

Indoor Positioning System
EE 4820

11/29/2011

Robert Jarvis

Arthur Mason

Kevin Thornhill

Bobby Zhang

Mentor:

Dr. Kemin Zhou

1

Contents
1 Introduction ... 6

2 Hardware.. 7

2.1 Xbee Specifications: ... 7

2.2 Arduino Specifications ... 8

2.2.1 Arduino Uno ... 8

2.2.2 Arduino Fio ... 9

2.2.3 Arduino Mega .. 9

2.3 XBee Shield... 10

3. Trilateration .. 11

3.1 Introduction to Trilateration .. 11

3.2 Trilateration in 2D .. 11

3.3 Trilateration in 3D .. 13

3.4 Matlab code for Trilateration in 2D and 3D ... 15

3.5 COLA (Complexity Reduced 3D Trilateration Localization Approach): 16

3.6 Matlab Code for COLA ... 18

3.7 Trilateration Simulation Results ... 18

3.7.1 Simulation for 2D Trilateration .. 18

3.7.2 Simulation for 3D Trilateration .. 19

3.7.3 Simulation for COLA ... 19

3.8 Reader Stands for Trilateration.. 20

3.9 Trilateration Conclusion ... 21

4 RFID Detection Device .. 21

4.1 Introduction to the RFID Detection Device .. 21

4.2 RF Card 12 Digit Unique ID ... 21

4.3 Testing/Results for Finding 12 Digit Unique ID .. 22

4.5 Sending 12 Digit Unique ID to Host Computer .. 23

4.6 Detection Device Conclusion ... 24

5 Batteries ... 25

5.1 Technical Specifications of batteries ... 25

5.2 Battery Connectors .. 26

5.3 Battery Testing ... 26

2

5.4 Battery Safety... 27

5.5 Battery Life ... 27

5.6 Battery Storage .. 29

5.7 Lithium-ion Polymer Recharging .. 29

5.8 Results .. 30

6 Power Supplies ... 30

7 Battery Power Indicator ... 31

7.1 Battery Power Indicator Revision 1 ... 31

7.2 Results .. 32

7.3 Batter Power Indicator Revision 2 ... 33

7.4 Battery Power Indicator Testing .. 33

7.5 Results .. 34

8 XBee Programming .. 34

8.1 Introduction to XBee Programming ... 34

8.2 Testing and Verification of XBees .. 34

8.2.1 Results .. 34

8.3 AT Command Programming ... 34

8.3.1 AT Command Test .. 35

8.3.2 Results .. 36

8.4 API Programming ... 36

8.4.1 API Data Frames ... 36

8.4.1.1 AT Command ... 36

8.4.1.2 AT Command Response ... 37

8.4.1.3 Transmit Request ... 37

8.4.1.4 Receive Packet ... 38

8.4.2 Arduino-XBee API Library ... 38

8.4.2.1 API Library Test .. 38

8.4.2.2 Results .. 38

8.4.3 API Library Programming ... 39

8.4.3.1 Series 1 vs Digimesh Data Frames ... 39

8.4.3.2 API Library Test 2 ... 40

8.4.3.3 Results .. 40

3

9 Tag/Reader Distance Tests ... 40

9.1 Tag/Reader Testing Introduction ... 40

9.1.1 Distance Formula ... 40

9.2 Test 1 .. 40

9.2.1 Results .. 41

9.3 Second Distance Test ... 41

9.3.1 Results .. 42

9.4 Third Distance Test .. 42

9.4.1 Results .. 43

9.5 Conclusion .. 43

10 Antenna Comparisons .. 43

10.1 XBee Antennas ... 44

10.2 Titanis Antennas .. 45

10.3 Results .. 46

11 Distance Tests with New Antennas .. 47

11.1 Test 1 ... 47

11.1.1 Results .. 47

11.2 Test 2 ... 47

11.2.1 Results .. 48

11.3 Conclusion ... 48

12 2-D Trilateration Location Tests ... 48

12.1 Test 1 .. 48

12.1.1 Results .. 48

12.2 Test 2 .. 48

12.2.1 Results .. 49

12.3 Test 3 .. 50

12.3.1 Results .. 50

12.4 Test 4 .. 50

12.4.1 Results .. 51

12.5 Test 5 .. 52

12.5.1 Results .. 52

12.6 Indoor Test 1 .. 53

4

12.6.1 Results .. 53

13 Graphical User interface .. 54

13.1 Introduction to GUI .. 54

13.2 GUI layout .. 54

13.2.1 Layout design ... 54

13.2.2 Information layout ... 55

13.2.3 Results .. 55

13.3 GUI Built in Functions .. 55

13.3.1 Opening function ... 55

13.3.2 Additional Built-in Functions.. 56

13.4 Implementation into Location System ... 56

14 Conclusion .. 58

15 Budget .. 59

16 References: .. 60

Appendix A: Datasheets .. 61

Titanis Antenna .. 61

Lithium Ion Battery .. 68

ID-12 RFID Detection Device .. 74

Maxim 8212 ... 81

XBee Antenna .. 89

Appendix B: Matlab Code .. 96

two_tri.m ... 96

Test2D.m .. 96

three_tri.m ... 97

Test3D.m .. 98

COLA.m .. 99

COLA_height.m .. 100

MATLAB GUI ... 100

Matlab Distance Formula ... 104

RFID Matlab Serial Input .. 104

Appendix C: Arduino Code .. 106

Printing RFID to Screen .. 106

5

Sending RFID to Matlab ... 106

AT Command .. 107

Series 1 API Sender Test Code ... 109

Series 1 API Receiver Test Code ... 110

Location System Tag Final Code ... 112

Location System Reader Final Code ... 114

Location System Coordinator Final Code ... 117

Location System Arduino Mega Final Code ... 120

Appendix D: XBee API Library ... 124

Header File ... 124

.CPP File .. 124

6

1 Introduction

Wireless technology is used in our everyday lives. It can be used for tracking objects within an enclosed

area. A popular wireless technology is RFID, which uses radio waves to exchange data between readers

and electronic tags that are attached to any object. Xbee is another wireless technology that uses radio

frequencies to transfer serial data. Most RF tracking systems only track whether the tagged object is in

a specific area, for this project the RF system will locate the exact position of a tagged object indoors.

Making a system convenient, easy to use and accurate are the general requirements. The device

components, such as the readers and the electronic tags are small, which makes the system convenient.

User friendliness will come from the RFID detection device, which will allow the user to scan a card to

find the object they are looking for. Detecting the tag within 1 meter of the actual location is the

accuracy is expected the indoor positioning system produce.

The Technical requirements consist of power, tracking, and time. The expected life time of the will be at

least one year off battery power. The system should also be able to hold and track at least 10 tags. The

last technical requirement is the system will provide real-time direction and distance to the user. The

marketing requirements consist of an estimated cost of $1000, which includes four readers and two

tags.

The final design review shows the progress of our work through the past year. Xbees and Arduinos are

integrated together using trilateration shows how the system will find the location of the object. This

review will also show how the RFID detection device is integrated into the system. Next, the battery

power indicator is created to make the power last at least a year for each tag. The graphical user

interface is also implemented into the system to show the user where the object is located. Tests and

results for each of the systems are explained in detail through this review.

7

2 Hardware

2.1 Xbee Specifications:
The Xbee, or Zigbee, RF module is an embedded solution that provides wireless connectivity between

devices. The modules use the Digimesh networking protocol for peer to peer networking using 2.4GHz

or 900Mhz frequency bands. The Xbee is connected to an Arduino (ATmega microcontroller) that

contains the programming on non-volatile memory. An Xbee mesh network can transfer data at a rate

of 250kb/s at a range of up to 100 feet indoors. The Xbee module also has lower power consumption

than the competing peer-to-peer communication technologies, such as Bluetooth and Wi-Fi. The Xbee

has a consumption of 30mA while transmitting and 3µA at rest while the similar Bluetooth device

consumes 40mA transmitting and 0.2mA while at rest. The reason for this difference in power

consumption is the fact that Xbee system stays in sleep mode, like active RFID tags, most of the time.

Bluetooth devices must always be transmitting or receiving and Wi-Fi devices are designed for high-

power devices and not suitable for long-term battery life. The XBees in use at the conclusion of this

project were using IEEE 802.15.4 (Series 1) networking protocol and also included an RPSMA connector

for use with the Titanis antenna.

Figure 1: Xbee Module

Figure 2: Mechanical Drawing of RPSMA XBee

8

2.2 Arduino Specifications

2.2.1 Arduino Uno
The Arduino Uno is a microcontroller board based on the ATmega328. The board contains 14 digital

input/output pins, 6 analog inputs, a 16 MHz oscillator, a USB connection for serial data communication,

and a power jack. The Arduino Uno board will be used for the host computer connection and used for

readers, or the locater nodes. For the Uno connected to the host computer, it will be able to

communicate with the computer, which includes transferring data from the Arduino and uploading code

to the Arduino, and powered using the USB connection. For the Uno used as locaters, power will

supplied by an AC to DC converted. The board contains 31.5 KB of usable Flash memory, 2 KB of SRAM, 1

KB of EEPROM.

To simplify the connection to an Xbee module, the Arduino Uno will use an XBee shield to interface. The

shield connects the serial pins (DIN and DOUT) of the Xbee to the serial pins (D0, D1) of the Arduino or

to any digital pins. The board has an on-board regulator that takes 5V from the Arduino and regulates to

3.3VDC before being supplied to the XBee. The shield will also take care of level shifting on the DIN pin

of the XBee. The shield also includes LEDs to indicate power and activity on the DIN, DOUT, RSSI, and

DIO5 pins of the XBee.

Figure 3: Arduino Uno

9

2.2.2 Arduino Fio
The Arduino Fio is a microcontroller board based on the ATmega328P. The board is designed to

interface with an XBee module. It includes 14 digital input/output pins, 8 analog inputs, 8 MHz oscillator

and an on-board resonator. The power is provided either by USB connected or by a Lithium Polymer

battery. There is also an onboard battery charger to charge the battery over a USB connection. A user

can upload code with an FTDI cable or wirelessly through a modified USB-to-Xbee adaptor such as XBee

Explorer USB. The input voltage for operation is 3.35V – 12V. The input voltage to charge a lithium

polymer battery is 3.7 – 7V.

Figure 4: Arduino Fio

2.2.3 Arduino Mega
The Arduino Mega is a microcontroller board based on the ATmega1280. It has 54 digital input/output

pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a

16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button.

The ATmega1280 has 128 KB of flash memory for storing code (of which 4 KB is used for the

bootloader), 8 KB of SRAM and 4 KB of EEPROM. The ATmega1280 provides four hardware UARTs for

TTL (5V) serial communication.

Figure 5: Arduino Mega

10

2.3 XBee Shield
The XBee shield allows for an Arduino board to communicate wirelessly using XBee modules, series 1 or

series 2. The shield breaks out each of the XBee’s pins to a through hole solder pad. Female headers can

be soldered in this solder pad to simplify interfacing the Arduino with external hardware. The serial pins

of the XBee are connected through an SPDT switch, which allows the user to select a connection

between the DIN and DOUT of the XBee to either the UART pins, D0 and D1, or any digital pins, D2 and

D3 by default. Power is supplied to the XBee by taking voltage from the 5V pin on the Arduino and

regulating it to 3.3 VDC and fed into the XBee Vcc pin. The shield also takes care of level shifting on the

DIN pin of the XBee. The shield also includes LEDs to indicate power and activity on the data pins, rssi

pin and DIO5 pin of the XBee.

Figure 6: Stock XBee Shield Picture

Figure 7: XBee Shield Eagle Schematic

11

3. Trilateration

3.1 Introduction to Trilateration
To locate an object that is in the field a system was created that uses radio frequency signals. The

strength of the radio frequency signal is measured between the tagged object and the readers that are

stationed in the field. Once the signal strength is gathered, it can be converted into a distance using the

distance formula which will be explained in further detail later in this report. When the distances have

been calculated they are plugged into a system on quadratic equations called trilateration. Using

trilateration makes it is possible to find the tagged object on the XY plane and it will also allow us to find

the z axis of the object as well. There are two types of trilateration, the first one is 2-D trilateration,

which only allows you to find a tagged object on the XY plane and then there is 3D trilateration. 3D

trilateration allows you to find a tagged object on the X, Y, and Z coordinate system.

3.2 Trilateration in 2D
For the indoor location system 2D trilateration is used to find a tagged object that is located on a

surface, which will be on an XY plane. The location of three readers has to be known along with the

distances between the readers and the unknown tagged object for 2D trilateration to work correctly.

One can visualize this by looking at figure (x1), where the red dot in the center has an unknown location.

The red dot will represent the location of the object that is being searched for. The reference nodes,

also known as the readers, are labeled A1, A2, and A3, the distances between the reference nodes and

the tagged node are labeled d1, d2 and d3. The intersection between all three nodes is the location of

our unknown tag.

