rx64 = Rx64Response();

DMRxResponse rxDM = DMRxResponse();
int count;

uint8_t dbCmd[] = {'D', 'B'};

AtCommandRequest atRequest = AtCommandRequest(dbCmd);
AtCommandResponse atResponse = AtCommandResponse();
int incomingByte;

uint8_t option =0;

uint8_t data =0;

uint8_t length = 0;

void setup()

{
xbee.begin(9600);
//Serial.begin(9600);
delay(5000);
nss.begin(9600);
count =0;

}

void loop()

{

xbee.readPacket();

if (xbee.getResponse().isAvailable()) { //received packet

114

if (xbee.getResponse().getApild() == RX_16_RESPONSE || xbee.getResponse().getApild() == RX_64_RESPONSE | |

xbee.getResponse().getApild() == RX_RESPONSE) {

if (xbee.getResponse().getApild() == RX_16_RESPONSE) {
xbee.getResponse().getRx16Response(rx16);
received_16 = rx16.getRemoteAddress16();
//data = rx16.getApild();
data = rx16.getData(0);
Serial.printIn("16 Response");
if(received_16 > 6)
{
rssi[count] = rx16.getRssi();
delay(7);
Serial.print("RSSI =");
Serial.printin(rssi[count], HEX);
count++;
Serial.print("COUNT =");
Serial.printin(count);

1

if(received_16 == 2)

{
Serial.printIn("RESET");
count =0;

1

} else if (xbee.getResponse().getApild() == RX_64_RESPONSE) {
Serial.printin("64 Response");
xbee.getResponse().getRx64Response(rx64);
received = rx64.getRemoteAddress64();

if(received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())

{
rssi[count] = rx64.getRssi();
count++;
delay(7);
Serial.print("COUNT =");
Serial.printin(count);

}

} else if (xbee.getResponse().getApild() == RX_RESPONSE) {

xbee.getResponse().getDMRxResponse(rxDM);

for(inti=0; i < rxDM.getDatalLength(); i++)

{

data = rxDM.getDatal(i);

Serial.print("Data =");

Serial.printin(data, DEC);

}
received = rxDM.getRemoteAddress64();
if(received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())
{

rssi[count] = sendAtCommand();

count++;

delay(7);

Serial.printIn("COUNT =");

Serial.printin(count);

//get DB and send to coord

115

if(count == 149)

{
payload[0] = gaussian(rssi);
Serial.print("Gaussian Avg =");
Serial.print(payload[0], DEC);
xbee.send(coord);
count =0;

}

}

byte sendAtCommand() {
xbee.send(atRequest);

//wait for response packet
if(xbee.readPacket(5000)) {

if(xbee.getResponse().getApild() == AT_COMMAND_RESPONSE) {
xbee.getResponse().getAtCommandResponse(atResponse);

if (atResponse.isOk()) {
Serial.print("Command [");
Serial.print(atResponse.getCommand()[0]);
Serial.print(atResponse.getCommand()[1]);
Serial.printIn("] was successfull");

if (atResponse.getValuelLength() > 0) {
Serial.print("Command value length is ");
Serial.printin(atResponse.getValueLength(), DEC);

Serial.print("Command value: ");

for (inti=0; i < atResponse.getValueLength(); i++) {
Serial.printin(atResponse.getValue()[i], DEC);
return atResponse.getValue()[i];
}
Serial.printin("");
}
}
else {
Serial.print("Command return error code: ");
Serial.printin(atResponse.getStatus(), HEX);
}
}else {
Serial.print("Expected AT response but got ");
Serial.print(xbee.getResponse().getApild(), HEX);
}
}else {
if (xbee.getResponse().isError()) {
Serial.print("Error reading packet. Error code: ");
Serial.println(xbee.getResponse().getErrorCode());
}else {
Serial.printIn("No Response from radio");
}
}
}

uint8_t gaussian(uint8_t rssi[l)

{

116

double rssi_sum = 0; //summation
for(inti=0;i<=149; i++)
{

rssi_sum +=rssilil;

}

int rssi_avg = rssi_sum / 150; //find mean of all 50 values
return rssi_avg;

Location System Coordinator Final Code

#include <XBee.h>
#include <NewSoftSerial.h>

XBee xbee = XBee(); //make instance of xbee
NewSoftSerial nss(6,7); // (RX, TX)

uint8_t payload(] = {0};

XBeeAddress64 tag = XBeeAddress64(0x0013A200, 0x40715D91);
XBeeAddress64 readerl = XBeeAddress64(0x0013A200, 0x40715D34);
XBeeAddress64 reader2 = XBeeAddress64(0x0013A200, 0x4077939A);
XBeeAddress64 reader3 = XBeeAddress64(0x0013A200, 0x407793A7);
XBeeAddress64 received;