Each tag and reader will consist of a transceiver and an antenna. The tag transmits a signal and the

signal strength, also known as RSSI (Received Signal Strength Indication) is measured between the tag

and the stationed readers. The signal strength can be converted into distance, which gives us the three

known distances that are needed for trilateration. The downside for using signal strength is that the

calculated distance will not always have the exact distance between the reader and the tagged object.

The reason for this is because the signal strength coming from the tag could be interfered with other

signal frequencies, room temperature, humidity, construction within a building and metal interference.

The equation converting signal strength to distance can be tuned for some of the parameters listed

below, but there are some things that cannot be controlled, therefore with every distance that is

calculated there will be a small error.

Once the distance is calculated, trilateration will be used to find the position of the tagged object. The

way 2D trilateration works is shown below. In the following equations Xi and Yi represent the position

of Ai (readers), where .

12

()
 ()

 ()

()
 ()

 ()

()
 ()

 ()

To simplify this system of quadratic equations, equation 3 will be substituted into equations 1 and 2,

which will leave two linear equations.

 () () (

) (

) (

) ()

 () () (

) (

) (

) ()

The X and Y coordinates are found by solving equation 4 and equation 5 using Cramer’s rule.

|
(

) (

) (

) ()

(

) (

) (

) ()
|

|
 () ()

 () ()
|

 ()

|
 () (

) (

) (

)

 () (

) (

) (

)
|

|
 () ()

 () ()
|

 ()

Figure 8: Trilateration in 2D

13

Equations 6 and 7 will be solved using Matlab. The simulation will be shown in the section called

Trilateration Simulation Results (Section 3.7).

3.3 Trilateration in 3D

Originally, the indoor positioning system was supposed to find an object within a warehouse. With this

in mind, it was taken into consideration that there are items elevated in high placed that can’t be seen

or reached. To do this, a 3D system is needed that will have a Z component along with the X and Y

components. As you can see in figure 9, there is a fourth reader. This fourth reader gives us an extra

component; therefore linear algebra can be used to find the height of the tagged object. The 3D

trilateration quadratic equations are similar to the 2D trilateration quadratic equations. Also, because

of the quadratic equations every reader can be at a different height. The equations for 3D trilateration

are as follows:

()
 ()

 ()

 ()

()
 ()

 ()

 ()

()
 ()

 ()

 ()

()
 ()

 ()

 ()

The above equations can be simplified into 3 linear equations.

 () () () (

) (

) (

) (

) ()

 () () () (

) (

) (

) (

) ()

 () () () (

) (

) (

) (

) ()

Figure 9: Trilateration in 3D

14

Now, the X,Y and Z components are found by solving equations 11,12, and 13 using Cramer’s rule.

(

) (

) (

) (

) () ()

(

) (

) (

) (

) () ()

(

) (

) (

) (

) () ()

 () () ()

 () () ()

 () () ()

 ()

 () (

) (

) (

) (

) ()

 () (

) (

) (

) (

) ()

 () (

) (

) (

) (

) ()

 () () ()

 () () ()

 () () ()

 ()

 () () (

) (

) (

) (

)

 () () (

) (

) (

) (

)

 () () (

) (

) (

) (

)

 () () ()

 () () ()

 () () ()

 ()

Both 2D and 3D trilateration have its pros and cons. Adding an extra reader to the system will increase

the accuracy of the location of the tagged object in 2D. However in 3D trilataration, the fourth reader is

needed for the extra unknown z-component. 3D trilateration will also be less accurate and more

complex than 2D trilateration. The more complex the system is; the longer the computational time will

be, which is another advantage that 2D trilateration has over 3D trilateration. But there is a way to

execute a 3D system by expanding 2D trilateration and this system is called COLA, which will be

explained in further detail in a section called COLA (Complexity Reduced 3D Trilateration Localization

Approach) (Section 3.5).

15

3.4 Matlab code for Trilateration in 2D and 3D
The 2D trilateration Matlab code has to have two different Matlab files for it to work correctly. One file

is the actual trilateration code, which is called two_tri.m and is located in Appendix B, the other Matlab

file stores the distances between the node we are searching for and the known readers locations. The

file that stores the reader coordinates and distances will be called Test2D.m and is located in Appendix

B. The Test2D file has to have the known locations of the three readers and the node with the unknown

location. The location of the reader will be manually put into the host computer by the user when the

system is set up. However, the three distances will be fed to Matlab by the Arduino connected to the

host computer. The Arduino is converting the RSSI signal into distance and sending it to Matlab through

the serial port. Both Matlab files share information with each other, so, therefore once all the X and Y

components of the readers as well as the distances are known, the X and Y component of the unknown

node can be found using the two_tri.m file. When the program is done executing a screen will be

displayed with three circles, one around each reader node, intersecting at the location of the unknown

node.

The Matlab code for 3D Trilateration is very similar to the MATAB code for 2D trilateration. You can see

the 3D trilateration code in Appendix B, and see how much larger and complex it is compared to the 2D

trilateration code. This is why the 3D trilateration computational time is exponentially larger than the

2D trilateration computational time. Also you will notice in the simulations that there are circles around

each reader node in 2D trilateration and where those circles intersect is where the unknown object is

located, but for 3D trilateration there are no circles. That’s because for 3D trilateration there has to be

spheres instead of circles and since we were under time constraints we decided to put a dot where the

unknown object is located. Other than the computational time and the extra component, the basic idea

of the 3D trilateration code and the 2D trilateration code is the same. For 3D trilateration there are two

Matlab files, one Matlab file stores the distances between the node that is being searched for along with

the known reader nodes, and this Matlab file can be seen in Appendix B, the other Matlab file was

mentioned before and it has the actual 3D trilateration code. The simulation for both the 2D and 3D

trilateration are located in the section called Trilateration Simulation Results (Section 3.7.1 and 3.7.2).

16

3.5 COLA (Complexity Reduced 3D Trilateration Localization Approach):

As mentioned before in the section 3.3, COLA can be used for 3D applications. COLA’s computation time

is much shorter than the traditional 3D trilateration, but COLA is much more expensive. The reason why

it is more expensive is because three additional readers have to exist at the same XY axis as the original

3 readers, but have to be at an elevated location. This is the ideal method for tracking a tagged object

indoors due to the fact that it is 60 percent more accurate than trilateration in 3D, the more readers, the

more accurate the system will be. To find the height using COLA, complex algebra will be used and is

shown below. To make this process easier to understand, take figure 10 and dissect it into 3 parts. To

show how to find the height, the readers at will be considered.

Figure 10: COLA 2D diagram

Figure 11: COLA 3D diagram

17

 ()

 (
) ()

 ((
)) ()

 (
) (

) ()

Using equation 20, cosθ can be solved for and gives the following equation:

 (

)

 (
)

 ()

The height equation is the following:

 ((
)) ()

where

((
)) ((

)) (
) ()

((
)) [

 (
)

 (
)

] ()

Substituting equation 23 into 22 gives us the height of the tagged object:

 [

 (

)

 (
)

] ()

To find the distance(), which is the distance between the tagged object and the XY coordinate of the

readers is as follows,

 √
 (()) ()

Substituting equation 20 in for
 and equation 21 in for the distance can be calculated with the

formula below:

 √

 (

)

 (
)

 (
)

 (
)

 ()

The last step of COLA is performing 2D trilateration using the distances () between the tagged object

and the reference readers.

18

3.6 Matlab Code for COLA
The COLA Matlab code has two Matlab files. One Matlab file is used for finding distance between the

known reader and the unknown tag, this Matlab file is called COLA.m and can be found in Appendix B.

The other Matlab file is used for finding height of the unknown tag, this Matlab file is called

Cola_Height.m and can be found in Appendix B. You can see that this code is less complex than the

traditional 3D trilateration code and this means that the COLA computation time is much faster. The

location of the unknown tag will be known so we can find the distances between the readers and the

tagged object. But when the whole Indoor positioning system is set up the distances will be known from

the RSSI signal strength conversion coming from the Arduino. Once the distances between the readers

and the tags are known, the distance between the XY coordinate of the reader and the unknown tag will

be known by using COLA.m. Once the distances between the readers XY coordinate and the unknown

tags are known then the two_tri.m file will be run to find the XY coordinate of the unknown tag. The

height of the object will be found using the Cola_Height.m file and it will take the data from the COLA.m

file to solve for height. Once the height is found it will be stored as a variable. After the program has

been completed, the location of the object will be displayed to the screen. The simulation results of

COLA will be shown in the section called Trilateration Simulation Results, Section 3.7.3.

3.7 Trilateration Simulation Results

3.7.1 Simulation for 2D Trilateration
Location of Reader 1: [-2, 2]
Location of Reader 2: [2, 1]
Location of Reader 3: [-1, -2]
Location of Unknown Tag: [1, 1]

In figure 12 each red dot symbolized one reader and the location of the unknown tag is located where

all three circles intersect.

 Figure 12: Simulation for 2D Trilateration

19

3.7.2 Simulation for 3D Trilateration
Location of Reader 1:[-2, 2, 2]
Location of Reader 2: [2, 1, -1]
Location of Reader 3: [-1, -2, 2]
Location of Reader 4: [3, 3, 3]
Location of Unknown Tag: [0, 0, 0]

For 3D trilateration, refer to figure 13. Each outer dot symbolized a reader. The location of the object is

not shown with the intersection of spheres, but it is shown by a dot within the outer dots. Also, note

that the readers are at different heights and the system still works correctly.

3.7.3 Simulation for COLA
Location of Lower Reader 1: [-2, 2, 2]
Location of Lower Reader 2: [1, 1, 2]
Location of Lower Reader 3: [-3, 0, 2]
Location of High Reader 1: [-2, 2, 4]
Location of High Reader 2: [1, 1, 4]
Location of High Reader 3: [-3, 0, 4]
Location of Unknown Tag: [4, 5, 1]

For the COLA simulation, refer to figure 14. Each red dot symbolizes a reader. Again, we are not able to
use spheres to show the location of the unknown tag because this is in 3D; therefore, we show the
location of the unknown tag with a black dot.

Figure 13: Simulation for 3D Trilateration

20

3.8 Reader Stands for Trilateration
The reader stands were built originally for COLA, as you can see in figure 15, there is available space for

a lower reader and a higher reader on each of the three stands. The original design was only about 2ft

high. The reason for this design is because for COLA trilateration, as long as there are two different

readers at two different elevations and have the same XY coordinate, height of the unknown tag can be

found. With that in mind, the more compact the system is the more convenient it would be while we

were demonstrating the indoor positioning system. Although it would be more convenient to have

smaller stands, every time we tested the signal strength with the readers close to the ground the signal

strength was inconsistent and weak. After doing some further research we realized that the ground is a

good reflector of electromagnetic radiation. With the understanding that the earth could have possibly

been reflecting our signal, it was decided to build the stands at approximately 5ft high. The height of

these stands is where the lower readers will be. If COLA trilateration was to be tested, the stands would

have to be extended to approximately 9 to 10 ft high for it to work properly.

Figure 14: Simulation for COLA

Figure 15: All Three Trilateration Stands Figure 16: Trilateration Stand

21

3.9 Trilateration Conclusion
Using trilateration was a success in this project and the actual testing and proofs will be shown in detail

later in this report. Although trilateration does not give us the exact location of the object in the actual

field, it does get the user in very close proximity. Throughout this semester we were not able to get the

COLA working in the indoor positioning system due to time constraints, but the 2D trilateration is

working better than expected. We hope another group can compound on our studies and hard work to

make COLA a success for the indoor positioning system. As I mentioned before, COLA is the ideal way to

locate an object. It’s just a system that uses 2D trilateration, and finds the height using trigonometry. It

also used six readers, which makes it much more accurate than the traditional 2D and 3D trilateration.

4 RFID Detection Device

4.1 Introduction to the RFID Detection Device
The detection device was created to make the Indoor positioning system much more user friendly. The

project had to keep in mind that not all people using our system will have computer skills and may not

have any type of technical background. Instead of a user typing in the object that they want to find, one

could use an RFID reader with RFID cards to bring up the location of a tagged object. The basic idea

behind the detection device is, for every item that is tagged in the field, it will have a RF card that is

linked to it. Each RFID card has a unique 12 digit hex number. For example, if RFID card #1 =

4500B8E95541 we can link Box #1 to RFID card #1 by referencing Box #1 with the same unique 12 digit

ID in our database. For this system to work correctly, it will need RFID cards, an ID-12 detection chip,

and an Arduino Uno. The datasheet for the ID-12 chip is listed in Appendix A. There were several issues

that came up while building the device. The first one that that will be discussed is figuring out the

unique ID for each RF card, the second challenge to overcome was sending the unique ID to Matlab so

the host computer would know which object the user is looking for. The project’s final challenge was

making the system where multiple unique ID’s are stored in the host computer, so the user can just scan

each card and find each item in the system.

4.2 RF Card 12 Digit Unique ID
Finding out the 12 digit unique ID was an unexpected challenge for this semester. It was assumed that

the manufacturer would give us the ID for each card, but this didn’t happen. To solve this problem, the

ID-12 chip was connected to an Arduino as shown in figure 17. The Arduino Uno can transmit serial data

using the TX pin and receive serial data using the RX pin, due to the built in serial communication library.

Pin 9, also known as the data 0 pin of the ID-12 chip, will output at 9600 baud serial every time it reads a

card being scanned. The data 0 pin is connected to the RX pin of the Arduino and the RF card data will

be stored into the Arduino’s 128 byte serial receive buffer. Once the 12 digit hex number is in the

buffer, the next goal is to display it to the screen.

To program the Arduino to display to the screen, we used the serial library that is already built into the

Arduino. There are some key functions that are used in the program and they are listed below.

 Serial.begin(), opens the serial port and sets the data rate at some value of bits per second, for

the serial data transmission.

22

 Serial.read(), tells the Arduino to read the incoming serial data.

 Serial.avaliable(), checks to see if there is any data in the 128 byte serial buffer

 Serial.print(), prints the data to the screen as a human readable ASCII character

The code that was used to find the 12 digit unique ID for the RFID cards is listed in Appendix C. The code

is written to open the serial port of the Arduino Uno and set the output rate at 9600 bps. Next, the code

will check to see if there is data in the serial receive buffer. If nothing is returned at this point the RFID

card was not detected and it will need to be rescanned. Otherwise, if it returns the number of bytes

available, the unique ID number will be read and printed out to the screen.

4.3 Testing/Results for Finding 12 Digit Unique ID
The initial test with the circuit configuration in figure X10 and the original code, failed. At first,

troubleshooting started with the ID-12 chip. To test the chip we connected a resistor and a LED light to

PIN 5 of the Arduino Uno. A simple code was written to set pin 5 to a high voltage when a RFID card is

detected. The experiment was tested and when the RFID card was scanned the LED would come on 50

percent of the time and stay off 50 percent of the time. This led to the conclusion of a bad connection

within the breakout board or breadboard. With that in mind, the ID-12 chip was taken off the breakout

board and soldered the PINS of the ID-12 chip directly to the wires that are connected to the Arduino

Uno. Then we executed the test again and the LED light came on every time the RFID card was scanned.

The conclusion from this test was that the ID-12 chip had good connections now; therefore, the original

code was then uploaded to the Arduino. The original experiment was tested once again and when the

RFID card was scanned the 12 digit unique ID was displayed on the screen as shown in figure 18. This

allowed the group to move forward with the project knowing the ID number that will link the RFID card

to the tag that is out in the field.

Figure 17: ID-12/Arduino circuit connection for Detection Device

23

4.5 Sending 12 Digit Unique ID to Host Computer
Since the ID for each RF card is known, a database is made within the Matlab program and this will allow

us to run a comparison to know which tagged object the user is looking for. A 12 digit unique ID must be

sent to Matlab from the Arduino Uno through the serial port for comparison of tags in the database.

The newer versions of Matlab are capable of receiving and sending serial data using the communications

port on a computer. For the 12 digit unique ID to be sent serially, two separate codes were written; an

Arduino code and a Matlab code. Both codes are shown in Appendix C and B respectively.

For the Arduino code, additional code was added to the code that was written to display the ID number

on to the screen. Instead of displaying it on to the screen, it is sent to the Matlab program. This is done

by taking the ID number that is stored in the buffer and sent it through the communications port one

byte at a time. The reason why it’s sent one byte at a time is because that’s what the Arduino Uno is

programmed to do internally. For the Matlab code, Arduino COM port is opened as a file which allows

the Matlab program to receive the data coming from the communications port. The Matlab code is

written to receive the 12 digit ID one byte at a time since the Arduino is sending it at that rate. If both

the Matlab program and the Arduino program are not sending and receiving the data at the same rate, it

will not be effective. The proof that these two codes work together is shown below. In figure

18¸located in the previous section, one can see the unique ID (4500BE9285EC) and the 12 digit unique ID

in Figure 19 are the same. The unique ID is sent to Matlab from the Arduino as a string of characters.

Therefore when the unique ID’s are programmed in to the Matlab database, they are stored as strings.

This allows the user to write a string comparison code to find the tagged object that the user is looking

for. Now that the unique ID’s are sent to Matlab, the system is able to compare them and know which

object the user is looking for.

Figure 18: Display of Unique ID

24

4.6 Detection Device Conclusion
The detection device is very simple to use. Once the user knows which object he/she wants to locate all

they have to do is select the RFID card that is linked to that specific object. The card will be scanned by

the ID-12 chip which is on the host computer box. After the card is scanned a graphical user interface

will be displayed with the location of the object. As you can see in figure 20, the ID-12 chip is mounted

on the outside of the host computer’s box for easy access. The host computer box includes one of the

readers, the host computer’s Arduino (the Arduino MEGA) and the ID-12 detection device. Although,

there were some difficulties with finding the unique ID numbers and sending that data to Matlab, the

challenges were overcome and the system was successfully completed.

Figure 19: Display of Unique stored in Matlab

Figure 20: Host Computer Box

25

5 Batteries

5.1 Technical Specifications of batteries
The battery used in the design will be a lithium-ion polymer (Li-poly) battery due to its high density, long

life cycles, and its ability to be thin. A typical Li-poly battery is essentially consisted of three parts or

layers: the negative electrode, separator, and the positive electrode. The negative electrode consists of

either LiCoO2 or LiMn2O4. The typical reaction for the negative electrode is Li1−xCoO2 + xLi+ + xe− →

LiCoO2. The separator is a conducting polymer electrolyte that performs Li+ conductions. The positive

electrode is constructed with a Li or carbon-Li intercalation (the reversible inclusion of a molecule or

groups between two other molecules or groups) compound. The typical reaction to the positive

electrode is Lix → C + xLi+ + xe−. Once each of the layers is constructed, an aluminum or laminate casing

is used to encase the full battery. Each of the layers is extremely thin and thus gives the battery its small

and unique shapes. Figure 21 shows a cross-section of a Li-poly battery and how each of the constructed

layers is built upon each other. Table 1 also shows the advantages and disadvantages of a lithium-ion

polymer battery.

Figure 21: Cross Section of Lithium-ion polymer battery.

Table 1: Advantages and disadvantages of lithium-ion polymer battery.

Advantages Disadvantages
High energy density. Ageing on storage or use.

No memory effect. Protection circuit recommended.

Low self-discharge. Limited rate capability at low temperatures.

The design and size are easy and flexible. Generally the highest cost but much cheaper recently.

Long life cycles (more than 1000 cycles). Some safety issues (Flammable).

The lamination structure of electrode and
electrolyte has high reliability for impact
and vibration.

26

The selected battery for this design is the Polymer Lithium Ion Battery SKU: PRT-08403 from

http://www.sparkfun.com/products/8483. The battery has 2000mAh (milliamp hours) and is extremely

light with a weight of 36g (1.27oz.). The average battery size is about four quarters in a 2x2 matrix

configuration for reference with an actual dimension of 0.25x2.1x2.1" (5.8x54x54mm). The battery is

extremely thin and lightweight and would provide the needed power for our design and the flexibility to

be put in small confined spaces in order to design the most economic tags. Figure 22 shows a picture of

the battery that will be used in the design.

Figure 22: Lithium-ion polymer battery-2000mAh

5.2 Battery Connectors
The Arduino Fio/XBee combination will work correctly through the standard 2-pin JST connector, with

2mm spacing between the pins, from the battery to the Arduino Fio board. The high energy density cells

are able to output 3.7v at 2000mAh with a discharge rate of 0.2C5A discharge. The current tag system

requires only around 3.3-3.4v so the battery should be able to sustain the voltage with a little bit of head

room.

5.3 Battery Testing
 According to the batteries’ datasheet, at high temperatures of about 60oC and low temperatures of 0oC,

the battery performed really well when the battery was initially charged and then discharged at a rate of

0.2C5A. At normal room temperatures and humidity, the battery had no distortion or electrolyte leakage

for a discharge rate of 0.2C5A. Temperature shock was also tested with the battery from -20oC for 2

hours to 50oC for 2 hours repeating ten times and no electrolyte leakage was detected. This means that

the battery is able to sustain both high, low, and shock temperatures without any problems. Since our

position system is designed for areas such as warehouses, extreme temperatures should generally not

be a problem. In case a situation does occur where extreme temperatures come into play, the battery

should not have any major issues. The mechanical performance was also looked at when determining

27

the battery for our design. Vibrations were tested on a vibration table for 30 minutes and no influence

to the batteries’ electrical performance and appearance were detected. Collision performance was also

looked upon in case backup batteries were needed to be encased in the tags. Multiple collisions were

tested and no influence to the batteries’ electrical performance and appearance were detected.

Dropping the battery was also tested with random drops 10m in height onto concrete multiple times

with no explosion or fire.

5.4 Battery Safety
Safety of the user must also be taken into consideration when generally dealing with lithium batteries

since they can be very volatile and dangerous when re-charged incorrectly or overheated. The data

sheet showed a multitude of tests conducted to determine the safety of the battery in case any of the

situations should arise. The first situation was over charging the battery by sending a constant voltage of

4.8v with a constant current of 3C5A till it declined to 0. There were no explosions or fire. The second

situation was over discharge with a rate of 0.2C5A continuously and no explosions or fires were

observed. A short circuit situation was also tested to see if it would cause any problems but no problems

were found. The next test was to add pressure to the battery of about 1kN and no fire or explosions

were also observed. Finally, the battery was subjected to thermal shock by being put into an oven and

the temperature was raised by 5oC for every minute until it reached 120oC and remained at that

temperature for 60 minutes. By looking at these tests, the battery seems to be a perfect fit for any types

of situations that may occur in a typical work area or warehouse. Therefore, it is safe to assume that the

battery should fit our and the users safety needs when dealing with power.

5.5 Battery Life
Once the safety requirements of the batteries were met, the amount of discharge that the battery

provides will need to be determined in order to determine the hours of battery life and the amount of

stress on the battery. Discharge rates must be taken into account since high discharge rates could

potentially shorted the lifespan and capacity of the battery. The battery must also not be discharged too

low or over discharge. For li-poly batteries, the general range is to have the equipment cut-off at around

2.7-3.0v per cell. Anything lower than the given range of the voltage and the battery would be severely

damaged and potentially put in a permanent sleep mode where even attempting to charge the battery

would not bring it back to a useable condition. Therefore, most battery manufactures will ship batteries

with around a 40% charge. In order to prevent to battery from reaching the state of no return, two

preventative measures will be taken. The first will be discussed in the sections below by having a battery

indicator ping the user that the battery has reached a certain percentage and must be replaced. The

second measure is to shut the device off when a voltage of 2.7v is reached which can be accomplished

through the Arduino Fio and programming code. The li-poly battery PRT-08403 for the indoor

positioning system design has a recommended average discharge rate of 0.2C5A and a maximum

discharge rate of 2.0C5A which is acceptable because the maximum discharge that will be needed is

52.1mA (45mA from the Arduino Fio and 7.1mA from the Xbee in transmitting mode) which should help

to prolong the battery life as well as provide less stress for the battery.

28

Once the discharge rates were determined from the tag design, the amount of hours that the battery

would be able to power the Arduino Fio and Xbee needed to be determined given the mAh that was

provided with the battery. The battery is able to provide a 2000mAh, but in order to determine the

amount of hours it would sustain; the amount of current will need to be determined. The best method

to this approach is to average the amount high and low current that the circuit will draw when the

Arduino Fio and the Xbee are in transmitting and non-transmitting mode. The Arduino Fio will use 45mA

when transmitting at 8 MHz and <50uA in Power-down mode (Cyclic sleep). The Xbee will have an

average current of 7.1mA when it is turned on and an average current of 1.1uA in sleep mode with WDT

(Watch Dog Timer) disabled. Since our indoor positioning system uses a cyclic sleep method, each of the

tags will only be transmitting for 1.932s then they will return to sleep or power-down mode. The hours

that the batteries are able to supply will be based on our cyclic sleep method and the set time for each

cycle. When the tags are not sleeping, they will be in idle mode in order to be ready to receive or send a

signal. Therefore, we must also calculate the idle current which is also 1.1uA. The general equation for

calculating current based on the cyclic method is:

Current = ()

 ()
 ()

 () ()

 ()
 +

(50mA) *

 ()
 + (.0511mA) *

 ()

 ()
 ()

 Once the total amount of current is found, the equation to determine hours based on mAh is:

Hours of battery life =

()

Example:

 If we have a cyclic sleep cycle of 2 minutes with a total cycle of 10 minutes at a frequency of 4

MHz, the previous equations should help determine the amount of hours a 2000mAh battery will last.