XBeeResponse response = XBeeResponse();

Tx16Request tagl = Tx16Request(0x007, payload, sizeof(payload));

Tx16Request reset_rl = Tx16Request(0x0001, payload, sizeof(payload));
Tx16Request reset_r3 = Tx16Request(0x0003, payload, sizeof(payload));

DMTxRequest respond = DMTxRequest(tag, payload, sizeof(payload));

Rx16Response rx16 = Rx16Response();
Rx64Response rx64 = Rx64Response();

DMRxResponse rxDM = DMRxResponse();

uint8_t dbCmd[] = {'D', 'B'};

int count;

uint8_t rssi[149];

AtCommandRequest atRequest = AtCommandRequest(dbCmd);
AtCommandResponse atResponse = AtCommandResponse();
int incomingByte;

uint8_t option =0;

uint8_t data =0;

uint8_t length = 0;

uint1l6_t received_16 = 0;

void setup()

{
xbee.begin(9600);

117

//Serial.begin(9600);
xbee.send(reset_r1);
xbee.send(reset_r3);
delay(5000);
xbee.send(tagl);
nss.begin(9600);
count =0;

}

void loop()
{

xbee.readPacket();

if (xbee.getResponse().isAvailable()) { //received packet
if (xbee.getResponse().getApild() == RX_16_RESPONSE || xbee.getResponse().getApild() == RX_64_RESPONSE | |
xbee.getResponse().getApild() == RX_RESPONSE) {
if (xbee.getResponse().getApild() == RX_16_RESPONSE) {
xbee.getResponse().getRx16Response(rx16);
received_16 = rx16.getRemoteAddress16();
if (received_16 > 6)
{
rssi[count] = rx16.getRssi();
count++;
delay(7);
Serial.print("COUNT =");
Serial.printin(count);
}
else if(received_16 ==1)
{
nss.print(1, HEX);
nss.print(rx16.getData(0), HEX);
Serial.printin("READER1");
}
else if(received_16 == 3)
{
nss.print(3, HEX);
nss.print(rx16.getData(0), HEX);
Serial.printin("READER3");
}

Serial.printIn("16 Response");
} else if (xbee.getResponse().getApild() == RX_64_RESPONSE) {
xbee.getResponse().getRx64Response(rx64);
received = rxDM.getRemoteAddress64();
if (received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())
{
rssi[count] = rx64.getRssi();
count++;
delay(7);
Serial.print("COUNT =");
Serial.printin(count);
}
else if(received.getMsb() == readerl.getMsb() && received.getlLsb() == readerl.getLsb())
{
nss.print(1, HEX);
nss.print(rxDM.getData(0), HEX);
Serial.printin("READER1");
}

118

else if(received.getMsb() == reader3.getMsb() && received.getLsb() == reader3.getLsb())

{
nss.print(3, HEX);
nss.print(rxDM.getData(0), HEX);
Serial.printin("READER3");

}

Serial.printIn("64 Response");

} else if (xbee.getResponse().getApild() == RX_RESPONSE) {
xbee.getResponse().getDMRxResponse(rxDM);
received = rxDM.getRemoteAddress64();

if (received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())

{

rssi[count] = sendAtCommand();
count++;

delay(7);

xbee.send(respond);
Serial.print("COUNT =");
Serial.printin(count);

}

else if(received.getMsb() == readerl.getMsb() && received.getlLsb() == readerl.getLsb())

{
nss.print(1, HEX);
nss.print(rxDM.getData(0), HEX);
Serial.printin("READER1");

}

else if(received.getMsb() == reader3.getMsb() && received.getlLsb() == reader3.getLsb())

{
nss.print(3, HEX);
nss.print(rxDM.getData(0), HEX);
Serial.printIn("READER3");

}
}
}
}
if(count == 149)
{
payload[0] = gaussian(rssi);
nss.print(2, HEX);
nss.print(payload[0], HEX);
Serial.print("Gaussian Avg = ");
Serial.printin(payload[0], HEX);
count =0;
Serial.flush();
}
}

byte sendAtCommand() {
xbee.send(atRequest);

//wait for response packet
if(xbee.readPacket(5000)) {
if(xbee.getResponse().getApild() == AT_COMMAND_RESPONSE) {
xbee.getResponse().getAtCommandResponse(atResponse);

if (atResponse.isOk()) {
Serial.print("Command [");
Serial.print(atResponse.getCommand()[0]);
Serial.print(atResponse.getCommand()[1]);

119

Serial.printIn("] was successfull");

if (atResponse.getValuelLength() > 0) {
Serial.print("Command value length is ");
Serial.printin(atResponse.getValueLength(), DEC);

Serial.print("Command value: ");

for (inti = 0; i < atResponse.getValueLength(); i++) {
Serial.print(atResponse.getValue()[i], DEC);
return atResponse.getValue()[i];