Current = ()

 ()

 + (50mA) *

 + (.0511mA) *

 ()

Current = .255mA

Hours of battery life =

 ()

Hours of battery life = 7853.59 hours (a little under one full year of battery life)

The life cycle of the battery will also need to be taken into consideration because if the battery can last

one year but only charge two times before it is rendered useless, it will cause a massive economic and

inconvenience to the consumer. It is also a bad idea to run the battery down past a certain percentage

as that will reduce the life cycle of the battery. The best way to keep a high life cycle for the battery is to

do a partial discharge. Unfortunately, this would limit the amount of battery hours we would be able to

sustain. The threshold in which we would run the battery down would be 3.4v even though the batteries

own charge would hold until 2.7v. This is due to the Xbee and Arduino Fio needing at least 3.35v in order

to function correctly. Therefore, we also would not run the battery all the way down which would

29

increase the life cycle of the battery. For a partial discharge, the li-poly has an estimate of 800-1000 life

cycle charges. It is believed that if the battery is kept at 3.35v as the end threshold; the battery should

also be able to obtain a life cycle of around 800-1000 charges and be able to function close to one year.

5.6 Battery Storage
When storing the batteries for a long time, it is generally a good idea to store it with a partial charge so

that even with a self-discharge; the battery is able to maintain a good capacity and life. The best

environment for long time storage of the batteries would be a temperature of around 20oC with a

humidity of 45-85% and the battery charged to 40-60% in order to maintain the best quality and

increase the life cycle of the battery.

5.7 Lithium-ion Polymer Recharging
Generally recharging a battery is done through a chemical reaction but in the li-poly batteries case it is

different. It is mainly the flow of ion movement between anode and cathode. The li-poly battery is a

“clean” system in that it only takes what it can absorb and anything more would put a high amount of

stress on the battery. Figure 23 shows the charge stages of a lithium-ion battery in which our design will

follow.

Figure 23: Charge stages of a lithium-ion battery.

If too much stress or an overcharge occurs on a li-poly battery; it could become unstable and catch on

fire. Fortunately the battery was already tested with over charge enabled and no explosions or fires

were detected. However, over charging could also cause damage to the cells which is why preventing

over charge is a large issue even if the battery does not catch on fire. The design will use the MAX1555

integrated circuit as shown in figure 24.

30

Figure 24: Pin configuration and typical operating circuit of MAX 1555

The design will able to charge through USB (pin 1) or DC Source (Pin 4) and the Arduino Fio already have

this chip implemented into its design. The Arduino Fio is capable of using this integrated circuit in its

system in order to charge the battery and it will automatically select between a USB or DC source if both

are connected. The max current will be limited to 300mA using an external wall supply (3.7v to 7v) to

prevent any problems that may occur. The PRT-08403 li-poly battery will charge at a constant current of

0.2C until the battery has reached 4.2vpc (the max voltage a cell can withstand before problems occur).

It will hold the voltage at 4.2v until the charge of the current has dropped to around 10% of the initial

charge rate (30mA) which is also known as trickle charging.

5.8 Results
In the end, the Spark fun Lithium-Ion Polymer battery gave the best results and showed through

calculations that it was able to handle the load and abuse the system would put on the battery. It was

also very thin and mobile so it would make the tag much easier to move around and have a smaller form

factor. It would also be able to recharge very quickly using the Arduino Fio tags built in chip.

6 Power Supplies
The readers (Arduino Uno + Xbee) and the tags (Arduino Fio) will require different power sources for

each. The readers will be plugged into the wall using an external source which will operate at 5v. The

host reader will be powered and connected through USB connection which will help to power and

transmit data between the host computer and host reader. Both types of powered options are shown in

figure 25.

Figure 25: Arduino Uno reader. The red rectangle displays the USB power connection and the yellow

rectangle displays the external wall powered connection.

31

The tags will be powered by lithium-ion polymer batteries connected through JST connectors to the

Arduino Fio as shown in figure 26.

Figure 26: Arduino Fio and lithium-ion polymer battery JST connection.

Two batteries were initially ordered in order to test the products. The batteries have an average voltage

of 3.7v with a maximum of 4.2v and a charge of 2000mAh. The cut-off voltage for the battery is 2.75v.

Each of the batteries was tested with a multimeter to see if they were already charged and each battery

had around 4v. If the battery ever dropped to the cut-off voltage, it would need to be recharged. The

Arduino Fio already has an Integrated circuit which could recharge the battery. In order to determine

when the battery needed to be recharged, a battery power indicator would need to be built in order to

notify the user through the GUI that the battery would need to be changed.

7 Battery Power Indicator
The battery power indicator essentially uses a comparator and a voltage divider in order to determine

when it would notify the user of low power. Instead of completely building another circuit, the Maxim

8212 Integrated circuit was used instead shown in figure 27.

Figure 27: Maxim 8212 chip and pin layout.

7.1 Battery Power Indicator Revision 1
By using the Maxim IC, the comparator was complete and the only thing that needed to be determined

was the values for the voltage divider and the hysteresis. In order to use the correct values for resistors,

we needed to determine all the voltage usage and cut-off points of the Arduino Fio and the lithium-ion

polymer battery. The Arduino Fio could operate from 1.8v to 5.5v but since our battery cut-off voltage

was 2.75v, it was decided that an estimate of 2.9v would be perfect. This leaves a little breathing room

32

in case the battery was not immediately taken and charged. For the voltage divider and hysteresis, we

chose R1=1MΩ and used the equations:

R2=R1 x
()

 = R1 x

()

 Equation 32: Determine R2

R3=R2 x
()

 Equation 33: Determine Hysteresis

Thus, R2=1.44559MΩ, and R3=43kΩ. Once the values were determined the circuit was built using a

breadboard in case any changed needed to be made as show in Figure 28.

Figure 28: First iteration schematic and built battery indicator on breadboard

In order to test the battery power indicator, a variable voltage supply was used simulating the lithium-

ion polymer batter. The voltage was set to 4v and gradually decreased until we hit a point in which the

output gave a high. Ideally, it would have been the calculated 2.9v. In reality, the point at which it gives

a high is 2.907v which is still extremely close to our ideal point. Then, the voltage supply was gradually

increased and once the voltage hit 2.951v it went back to low. By subtracting these two values 2.951v-

2.907v we notice that our hysteresis is .044v. This means that if the battery drained to 2.907v and

somehow received extra voltage to bump it to 2.922v it would still stay high instead of toggling between

low and high constantly causing false alarms and stress on the circuit.

7.2 Results
There were some issues when building this circuit. Originally an LED was put at the output so it would be

able to notify the user visually that the battery was low. It was realized that our Maxim 8212 chip was

inverted. In other words, the LED lit up when a low value was given and off when a high value was given.

This would cause too much of a drain on the battery if the LED was constantly on. In order to solve this

problem, an inverter was created using BS170 mosfet transistor. Unfortunately, under many tests and

circuit redesigns, the voltage needed to fire the LED was too low and the transistor was unable to

provide the voltage. Thus, the idea was finally scrapped and an LED will be routed and attached to the

Arduino Fio instead.

33

7.3 Batter Power Indicator Revision 2
The previous battery indicator needed to be revised since the team had underestimated the amount of

voltage that the Arduino Fio and XBee system used. Also, the previous battery indicator needed to be

adjusted into a much simpler version in order to be attached to the Arduino Fio for the device to be

more mobile and the resistors were adjusted to give a more precise value for our threshold. By using the

Maxim IC, the comparator was complete and the only thing that needed to be determined was the

values for the voltage divider and the hysteresis. In order to use the correct values for resistors, we

needed to determine all the voltage usage and cut-off points of the Arduino Fio and the lithium-ion

polymer battery. The Arduino Fio could operate at 3.3v but since our battery cut-off voltage was 2.4v, it

was decided that an estimate of 3.4v would be perfect. For the voltage divider and hysteresis, we chose

R1=1MΩ and used the previous equations 31 and equation 32 to recalculate the resistor values. Thus,

R2=1.86957MΩ, and R3=81kΩ. Once the values were determined the circuit was built using a breadboard

in case any changes needed to be made as show in Figure 29. The battery indicator circuit was reduced

dramatically in size and the circuit works just as well as the previous iteration.

Figure 29: iteration 2 revised schematic and built battery indicator on breadboard

7.4 Battery Power Indicator Testing
In order to test the battery power indicator, a variable voltage supply was used simulating the lithium-

ion polymer batter. The voltage was set to 4v and gradually decreased until we hit a point in which the

output gave a high. Ideally, it would have been the calculated 3.3v. In reality, the point at which it gives

a high is 3.308v which is still extremely close to our ideal point. Then, the voltage supply was gradually

increased and once the voltage hit 3.35v it went back to low. By subtracting these two values 3.35v-

3.308v we notice that our hysteresis is .05v. This means that if the battery drained to 3.308v and

somehow received extra voltage to bump it to 3.31v it would still stay high instead of toggling between

low and high constantly causing false alarms and stress on the circuit.

The power requirements for this design are one of the most important aspects due to the design. The

design must be able to incorporate a battery that is small enough to be lightweight and portable, to be

able to last an estimate of one full year before needing to recharge, and to be as cost-effective as

34

possible. Other components that would benefit the power design requirements are being able to notify

the user when the battery is low and the ability to recharge the battery when needed.

7.5 Results
The second revision battery indicated that was built fit every specification the team had for the

indicator. It was very small and mobile once attached to the Arduino Fio and the voltage requirement

was spot on and hit 3.3v with a hysteresis to prevent false alarms. Although, one issue was still not

resolved and that dealt with the battery indicator being inverted. This means that when the battery had

power then the light would stay on. This would drain the battery a lot. A mosfet was added during the

testing to see if it would reverse the situation but in the end, there was no LED that would power on

with a voltage that low. Thus, this shows that a proof of concept and it could work perfectly if we had

better components.

8 XBee Programming

8.1 Introduction to XBee Programming
Using factory default settings and the XBee shield interface to the Arduino, the Arduino can be
programmed to send and receive data between two XBee modules using the built-in Serial library. A
programmer can use serial.print() to send data and serial.available() , serial.read() to detect and read
data. The default factory settings also determine what ISM band the modules operates with, the
destination address (default is set to broadcast to all available nodes in range), and the channel the
module is in.

8.2 Testing and Verification of XBees
After the XBees were received from www.sparkfun.com, two modules were inserted in XBee shields
interfaced with Arduinos. One module was programmed to continuously broadcast a byte of
information. Another module was programmed to check the serial input buffer for any serial output
from the XBee, read this data into a variable, and output the variable to the serial monitor on the
desktop.

8.2.1 Results
The result from this test was every XBee module was verified for functionality upon arrival in the mail.

8.3 AT Command Programming
To change the settings of an XBee, you must put the XBee into AT command mode. This is done by
sending the 3-character command sequence “+++” to the XBee module and observing the guard times
before and after the command characters. The Guard Times parameters have a default value of 0x3E8 or
1 second.

Once the AT command mode sequence has been issued, the module responds by sending an “OK\r” out
of the DOUT pin. Once this response is received, AT commands can be sent to the XBee through the DIN
pin.

There are two separate ways of sending AT commands to the XBee module. The first way is to send an
AT command such as “ATDL” with no value. The module will respond to this command with the current

http://www.sparkfun.com/

35

destination low address. The second way is to send an AT command with a value such as
“ATDL0000FFFF”. This command will change the value of the 32 bit register holding the low part (32 bits
of 64 bit address) of the destination address to 0x0000FFFF. The module will respond with “OK” if the
command upon successful execution of the command or respond with “ERROR”.

Commands will not take effect until the AC (Apply Changes) command is issued or the WR (Write)
command is issued. The WR command will write the new value to non-volatile memory on the XBee
module so that the value will remain on the XBee after the XBee is powered down. To exit command
mode, the “ATCN” command must be sent.

Figure 30: AT Command Syntax

8.3.1 AT Command Test
Using the AT command code in Appendix [x], AT commands were sent to an XBee module and 64 bit
destination address was changed from broadcast (DL = 0x0000FFFF) to the 64 bit address of another
XBee module. Using the X-CTU software provided by Digi International, the non-volatile memory on the
XBee can be read and displayed. An XBee module was plugged into an XBee Explorer and connected to
X-CTU. An XBee explorer is a USB to serial base unit for the XBee line. Using a mini USB cable, the
explorer can be attached directly to a computer for use with the X-CTU software. The memory settings
were read into X-CTU as seen in figure 32 and confirmed to be correctly saved on the non-volatile
memory of the XBee. Data was then sent between two modules, similar to the test in 8.2. The sender
was the XBee with the updated destination address of the receiver. A third XBee was interfaced with an
Arduino to ensure that only the receiver received data from the sender. Since every XBee has a unique
64-bit address, the only module that should receive information is the receiver.

Figure 31: USB Explorer Figure 32: X-CTU Screenshot

36

8.3.2 Results
The result from this test was that AT commands were successfully saved into the memory of the XBee.
By using the X-CTU software and XBee explorer, the non-volatile memory was checked for correctness.
Also, the receiver successfully received information from the sender. While this was happening, the
third XBee received no information. This is the correct result because the sender is no longer
broadcasting the data to all available modules, only sending it to the 64 bit destination address.

8.4 API Programming
API operation is an alternative to transparent (AT) operation. The frame-based API extends the level to
which a host application can interact with the networking capabilities. When in API mode, all data
entering and leaving the module’s UART is contained in frames that define operations or events within
the module. A host application, an Arduino for example, can send data frames to the module that
contain address and payload information instead of using command mode to modify addresses. The
module will send data frames to the application containing status packets; as well as source, and
payload. The reasons for the use of API programming in the positioning system is: the transmission of
data to multiple destinations without entering Command Mode, to be able to identify the source
address of each received packet, and to retrieve the RSSI information from memory. The following data
frames are using the Digimesh networking scheme and modules.

8.4.1 API Data Frames

8.4.1.1 AT Command
The AT Command is same command used in Section 8.3. The frame as seen in figure 33 is what the host

application needs to use to query or set module parameters on the XBee. The API command applies

changes after executing the command.

Figure 33: AT Command Digimesh API Frame

37

8.4.1.2 AT Command Response
In response an AT Command frame, an XBee will respond with an AT Command Response frame. This

frame will indicate if the settings were set successfully or will respond with register data if memory was

requested to be read. An example would be “DB” being sent as an AT Command and the module

responding with “0x4C” in the Command Data field.

Figure 34: AT Command Response Digimesh API Frame

8.4.1.3 Transmit Request
The Transmit Request API frame will cause the XBee module to send data as an RF packet to the

specified destination. A host application specifies a destination by the 64-bit address field in the data

frame. To send a broadcast signal, you can set the 64 bit address to 0x000000000000FFFF. In series 1

modules, you can also use a 16 bit address transmit request. Digimesh protocol only supports 64 bit

address transmit request frames.

Figure 35: Transmit Request Digimesh API Frame

38

8.4.1.4 Receive Packet
When an XBee received an RF packet, the data frame shown in figure 36 is sent out of the UART to the

host application.

Figure 36: Receive Packet Digimesh API Frame

8.4.2 Arduino-XBee API Library
A user-made open source library that was made for API mode operation was found
(http://code.google.com/p/xbee-arduino/) and researched. It supports both Series 1 and Series 2 XBee
modules with support for a majority of packet types (Transmit Request, etc) supported. To use this
library, the XBees must be set to API mode 2 (escaped characters enabled).

8.4.2.1 API Library Test
Since the Digimesh modules have the specifications as the Series 1 modules, it was expected that the
library would work with the Digimesh modules. An Arduino program was written to send an API AT
Command to a module and retrieve data from memory similar to the test done in section 8.3.1. Another
program was written to do a sender/receiver test similar to test done in section 8.2.

8.4.2.2 Results
The AT Command test was a success. The Arduino successfully sent an AT Command data frame and
successfully received an AT Command Response data frame back and read the data from memory. The
transmission test was a failure. Using example code from the library’s maker for the sender and receiver,
the receiver never received any RF data and did not connect with the sender XBee. The conclusion from
this test is that the library’s code for series 1 does not work with the Digimesh data frames.

http://code.google.com/p/xbee-arduino/

39

8.4.3 API Library Programming
From the results of the API Library Test, research was done to troubleshoot the transmission failure. The
result of that research indicated that the Series 1 module and Digimesh modules have different Transmit
Request and Receive Packet data frames. The user-made library did not support these Digimesh data
frames.

8.4.3.1 Series 1 vs Digimesh Data Frames
Comparing the Series 1 Transmit Request data frame in figure 37 to the Digimesh Transmit Request in
Section 8.4.1.3, the reserved bytes (0xFFE) and broadcast radius byte was inserted into the Digimesh
data frame.

Figure 37: Series 1 Transmit Request

Comparing the Series 1 Receive Packet in figure 38 to the Digimesh Receive packet in Section 8.4.1.4, the
RSSI byte was removed in the Digimesh data frame and the reserved bytes (0xFFFE) were inserted.

Figure 38: Series 1 Receive Packet

Using this information, the library was updated with the DMTxRequest and DMRxResponse functions
(seen in Appendix D).

40

8.4.3.2 API Library Test 2
A second transmission test was done using the updated API library. The programs used for the sender

and receiver were similar to programs used in section 8.4.2.1 except for the use of DMTxRequest

instead of Tx64Request and DMRxResponse instead of Rx64Response.

8.4.3.3 Results
The XBees correctly transmitted data between the sender and receiver modules. Data was read from the

receive packet and outputted to the serial monitor on the host computer. With API transmission

working, distance testing can begin.

9 Tag/Reader Distance Tests

9.1 Tag/Reader Testing Introduction
In order to make sure the system worked correctly, a distance test was needed. This involved placing a

tag at a set distance away from the reader. And through computation and programming, obtaining a

hexadecimal value that will then be converted into meters in order to determine the distance. This

testing was necessary seeing how this is the main reason for our system; calculate the distance between

an object in the field in relation to readers throughout a given room or area.

9.1.1 Distance Formula
From previous testing, it was concluded that

 (
 ()

) ()

was the most accurate distance formula available. The variables in the formula are as follows:

 ()

 ()

Using this formula, the next tests were performed where a distance was calculated between a reader

and tag using RSSI data.

9.2 Test 1
Testing of the system began inside one of the rooms located in the ERAD building. Every meter was

marked off using a tape measure and a yardstick. Also, blue scotch tape was used to designate each

meter. Over the course of a few weeks, the system was tested at least 10 times. Figure 39 shows the

results of the first test that involves the one tag and only one reader:

41

Figure 39: Varying distance testing between tag and reader 1

9.2.1 Results

Test 1 was measured at a distance of 7.5 meters. Test 2 at 1m, test 3 at 9m, and test 4 at approximately

5m. As shown from figure 39, the results are non consistent, yet some are closer to their actual

approximated measurable values. It can be seen that test 3 produced the most accurate representation

of distance comparatively to how far apart the tag and the reader were. Test 4 also produced similar

results.

The system was tested at different lengths to also see how accurate the readings would be depending

on the distance between the tag and the reader. This is one of the main reasons to why the distances

vary each test. Another reason is to test the theory that at further distances, the readings would become

more accurate rather than at closer distances. For this test, that theory was proven to be true.

9.3 Second Distance Test

This test was conducted outside in the hallway of the ERAD building next to the main lab. This area was

chosen because of the open space as well as the possibility of less interference from metallic objects

such as lockers, wires, and metal stands. For this test, five distances were measured. Figure 40 displays

the results of each test:

0

2

4

6

8

10

12

14

16

Facing Away Reader Facing, Tag
Away

Reader Away, Tag
Facing

Test 1: 7.5m

Test 2: 1m

Test 3: 9m

Test 4: 5m

42

Figure 40: Varying distance testing between tag and reader 2

9.3.1 Results

From the results in Figure 40, the conclusion is that the most accurate reading for each testing sequence

is when the devices are both facing away from each other. The one exception is when the distance is

stretched further than 9 meters such as that shown for test 3. However, once the reader was facing

away from the tag, which was facing towards the reader, the resulting distance shot up dramatically

leading to an inaccurate reading.

Throughout the testing process, it was observed that the system was not omni directional. This is

noticeable from there being empty results for the “Facing”, “Readers Facing, Tags Away”, and “Readers

Away, Tags Facing” results. These results were either very small, large, or too unstable to be read in as

actual results. In order to make sure of the results that were received, it was decided to do another

testing indoors which involved other methods.

9.4 Third Distance Test

For this testing series, our goal was to see if the devices would either read better or worse if they were

placed on their sides or held in the air. This was also attempted in order to obtain a better range from

the antennas as well as possibly increasing the accuracy of their radiation spans. Figure 41 shows the

results of the testing:

0

2

4

6

8

10

12

14

16

Facing Away Readers Facing, Tags
Away

Readers Away, Tags
Facing

Test 1: 8m

Test 2: 6m

Test 3: 10.1m

Test 4: 8.9m

Test 5: 13m

43

Figure 41: Single distance testing between tag and reader

9.4.1 Results

When the devices were placed on their sides, facing towards each other and facing away, they both

produced the same results of 14 meters. These results are obviously off by 4 meters for both sequences.

Therefore, placing the devices on their sides has a detrimental effect on the results of the system. Lastly,

the devices were held upward by at least 4 inches. However, numerous problems occurred. The values

tend to jump around rather than stay consistent. There was also an issue in which the signals strength

was not strong enough. Lastly, there could have been added interference from our hands holding the

devices upward. Consequently, holding the devices upward produced nothing as far as distance was

concerned for the project.

9.5 Conclusion
The conclusion from these tests was that the chip antennas that came with the Digimesh XBee 2.4 GHz

modules were not suitable for use in a location system. From the distance tests in Section 9, it was clear

that the antennas were not omni-directional, which is a requirement for a location system. This is a

requirement because the system will not know the orientation of the tag. Research was done (see

Section 10) and a decision was made to switch XBee modules and antennas to equipment provided by

the Cameron group.

10 Antenna Comparisons
In order to provide a better signal and receive all the data/packets from each of the Arduino Uno

readers we had use antennas designed for 2.4GHz applications. The team noticed a big difference

between the onboard chip antennas of the XBee and the dedicated external antennas that the Cameron

group helped purchase and fund. The main differences between the two antennas are the range and the

0

2

4

6

8

10

12

14

16

On Side; Facing On Side; Away Held Up (4in)

Distance Test 3

Test 1: 10m

44

radiation pattern. The ideal or standard radiation pattern would be perfect oval shapes in all directions

but there are many environmental affects that could distort the radiation pattern.

10.1 XBee Antennas
 Initially, the chip antennas were already embedded into the Digimesh XBee modules.

Figure 42: XBee with an integrated chip antenna show in the red box

Antenna location is very important for optimal performance. In general, the antennas radiate and

receive best perpendicular to the direction in which they are pointing. Therefore, a vertical antenna

radiation pattern is strongest across the horizon. Metal objected near the antenna may also distort the

radiation pattern of the XBee antenna. Metal objects between the readers and the tags will also block

the radiation path or reduce the transmission distance so all the readers and tags should be positioned

away from them if possible. When testing the antenna in a room. The team originally overlooked

ventilation ducts, metal poles and studs, and even concrete due to the metal reinforcement usually

embedded inside them. Thus, the readers should not be placed inside a metal enclosure and make sure

that the embedded XBee is placed at the edge of the host PCB where it is mounted. Due to all these

issues that were overlooked when testing and the radiation pattern was already distorted to begin with

as seen below in figure 43:

45

Figure 43: Chip antenna radiation pattern from XBee

By looking at the figure, the team decided that using these antennas were not going to give us the

precise and accurate measurements that we needed in order to make our indoor location system work.

During the many days testing our setup, we were never able to get any decent readings that were even

close to our percent error that the team had estimated.

10.2 Titanis Antennas
The new antenna is the Titanis 2.4 GHz Swivel SMA Antenna by Antenova. The Titanis antenna is also

designed for 2.4 GHz applications and meets the FCC regulation with high efficiency. The Texas

Instruments’ location system used for these antennas and these antennas were not in use. With the

backing of the Cameron group, new XBees were purchased and these antennas were put into use. A

model of the antenna can be seen below in figure 44:

46

Figure 44: Titanis antenna used to attach to the XBee

The Titanis antenna is very configurable and can swivel in any direction in order to provide the best

radiation pattern. The radiation patters for all the planes can be seen below in figure 45:

Figure 45: Titanis antenna radiation pattern from different planes

With a dedicated antenna instead on the onboard antenna, the radiation patterns are much rounder

and stronger. Although the metal and concrete interference still apply, the Titans cover a larger area

than the regular XBee antennas and give us a much better and accurate reading.

10.3 Results
In conclusion, it was decided that the Titanis antenna was much more accurate and gave a much wider

range for our indoor positioning system. Due to flooding at Digi’s factory causing a shortage of Digimesh

modules, the decision to switch to 802.15.4 XBee modules for their RPSMA connectors was made.

47

11 Distance Tests with New Antennas

11.1 Test 1

Due to the bad radiation from the old antennas, new antennas were obtained from the Cameron group.

As mentioned, these antennas provided a better radiation allowing for a stronger signal between

devices. Also, due to the better radiation, testing the system at further distances was now possible.

Problems were encountered during the initial testing period. It was discovered that doing the distance

testing indoors with the new antennas caused for inaccurate results. This was mainly due to the new

antenna’s sensitivity to metal interference and WiFi interference, which operates on same ISM band.