}
Serial.printin("");
}
}
else {
Serial.print("Command return error code: ");
Serial.printin(atResponse.getStatus(), HEX);
}
}else {
Serial.print("Expected AT response but got ");
Serial.print(xbee.getResponse().getApild(), HEX);
}
}else {
if (xbee.getResponse().isError()) {
Serial.print("Error reading packet. Error code: ");
Serial.printin(xbee.getResponse().getErrorCode());
}else {
Serial.printIn("No Response from radio");
}
}
}

uint8_t gaussian(uint8_t rssi[])
{
double rssi_sum = 0; //summation
for(inti=0;i<=149; i++)
{
rssi_sum +=rssilil;

}

int rssi_avg = rssi_sum / 150; //find mean of all 50 values
return rssi_avg;

Location System Arduino Mega Final Code
uint8_t incomingbyte = 0;

uint8_t incomingbyte2 = 0;

uint8_t incomingbyte3 = 0;

int incomingByte;

int rssi;

char tag1[13] = "4500BE9285EC";

boolean reading = false;

int index;

char tagString[13];

120

char tagString1[13];
void setup()
{
Serial3.begin(9600);
Serial.begin(9600);
Seriall.begin(9600);
pinMode(3, OUTPUT); //power for RFID reader
digitalWrite(3, HIGH);
rssi=0;
index = 0;

}

void loop()

{
incomingbyte = 0;
incomingbyte2 = 0;
incomingbyte3 = 0;
incomingByte = 0;

if(Seriall.available())
{
incomingByte = Seriall.read();
if(incomingByte == 2)
{
reading = true;
Serial.printin("Header");
1
if(incomingByte == 3)
{
reading = false;
for(inti=0;i<12; i++)
{
tagStringl[i] = tagString[i+1];
Serial.printIn("Byte");
Serial.printIn(tagString1[i]);
}
Serial.printin("Footer");
1
else if (reading && incomingByte != 10 && incomingByte != 13)
{
tagString[index] = incomingByte;
index++;
}
}

if(Serial3.available())
{
incomingbyte = Serial3.read();
if (incomingbyte < 58)
{
incomingbyte = incomingbyte - 48;
}

else

{

incomingbyte = incomingbyte - 55;
}
switch (incomingbyte)

{

121

case 1:
Serial.printin("READER1");
incomingbyte2 = Serial3.read();
if (incomingbyte2 < 58)

{
incomingbyte2 = incomingbyte?2 - 48;
}
else
{

incomingbyte2 = incomingbyte2 - 55;
}

incomingbyte3 = Serial3.read();
if (incomingbyte3 < 58)

{
incomingbyte3 = incomingbyte3 - 48;
}
else
{

incomingbyte3 = incomingbyte3 - 55;
}

rssi = (incomingbyte2 << 4) | incomingbyte3;
Serial.printin(rssi);

rssi=0;

break;

case 2:
Serial.printin("READER2");
incomingbyte2 = Serial3.read();
if (incomingbyte2 < 58)
{
incomingbyte2 = incomingbyte?2 - 48;
}
else
{
incomingbyte2 = incomingbyte2 - 55;
}
incomingbyte3 = Serial3.read();
if (incomingbyte3 < 58)
{
incomingbyte3 = incomingbyte3 - 48;
}
else
{
incomingbyte3 = incomingbyte3 - 55;
}
rssi = (incomingbyte2 << 4) | incomingbyte3;
Serial.printin(rssi);
rssi = 0;
break;

case 3:

Serial.printin("READER3");
incomingbyte2 = Serial3.read();

if (incomingbyte2 < 58)

{

incomingbyte2 = incomingbyte?2 - 48;
}

else

122

{
incomingbyte2 = incomingbyte2 - 55;
}
incomingbyte3 = Serial3.read();
if (incomingbyte3 < 58)
{
incomingbyte3 = incomingbyte3 - 48;
}
else
{
incomingbyte3 = incomingbyte3 - 55;
}
rssi = (incomingbyte2 << 4) | incomingbyte3;
Serial.printIn(rssi);
rssi=0;
break;

default:
break;
}
}
}
boolean checkTag(char tag[], char tagString[])
{
for(inti=0;i<12; i++)
{
if(tag[i] != tagString[i])
{
Serial.print("i ="
Serial.printin(i);
return false;
}
}
return true;

}

123

Appendix D: XBee API Library
Code that was added into the XBee-API Library (Section 8.4.2) to support Digimesh data frames for
transmitting and receiving.