Therefore, the testing was taken outside in front of CEBA. Table 2 displays the results:

Table 2: Distance testing with new antennas 1

Actual Distance Calculated Distance

10m 10.5m

6m 6m

19.1m 19m

21m 25m

11.1.1 Results

From these four testing sequences, it can be seen that the results were more accurate due to the new

antennas. None of the results match exactly the distance to which they were placed, but the degree of

error remained so small that it was not a big concern.

11.2 Test 2

Due to the fact that cars were passing by while the system was being testing in front of CEBA, testing

was postponed and resumed on the parade grounds. As testing commenced, it was noticed that the

measurements would vary off by at least 2 meters and at most 6. The environment was considerably

more humid and higher temperature than test 1. Figure 46 displays and shows the results:

Figure 46: Distance testing with new antennas 2

0

5

10

15

20

25

30

35

40

Facing 1 Facing 2

Test 1: 29m

Test 2: 25m

Test 3: 20m

Test 4: 15m

Test 5: 10m

48

11.2.1 Results

The calculated distances were off by at least 2 meters to 6 meters. The changes in environment

attenuated the signal strength and made the signal strength weaker than Test 1 for the same distances

apart. The conclusion from this test was the distance formula needs to be tuned to the environment

every time we test.

11.3 Conclusion
From the distances tests, it was concluded that the Titanis antennas would work with a location system.

The antennas are omni-directional on the XY plane. The lesson learned from these tests was that the

distance formula path-loss exponent needs to be tuned to the environment. Factors that can affect RSSI

are: temperature, humidity, elevation, and interference from objects.

12 2-D Trilateration Location Tests

Every test below was conducted using the Arduino Tag, Reader, Coordinator, and Mega codes in

Appendix C and the Location System Matlab Code in Appendix B. The coordinator is reader 2, which is

connected to the Arduino Mega. Each of these tests is performed the same way: the coordinator will

send a signal to the readers and reset the RSSI array, coordinator will send a signal to tag, tag will send

150 packets to each reader and delay 1 second between every 50 packet burst cycle, and RSSI

measurements will be sent to coordinator and subsequently sent to Matlab through the Arduino Mega.

12.1 Test 1

This test was located at the parade grounds on university grounds. A 10 meter x 10 meter coordinate

system was measured out and marked. After measuring out 10 meters and tuning the distance formula

to the environment, the system was set up for 2-D trilateration. Reader 1 was placed at [10, 0], reader 2

was placed at [0, 10], and reader 3 was placed at [-10, 0]. A tag was placed at [0, 4] and the system was

started from the host computer with the Matlab program in Appendix [x] running. This test was done at

ground level and the antennas aimed orthogonally to the ground.

12.1.1 Results

The result of this test was inconclusive. The signal strength of signal strength of reader 3 was too low for

the actual distance of the reader to the tag. The conclusion from this test is that the water system and

pipes underground could be attenuated the signal from the tag to reader 3. The water meter for the

parade grounds was directly in between the tag and reader 3.

12.2 Test 2

Test 1 was repeated except every reader and tag was raised into the air 5 feet, thus still 2-D trilateration.

The location of the tag and readers did not change. The orientation of the antennas did not change. This

was done to eliminate any external attenuation of the signal from being ground level.

49

12.2.1 Results

This test was a success. As you can see in figure 47, the tag was shown at [1, 4]. This is within 1 meter of

the actual location of the tag and considered a success for our system. Comparing the actual result to

the simulated result, the actual result is relatively close to the simulated, perfect result. The reason for

this error is the error in the distance measurement of each reader. The error in the distance

measurement is ~.5meters for each reader. These errors compound with each other when the

trilateration algorithm is performed and provides an error of 1 meter in the tag location.

Figure 47: Test 2 Result

Figure 48: Test 2 Simulated Result

50

12.3 Test 3

Test 3 was conducted in the parking lot of the electrical engineering building. The temperature was 75

degrees Fahrenheit and light humidity. Reader 1 was set up at [0, 10], reader 2 at [-10,0], reader 3 at

[10,0], and the tag was placed at the [0,0]. The readers were strapped to the reader stands facing

towards the origin while the tag was held up at the vertical level of the readers with its antenna

orthogonal to the ground. The distance formula was not yet tuned to the environment and the system

was tested using the same distance formula as test 2. For this test, the RFID reader was integrated into

the system. After the location process, the RFID card linked to the tag in the field would be scanned and

the plot would appear.

12.3.1 Results

The distance formula not being tuned affected the results greatly. Since there was less humidity during

the test than test 2, the signal strengths of each reader was smaller. Therefore, the distances were

calculated to be shorter than they actually are (as seen in figure 49). The small error in the calculated

location of the tag is an unexpected result since the distance formula calculated smaller distances than

the actual distances. The RFID integration was a success since the plot below only appeared after the

RFID card was scanned and its ID sent to the Matlab program.

Figure 49: Test 3 Results

12.4 Test 4

Test 3 was repeated with the distance formula tuned to the environment.

51

12.4.1 Results

This test was a success. Once the distance formula was tuned to the environment, the distances

calculated were relatively close. Reader 1 and 2 calculated a distance of 12 meters between itself and

the tag instead of 10 meters. This caused the error in the calculated position of the tag of 1 meter, which

is acceptable for this test. Comparing the two figures below, one can see the accuracy of the actual

results against the simulated results.

Figure 50: Test 4 Results

Figure 51: Test 4 Simulated Results

52

12.5 Test 5

In this test, the tag was moved to [2, 4] and the system was once again activated. The tag orientation is

the same as the previous 2 tests.

12.5.1 Results

The result was this test was once again a success. The tag was calculated to be at [1, 3], which gives an

error of 1 meter from the actual location. This was caused by reader 2’s RSSI reading having a 1 meter

error in its calculation.

Figure 52: Test 5 Results

Figure 53: Test 5 Simulated Results

53

12.6 Indoor Test 1

This test was conducted at Zoar Baptist Church’s basketball indoor gymnasium. Reader 1 was located at

[0, 10], reader 2 at [-10, 2], and reader 3 at [10, 2]. The tag was located at [0, 5] and had the same

orientation as previous tests 3 through 5. The indoor environment included metal bleachers surrounding

the basketball court with metal basketball goals. A distance test was performed with a distance of 10

meters between tag and reader. Then, the distance formula was tuned to be correct for the indoor

environment. Once the distance formula was tuned, the system was set up and tested.

12.6.1 Results

These indoor tests were inconclusive. The system provided the correct location of the tag about one-

fourth of the time that the system was activated. For the rest of the tests done indoors, the tag was

calculated to be anywhere from 3-5 meters away from its actual location. This could be caused by the

interference of the metal bleachers and goals within the gymnasium. In figure 54 below, the best result

of the group of tests indoors is shown.

Figure 54: Indoor Test Results

54

13 Graphical User interface

13.1 Introduction to GUI

It was decided that having one would not only allow the opportunity to easily utilize and use the system,

but also the end user once the system is up and operational. Ideally, the GUI should be able to operate

on any working computer that has the capabilities of handling the software.

13.2 GUI layout
The GUI was given a basic layout that would be easy to use and view. For viewing purposes, the GUI was

fitted with a gridded type layout along its X and Y-axes. A “Height” plane was also inserted into the GUI

once it was decided to try 3-D trilateration. By this, the GUI’s gridded screen layout became a 3-D

representation of the field where the system will be set up and operational.

13.2.1 Layout design
Alongside a gridded system, the figure was also enabled to rotate in 3-D. This was to allow the user to

move the figure in any direction they want in order for them to better view the area and where the

object was in relation. One problem encountered was that during rotation, one would not be able to

notice which side or face was which. Therefore, the axes were colored and labeled accordingly. The X-

axis colored as red and the Y-axis colored as blue. The “Height” or Z-axis was left the same, black, in

order to have a base of color and not to make the figure too colorful or pigmented. Figure 55 shows the

resulting layout of the figure that is used in the GUI:

Figure 55: 3-D Figure

Each grid was labeled numerically in order to give the user an idea of distance. The numeric system is

depicted in meters because the system is set to read in as meters. Because the system is meant to work

indoor, 10 meters distance given for each axis, including the height or Z-axis. A dot was included into the

layout to depict where, in the given, area the object was. Once the system begins to run, it will send the

55

information as to where the object is in the field. Once that information is sent into the GUI, the GUI’s

code will plot that objects location on the figure within the gridded field. In order to distinguish the dot,

it was given a simple magenta color and blue outline. This was also done to allow it to stand out to the

user. As the figure is rotated, the object will remain in its same relative space without moving or

disappearing.

There was also a need to have a layout of the room and use it within the 3-D figure. To do this, a built in

Matlab rectangle function was used. By using this function, rectangular objects would be able to depict

tables, desk, and chairs. These rectangular objects would represent these pieces of furniture throughout

a given room. The only issue with using this function is that it worked only in 2-D models, therefore not

3-D. Figure X shows the 2-D figure in which the rectangular pieces were used:

13.2.2 Information layout

Along with the rotation figure, a small information gathering area was added on its left. This area

contained the spaces for the X, Y, and “Height”-axis. Once the system is online and triggered to begin

working, the readers will find the tag in the field. Once found, their coordinates, X, Y, and “height”, will

be sent through to the GUI via MATLAB. The actual numeric information or each axis will be placed in its

designated area. Information sent into these fields will be read in using a particular function that will be

discussed later. Appendix X shows the code used in order to make this happen

13.2.3 Results

The end result is the rotatable figure being represented on the left and the information field containing

the axis fields on the right. The layout was made simple in order to not over complicate anything or

confuse the user with clutter. The main goal was to make sure the basics were in line and working

before adding detail as far as its presentation was concerned.

13.3 GUI Built in Functions

The GUI comes equipped with preset functions in order to allow the programmer to program what they

want to have happen once the GUI is called on or made into an .exe file. The user also has the ability to

add functions to the GUI as such were added when the GUI was given X, Y, and Z-axis’s. There’s no set

limit on the amount of functions that can be added to the interface in the making of a GUI.

13.3.1 Opening function

The main function in which was used to program the GUI was the opening function as shown in Code x:

function GUI_RFID_OpeningFcn(hObject, eventdata, handles, varargin)

Figure 56: Opening function for Matlab GUI

This function is the first function that gets called upon when the GUI opens. Therefore, everything that

needed to happen with the figure and the information needed to go in this area. Within this function,

the GUI was given its layout as well as the section where the information were to be placed. Appendix X

shows the code that was used.

56

In order to read in the information from the Arduino’s and Xbees, separate functions were included into

the opening function. Those functions controlled the information flowing into the GUI as well as the

distance configuration that measured the distances between the readers and the tag. These were placed

in the opening function because the system is needed to work automatically; once the GUI was called

on.

If the program were not configured to work this way, a push button command would be needed in order

to enable the indoor system to operate. This became problematic, mainly because the system runs off of

battery power. Meaning the system would have to remain on while draining power until called upon or

activated by the push button. The push button method would drain the battery power causing the

system to only operate for approximately days at a time. Hence, the automatic method was decided on.

13.3.2 Additional Built-in Functions

The GUI can have functions added to it by the programmer in the initial stage of its building based on

what they need. For this project, the GUI needed sections to read in information for the X, Y, and

“Height”-axis. There was also a need for the points on the figure to be plotted. Because of this, six

additional functions were created as shown in Code X:

function X_plot_Callback(hObject, eventdata, handles)

function X_plot_CreateFcn(hObject, eventdata, handles)

function Y_plot_Callback(hObject, eventdata, handles)

function Y_plot_CreateFcn(hObject, eventdata, handles)

function Height_plot_Callback(hObject, eventdata, handles)

function Height_plot_CreateFcn(hObject, eventdata, handles)

Figure 57: Functions for different elements of Matlab GUI

Each function is designed to handle the specifics of what they were made for. For instance, the function

X_plot is designed to handle how the object is plotted along the x-axis. For this portion, the group’s main

task was being able to have the built in X_plot function read in a function that was built that will bring in

the information from the Arduinos and Xbees.

13.4 Implementation into Location System
After 2D trilateration testing was completed, the only remaining step before the end of the semester

was to implement the Matlab GUI into the existing location system. This is done by calling the GUI as a

function and passing variables to the GUI as parameters. The GUI has a parameter named “varargin”

which is an array which holds a variable number of input arguments. The variables passed from a Matlab

program to the GUI will be held in this array. Using this knowledge, the calculated x-coordinate of the

tag, y-coordinate of the tag, reader coordinate matrix, and distance matrix variables were passed to the

GUI. The GUI will then plot and output information that is user-friendly. The code for this

implementation can be seen in Appendix B (Matlab GUI) and Appendix C (Location System).

57

Figure 58: Example Implementation of Matlab GUI with Location System (not actual test)

58

14 Conclusion
Overall, the group considers our positioning system a success even though the system is inconsistent

indoors. The goal of the project changed from indoor to outdoor during the year with the partnership

with the Cameron group. Without their funds, this project so far would not have made any progress

during the semester.

When the system is setup, calibrated, and tested outdoors, the accuracy of the location of the tag is

within 1 meter, which is within our accuracy requirement. The system is completely user friendly by

being a one click operation in Matlab and easy to use RFID card system. The tag is small and light weight

for easy attachment to objects to be tracked. The system is easy to update and can easily handle up to

10 tags. The group met the marketing requirement by keeping the cost under 1000 dollars, as seen in

Section 15. The system also meets the technical requirement of real time location since it can find the

location of a tag in the field within 10 seconds of startup. These 10 seconds can be easily sped up

through editing tag and coordinator code of the Arduino, which are currently slowed down for

debugging.

 The last technical requirement involves the battery life of the system. This is the one requirement of the

project that did not get completed during the semester. The reason for this is the switch of hardware

from Digimesh XBee modules to 802.15.4 (Series 1) modules. This switch of hardware types had to be

made during the semester due to the flooding of a Digi factory in Thailand during the semester. The

flood caused a shortage of modules with the RPSMA connector and the hardware switch had to be

made to series 1 because they were currently in stock. If the group waited for the Digimesh RPSMA

modules, the project would not have been completed. The series 1 modules do not have the

synchronous sleep mode that was proposed to save the battery for the Project Design Review. In the

future, the group would like a wakeup circuit calibrated for 2.4 GHz attached to the tag and used for

battery life.

For the project moving forward, the group would like to see 3D trilateration for an outdoor

environment. This would involve adding another reader and stand and testing how the RSSI is affected

by the tag being higher/lower than the reader. Also, the Matlab GUI can replace the RFID card system

and become even more user friendly by having a drop down menu listing all the tags to find. Another

future goal of this project is to merge this project with the Cameron group’s augmented reality using a

SQL database to send coordinates of tags to their system.

Overall, this XBee location system is considered a reliable, working prototype for a location system used

in an outdoor environment.

59

15 Budget
Below is a table detailing the group’s budget during the semester. The 802.15.4 XBees, Titanis Antennas,
and adapters were provided by the Cameron group funds, thus costing our group nothing. This
collaboration was done because the Cameron group wanted to use our location system for their
augmented reality. The antennas were left over pieces from the Texas Instruments location system used
in the last year’s Cameron group. Also, an Arduino Mega and 2 Arduino Unos that were previously
owned by members of the group were used but not included in the budget.

Table 3: Budget for Parts Ordered

Product Individual Price Number Ordered Total Price

Lithium Ion Polymer
Batteries

$16.95 2 $33.90

Arduino Uno $29.95 3 $89.85

Arduino Fio $25.00 1 $25.00

Arduino Fio Cable $20.00 1 $20.00

Maxim 8212 Chip $3.75 2 $7.50

ID-12 Chip $29.95 1 $29.95

RFID Card $1.95 2 $3.90

DC Power Supplies $1.90 6 $11.40

Project Enclosure Box $5.95 1 $5.95

Digimesh XBee 2.4 GHz $21.00 4 $84.00

Xbee Shield $24.95 4 $99.80

802.15.4 Xbee 2.4
GHz(RPSMA)

$21.00 8 $168.00

Titanis Antenna $30.00 8 $240.00

RPSMA to SMA Adapter $6.99 8 $55.92

Total with Cameron support: $408.25

Total: $872.17

60

16 References:
"How to calculate battery run-time." Notes for Design Engineers: How to calculate how much

Battery capacity you need. Power Stream, 28 Apr 2011. Web. 2 May 2011.
<http://www.powerstream.com/battery-capacity-calculations.htm>.

"How to Prolong Lithium-based Batteries." Battery University. Isidor Buchmann, 02 May 2011. Web. 2

May 2011.
<http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries>.

"Lithium Polymer Charging/Discharging & Safety Information." MaxAmps. Traxxas, 02 May 2011. Web. 2

May 2011. <http://www.maxamps.com/lipo-care.php>.

N/A. September 23, 2008. MAX8211, MAX8212: Microprocessor Voltage Monitors with
Programmable Voltage Detection. Maxim-ic. April 19, 2011
www.maxim-ic.com/datasheet/index.mvp/id/1273

Pistoia, G. Batteries for Portable Devices. 1st ed. Rome, Italy: Elsevier, 2005. 1-309. Print.

Shih, Chia-Yen, and Jose Marron. "COLA: Complexity-Reduced Trilateration Approach for 3D Localization
 In Wireless Sensor Networks." 2010 Fourth International Conference on Sensor
 Technologies and Applications. (2010): 1-32. Print.

XBee & XBee-PRO OEM RF Module Antenna Considerations. 2005. MaxStream. Sept. 2005
 <ftp1.digi.com/support/images/XST-AN019a_XBeeAntennas.pdf>

Titanis 2.4 GHz Swivel SMA Antenna. 2011. Antenova. 11 Jan. 2011
 <datasheet.elcodis.com/pdf/18/70/187086/b4844-01.pdf>

http://www.maxim-ic.com/datasheet/index.mvp/id/1273

61

Appendix A: Datasheets

Titanis Antenna

62

63

64

65

66

67

68

Lithium Ion Battery

69

70

71

72

73

74

ID-12 RFID Detection Device

75

76

77

78

79

80

81

Maxim 8212

82

83

84

85

86

87

88

89

XBee Antenna

90

91

92

93

94

95

96

Appendix B: Matlab Code

 two_tri.m
function [x, y] = two_tri(x1, x2, x3, y1, y2, y3, d1, d2, d3)

%2-D trilateration function

% Inputs: Readers 1-3 (x,y) and Distances to Tag

%

% x_n1 = (d1^2 - d2^2)-(x1^2 - x2^2)-(y1^2 - y2^2)*2*(y3 - y1)

% x_n2 = 2*(y2 - y1)*(d1^2 - d3^2) - (x1^2 - x3^2) - (y1^2 - y3^2)

% x_d = 2*(x2 - x1)*2*(y3 - y1) - 2*(y2 - y1)*2*(x3-x1)

% x = (x_n1 - x_n2)/x_d

% y = 2;

%

x_n11 = (d1^2 - d2^2) - (x1^2 - x2^2) - (y1^2 - y2^2);

x_n21 = (d1^2 - d3^2) - (x1^2 - x3^2) - (y1^2 - y3^2);

x_n12 = 2*(y2-y1);

x_n22 = 2*(y3-y1);

d11 = 2*(x2-x1);

d21 = 2*(x3-x1);

d12 = 2*(y2-y1);

d22 = 2*(y3-y1);

x_n = [x_n11, x_n12; x_n21, x_n22]

d = [d11, d12; d21, d22]

x = x_n/d

x = det(x)

y_n11 = d11

y_n21 = d21

y_n12 = x_n11

y_n22 = x_n21

y_n = [y_n11, y_n12; y_n21, y_n22]

y = y_n/d

y = det(y)

end

Test2D.m

%prevents rounding when displaying fractions

format long

%Reader 2-D Coordinates [x, y]

Reader = [-2, 2; 2, 1; -1, -2];

%plot reader locations

scatter(getcolumn(Reader(1:3,1:2),1),getcolumn(Reader(1:3,1:2),2), 'MarkerEdgeColor',

[1 0 0], 'MarkerFaceColor', [1 0 0]);figure(gcf)

%x = 0;0;0;

%y = 0;0;0;

%x = getcolumn(Reader(1:3,1:2),1)

%y = getcolumn(Reader(1:3,1:2),2)

%e = [1;1;1]

hold on

%errorbar(x,y, e, 'og', 'Marker', '+');

%axis([-5 5 -5 5]) %set axis for 2-D graphs

set(gca, 'XTick', -5:1:5);

set(gca, 'YTick', -5:1:5);

97

grid on;

%distances to Tag from Reader(i)

%Distance = [2.82842715;2.236067977;2.236067977]; %(0, 0) tag

Distance = [3.16227766; 1; 3.60555127]; %(1, 1) tag

%error circles

circle([-2, 2],Distance(1), 1000,'-');figure(gcf)

%http://www.mathworks.com/matlabcentral/fileexchange/2876-draw-a-circle

circle([2, 1],Distance(2),1000, '-');figure(gcf)

circle([-1, -2],Distance(3), 1000, '-');figure(gcf)

pause;

x = 0;

y = 0;

%Reader(row, col)

[x, y] = two_tri(Reader(1,1), Reader(2, 1), Reader(3,1), Reader(1, 2), Reader(2, 2),

Reader(3, 2), Distance(1), Distance(2), Distance(3));

%plot tag

scatter(x,y, 'MarkerEdgeColor', [0 0 0], 'MarkerFaceColor', [0 0 0]);figure(gcf)

circle([x, y],.5,1000,'-');figure(gcf)

pause;

clf;

three_tri.m
function [x, y, z] = three_tri(x1, y1, z1, d1, x2, y2, z2, d2, x3, y3, z3, d3, x4,

y4, z4, d4)

%3-D trilateration. 4 anchor nodes

% x1 = x coordinate of reader 1

% y1 = y coordinate of reader 1

% z1 = z coordinate of reader 1

% d1 = distance from tag to reader 1

% Function signature is done this way to make the functions below easier

% to type and understand and debug. Harder to call the function but

% easier to edit/understand the equations below

%x_numerator elements

x_n11 = (d1^2-d2^2) - (x1^2-x2^2) - (y1^2-y2^2) - (z1^2-z2^2); %sigma

x_n21 = (d1^2-d3^2) - (x1^2-x3^2) - (y1^2-y3^2) - (z1^2-z3^2); %beta

x_n31 = (d1^2-d4^2) - (x1^2-x4^2) - (y1^2-y4^2) - (z1^2-z4^2); %phi

x_n12 = 2*(y2-y1);

x_n22 = 2*(y3-y1);

x_n32 = 2*(y4-y1);

x_n13 = 2*(z2-z1);

x_n23 = 2*(z3-z1);

x_n33 = 2*(z4-z1);

%all the individual elements in M(COLA ieee document)

d11 = 2*(x2-x1);

d21 = 2*(x3-x1);

d31 = 2*(x4-x1);

d12 = 2*(y2-y1);

d22 = 2*(y3-y1);

d32 = 2*(y4-y1);

d13 = 2*(z2-z1);

d23 = 2*(z3-z1);

d33 = 2*(z4-z1);

%bringing M together into [3, 3] matrix

d = [d11, d12, d13; d21, d22, d23; d31, d32, d33];

98

%bringing numerator together for x

x_n = [x_n11, x_n12, x_n13; x_n21, x_n22, x_n23; x_n31, x_n32, x_n33];

%finding x by dividing matrix operation and then determinant

x = x_n / d;

x = det(x);

%individual y elements

y_n11 = 2*(x2-x1);

y_n21 = 2*(x3-x1);

y_n31 = 2*(x4-x1);

y_n12 = x_n11; %sigma

y_n22 = x_n21; %beta

y_n32 = x_n31; %phi

y_n13 = 2*(z2-z1);

y_n23 = 2*(z3-z1);

y_n33 = 2*(z4-z1);

%bringing numerator together for y

y_n = [y_n11, y_n12, y_n13; y_n21, y_n22, y_n23; y_n31, y_n32, y_n33];

%finding y by dividing matrix operation and then determinant

y = y_n / d;

y = det(y);

%individual z elements

z_n11 = 2*(x2-x1);

z_n21 = 2*(x3-x1);

z_n31 = 2*(x4-x1);

z_n12 = 2*(y2-y1);

z_n22 = 2*(y3-y1);

z_n32 = 2*(y4-y1);

z_n13 = x_n11; %sigma

z_n23 = x_n21; %beta

z_n33 = x_n31; %phi

%bringing z numerator together

z_n = [z_n11, z_n12, z_n13; z_n21, z_n22, z_n23; z_n31, z_n32, z_n33];

%finding z by dividing matrix operation and then determinant

z = z_n / d;

z = det(z);

end

Test3D.m
%prevents rounding when displaying fractions

format long

%Reader 3-D Coordinates [x, y, z]

Reader = [-2, 2, 2; 2, 1, -2; -1, -2, 2; 3, 3, 3];

%plot reader locations

scatter3(getcolumn(Reader(1:4,1:3),1),getcolumn(Reader(1:4,1:3),2),

getcolumn(Reader(1:4,1:3),3), 'MarkerEdgeColor', [1 0 0], 'MarkerFaceColor', [1 0

0]);figure(gcf)

%x = 0;0;0;

%y = 0;0;0;

%x = getcolumn(Reader(1:3,1:2),1)

%y = getcolumn(Reader(1:3,1:2),2)

99

%e = [1;1;1]

hold on

%errorbar(x,y, e, 'og', 'Marker', '+');

axis([-3 3 -3 3 -3 3]) %set axis for 2-D graphs

set(gca, 'XTick', -3:1:3);

set(gca, 'YTick', -3:1:3);

set(gca, 'ZTick', -3:1:3);

grid on;

%distances to Tag from Reader(i)

%Distance = [2.82842715;2.236067977;2.236067977]; %(0, 0) tag

Distance = [3.464101615; 3; 3; 5.196152423]; %(0, 0 , 0) tag

%initialize variables

x = 0;

y = 0;

z = 0;

[x, y, z] = three_tri(Reader(1, 1), Reader(1, 2), Reader(1, 3), Distance(1), Reader(2,

1), Reader(2, 2), Reader(2, 3), Distance(2), Reader(3, 1), Reader(3, 2), Reader(3, 3),

Distance(3), Reader(4, 1), Reader(4, 2), Reader(4, 3), Distance(4));

scatter3(x, y, z, 'MarkerEdgeColor', [1 1 0], 'MarkerFaceColor', [1 1 0]);figure(gcf)

COLA.m
%prevents formatting of decimals

format long

%super-node lower level nodes

%3-D coordinates [x, y, z]

lowReader = [-2, 2, 2; 1, 1, 2; -3, 0 , 2]; %all z-values must be the same

%x, y values must be same as lowReader values.