Header File

class DMTxRequest : public PayloadRequest {
public:

/*

Creates tx request with choice of optioon and not the default framelD

*/

DMTxRequest(XBeeAddress64 &addré4, uint8_t option, uint8_t *payload, uint8_t payloadLength, uint8_t frameld,
uint8_t radius);

/*

Creates tx request with default (ack enabled) ptioon and the default framelD

*/

DMTxRequest(XBeeAddress64 &addr64, uint8_t *payload, uint8_t payloadLength);

DMTxRequest();

XBeeAddress64& getAddress64();

void setAddress64(XBeeAddress64& addr64);
uint8_t getOption();

void setRadius(uint8_t radius);

uint8_t getRadius();

void setOption(uint8_t option);

uint8_t getFrameData(uint8_t pos);

uint8_t getFrameDatalLength();

private:
XBeeAddress64 _addr64;
uint8_t _option;
uint8_t _radius;
2
class DMRxResponse : public RxResponse {
public:
DMRxResponse();
uint8_t getRssiOffset();
XBeeAddress64& getRemoteAddress64();
private:
XBeeAddress64 _remoteAddress;
|7
.CPP File

//Digimesh TX request with input of option/framelD/radius
DMTxRequest::DMTxRequest(XBeeAddress64 &addr64, uint8_t option, uint8_t *data, uint8_t dataLength, uint8_t frameld,
uint8_t radius) : PayloadRequest(TX_REQUEST, frameld, data, dataLength, radius)

{
_addr64 = addré4;
_option = option;
_radius = radius;

}

//default option/framelD/radius for DM_TXrequest

124

DMTxRequest::DMTxRequest(XBeeAddress64 &addr64, uint8_t *data, uint8_t datalLength) : PayloadRequest(TX_REQUEST,

DEFAULT_FRAME_ID, data, dataLength, RADIUS)
{

_addr64 = addr64;

_option = ACK_OPTION;

_radius = RADIUS;
}

//default constructor

DMTxRequest::DMTxRequest() : PayloadRequest(TX_REQUEST, DEFAULT_FRAME_ID, NULL, 0) {

}

//outputs correct frame for TX request
uint8_t DMTxRequest::getFrameData(uint8_t pos) {

if (pos ==0) {

return (_addré4.getMsb() >> 24) & Oxff;
}else if (pos == 1) {

return (_addr64.getMsb() >> 16) & Oxff;
} else if (pos == 2) {

return (_addr64.getMsb() >> 8) & Oxff;
}else if (pos == 3) {

return _addré4.getMsb() & Oxff;
} else if (pos == 4) {

return (_addr64.getLsb() >> 24) & Oxff;
}else if (pos ==5) {

return (_addr64.getLsb() >> 16) & Oxff;
} else if (pos == 6) {

return (_addr64.getLsb() >> 8) & Oxff;
}else if (pos == 7) {

return _addré4.getLsb() & Oxff;
}else if (pos == 8) {

return RESERVED_1;
}else if (pos ==9) {

return RESERVED_2;
} else if (pos == 10) {

return _radius;
}else if (pos == 11) {

return _option;
}else {

return getPayload()[pos - TX_API_LENGTH];
}

}
XBeeAddress64& DMTxRequest::getAddress64() {

return _addr64;
}

void DMTxRequest::setAddress64(XBeeAddress64& addr64) {
_addr64 = addr64;
}

uint8_t DMTxRequest::getOption() {
return _option;

}

void DMTxRequest::setRadius(uint8_t radius) {
_radius = radius;

}

125

uint8_t DMTxRequest::getRadius() {
return _radius;

}

void DMTxRequest::setOption(uint8_t option) {
_option = option;

}

uint8_t DMTxRequest::getFrameDatalength() {
return TX_API_LENGTH + getPayloadLength();
}

//constructor

DMRxResponse::DMRxResponse() : RxResponse() {
_remoteAddress = XBeeAddress64();

}

XBeeAddress64& DMRxResponse::getRemoteAddress64() {
return _remoteAddress;

}

uint8_t DMRxResponse::getRssiOffset() {
return DM_RSSI_OFFSET;
}

//framedata starts at 1 to account for frame id coming after api id
void XBeeResponse::getDMRxResponse(XBeeResponse &dmRxResponse) {
DMRxResponse* dmRx = static_cast<DMRxResponse*>(&dmRxResponse);

dmRx->setFrameData(getFrameData());
setCommon(dmRxResponse);

dmRx->getRemoteAddress64().setMsb((uint32_t(getFrameData()[1]) << 24) + (uint32_t(getFrameData()[2]) << 16) +
(uint16_t(getFrameData()[3]) << 8) + getFrameData()[4]);

dmRx->getRemoteAddress64().setLsb((uint32_t(getFrameData()[5]) << 24) + (uint32_t(getFrameData()[6]) << 16) +
(uint16_t(getFrameData()[7]) << 8) + getFrameData()[8]);
}

126