%Z values must be > lowReader values and equal to each other

highReader = [-2, 2, 4; 1, 1, 4; -3, 0, 4];

%tag x y z for testing purposes

tag = [4; 5; 1];

low_d1 = sqrt((lowReader(1, 1)- tag(1))^2 + (lowReader(1, 2)- tag(2))^2 +

(lowReader(1, 3) - tag(3))^2);

low_d2 = sqrt((lowReader(2, 1)- tag(1))^2 + (lowReader(2, 2)- tag(2))^2 +

(lowReader(2, 3)- tag(3))^2);

low_d3 = sqrt((lowReader(3, 1)- tag(1))^2 + (lowReader(3, 2)- tag(2))^2 +

(lowReader(3, 3)- tag(3))^2);

%find distances for tag (0, 0, 0)

high_d1 = sqrt((highReader(1,1)- tag(1))^2 + (highReader(1, 2)- tag(2))^2 +

(highReader(1, 3)- tag(3))^2);

high_d2 = sqrt((highReader(2,1)- tag(1))^2 + (highReader(2, 2)- tag(2))^2 +

(highReader(2, 3)- tag(3))^2);

high_d3 = sqrt((highReader(3,1)- tag(1))^2 + (highReader(3, 2)- tag(2))^2 +

(highReader(3, 3)- tag(3))^2);

lowDistances = [low_d1; low_d2; low_d3];

highDistances = [high_d1; high_d2; high_d3];

%height of tag

z = colaHeight(lowReader, highReader, lowDistances, highDistances)

%array for 2-D trilateration

distances = [0; 0; 0];

100

distances = findDistance(lowReader, highReader, lowDistances, highDistances);

[x, y] = two_tri(lowReader(1, 1), lowReader(2, 1), lowReader(3, 1), lowReader(1, 2),

lowReader(2, 2), lowReader(3, 2), distances(1), distances(2), distances(3))

COLA_height.m
function [tagHeight] = colaHeight(lowReader, highReader, lowDistances,

highDistances)

%COLAHEIGHT Find height of tag

% Using supernode distances, use trig to determine height of tag

%heightDifference = difference in height of readers in supernode

%same for every node

heightDifference = highReader(1, 3) - lowReader(1, 3);

height = [0; 0; 0];

%see cola page 28 to get formula for h

for i = 1:3

 height(i) = highReader(i, 3) - ((highDistances(i)^2 - lowDistances(i)^2 +

heightDifference^2)/(2*heightDifference));

end

% DID NOT WORK: Mistake in formula derivation. See cola page 28 where

% cos(theta is found. multiple each side by d2 to get the height of tag +

% height of lower reader node.

% for i = 1:3

% %numerator and denominator for cosine law

% num = heightDifference^2 + lowDistances(i)^2 - highDistances(i)^2;

% den = 2*lowDistances(i)*heightDifference;

% theta = acos(num/den);

% phi = 180 - theta;

% x = cos(phi) * lowDistances(i);

% height(i) = lowReader(i, 3) - x

% end

%set x = 0 for below

x = 0;

%find average height found by the 3 super-nodes for more accurate results

for i = 1:3

 x = x + height(i);

end

x = x/3;

tagHeight = x;

MATLAB GUI
function varargout = GUI_RFID(varargin)
% GUI_RFID MATLAB code for GUI_RFID.fig
% GUI_RFID, by itself, creates a new GUI_RFID or raises the existing
% singleton*.
%
% H = GUI_RFID returns the handle to a new GUI_RFID or the handle to
% the existing singleton*.
%
% GUI_RFID('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GUI_RFID.M with the given input arguments.
%

101

% GUI_RFID('Property','Value',...) creates a new GUI_RFID or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GUI_RFID_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to GUI_RFID_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GUI_RFID

% Last Modified by GUIDE v2.5 19-Sep-2011 15:33:57

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @GUI_RFID_OpeningFcn, ...
 'gui_OutputFcn', @GUI_RFID_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before GUI_RFID is made visible.
function GUI_RFID_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI_RFID (see VARARGIN)

x=varargin{1}
y=varargin{2}
z=5;

%plot3(x,y,z, 'o', 'MarkerFaceColor', 'm');figure(gcf);
scatter(getcolumn(varargin{3}(1:3,1:2),1),getcolumn(varargin{3}(1:3,1:2),2),

'MarkerEdgeColor', [1 0 0], 'MarkerFaceColor', [1 0 0]);figure(gcf)
set(gca, 'Xcolor', [0 0 0]);
set(gca, 'Ycolor', [0 0 0]);
axis([-10 10 -10 10]) %set axis for 2-D graphs
set(gca, 'XTick', -10:1:10);

102

set(gca, 'YTick', -10:1:10);
grid on;
hold on;
%set(gca, 'Zcolor', [0 0 0]);

xlabel('X Axis'),
ylabel('Y Axis'),
%zlabel('Height'),

rectangle('Position', [-1,3,2,2], 'FaceColor', [1,1,0], 'EdgeColor',

[1,1,0]);

circle([0, 10],varargin{4}(1), 1000,'-');figure(gcf)

%http://www.mathworks.com/matlabcentral/fileexchange/2876-draw-a-circle
circle([-10, 0],varargin{4}(2),1000, '-');figure(gcf)
circle([10, 0],varargin{4}(3), 1000, '-');figure(gcf)

scatter(x,y, 'MarkerEdgeColor', [0 0 0], 'MarkerFaceColor', [0 0

0]);figure(gcf)

% axis manual;
% axis([-10 10 -10 10 0 10]);
% grid on;
% rotate3d on;

stringx = num2str(x);
stringy = num2str(y);
stringz = num2str(z);
str_x = 'X = ';
str_y = 'Y = ';
str_z = 'Height = ';
output_x = strcat(str_x, stringx);
output_y = strcat(str_y, stringy);
output_z = strcat(str_z, stringz);
set(handles.X_plot, 'String', output_x);
set(handles.Y_plot, 'String', output_y);
set(handles.Height_plot, 'String', output_z);

% Choose default command line output for GUI_RFID
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI_RFID wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = GUI_RFID_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB

103

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function X_plot_Callback(hObject, eventdata, handles)
% hObject handle to X_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of X_plot as text
% str2double(get(hObject,'String')) returns contents of X_plot as a

double

% --- Executes during object creation, after setting all properties.
function X_plot_CreateFcn(hObject, eventdata, handles)
% hObject handle to X_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Y_plot_Callback(hObject, eventdata, handles)
% hObject handle to Y_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Y_plot as text
% str2double(get(hObject,'String')) returns contents of Y_plot as a

double

% --- Executes during object creation, after setting all properties.
function Y_plot_CreateFcn(hObject, eventdata, handles)
% hObject handle to Y_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

104

% --- Executes on button press in Find_pushbutton1.
function Find_pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to Find_pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function Height_plot_Callback(hObject, eventdata, handles)
% hObject handle to Height_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Height_plot as text
% str2double(get(hObject,'String')) returns contents of Height_plot as

a double

% --- Executes during object creation, after setting all properties.

function Height_plot_CreateFcn(hObject, eventdata, handles)
% hObject handle to Height_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

Matlab Distance Formula
function [distance] = rssiDistance(rssi)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
%COLA formula
%P_o = 17; %RSSI at 0 meters
P_o = 23;
f = 2400; %frequency (2.4 GHz = 2400 MHz)

%n = 3.5; %path-loss exponent
n = 3.3;
f_m = 6; %fade margin

distance = 10^((P_o - f_m - rssi - (10*n*log10(f)) + (30*n) - 32.44)/(10*n));

RFID Matlab Serial Input
%Taking in Serial Data from Arduino

clear all;

Arduino = serial('COM9'); %define serial

Arduino.BaudRate = 9600; %baud rate

105

end_str = 'END';

header = 'Byte';

footer = 'Footer';

RFID = '';

fopen(Arduino); %opens up serial port for reading

out = instrfind('Port', 'COM9'); %Port and COM3 are the objects

while(1)

 try

data = fscanf(Arduino, '%s'); %takes in data as a string and returns it to data

 if (strcmp(data, footer)) %if Serial takes in the string "End" close the serial

port and exit loop

 fclose(Arduino);

 delete(Arduino);

 break; %terminate loop

 else

 if(strcmp(data, header))

 data3 = fscanf(Arduino, '%s');

 RFID = strcat(RFID, data3);

 end

 end

 catch exception

 fclose(Arduino);

 delete(Arduino);

 break;

 end

end

106

Appendix C: Arduino Code

Printing RFID to Screen
//#include <NewSoftSerial.h>

int resetPin = 13;
const int serIn = 2;
const int serOut = 3;
//NewSoftSerial port(serIn, serOut);
char incomingByte;

void setup()
{
 Serial.begin(9600);
 pinMode(resetPin, OUTPUT);
 digitalWrite(resetPin, HIGH);
 //port.begin(9600);
 Serial.println("Bring RFID card to reader");
}

void loop()
{
 boolean reading = false;
 incomingByte= 0;
 if (Serial.available())
 {
 incomingByte = Serial.read();
 if(incomingByte == 2)
 {
 Serial.println("STX");
 }
 if(incomingByte == 3)
 {
 Serial.println("ETX");
 }
 else
 {
 Serial.print(incomingByte, BYTE);
 }
 }

}

void resetReader()
{
 digitalWrite(resetPin, LOW);
 delay(150);
 digitalWrite(resetPin, HIGH);
}

Sending RFID to Matlab
//#include <NewSoftSerial.h>

int resetPin = 13;
const int serIn = 2;
const int serOut = 3;

107

//NewSoftSerial port(serIn, serOut);
char incomingByte;

void setup()
{
 Serial.begin(9600);
 pinMode(resetPin, OUTPUT);
 digitalWrite(resetPin, HIGH);
 //port.begin(9600);
 Serial.println("Bring RFID card to reader");
}

void loop()
{
 boolean reading = false;
 incomingByte= 0;
 if (Serial.available())
 {
 incomingByte = Serial.read();
 if(incomingByte == 2)
 {
 Serial.println("Header");
 }
 if(incomingByte == 3)
 {
 Serial.println("Footer");
 }
 else
 {
 Serial.print(incomingByte, BYTE);
 Serial.print(incomingByte);
 }
 }

}
void resetReader()
{
 digitalWrite(resetPin, LOW);
 delay(150);
 digitalWrite(resetPin, HIGH);
}

AT Command
String xb1_DH= "ATDH0013A200\r";
String xb1_DL= "ATDL40715D91\r";
String xb2_DH= "ATDH0013A200\r";
String xb2_DL= "ATDL40715D34\r";
String api = "ATAP0\r"; //sets API mode to 1
boolean configured = false;

boolean configureRadio() {
 Serial.print("+++");

 String ok_response = "OK\r";
 String addressLow = String("");
 String addressHigh = String("");

108

 String response = String("");
 while (response.length() < ok_response.length())
 {
 if(Serial.available() > 0)
 {
 response += (char) Serial.read();
 }
 }

 if (response.equals(ok_response))
 {
 Serial.print("ATSH\r");
 delay(200);
 while(Serial.available() > 0)
 {
 addressHigh += (char) Serial.read();
 }
 Serial.print("ATSL\r");
 delay(200);
 while(Serial.available() > 0)
 {
 addressLow += (char) Serial.read();
 }
 Serial.print(xb1_DH);
 delay(10);
 Serial.print(xb1_DL);
 delay(10);
 Serial.print(api);
 delay(10);
 Serial.flush(); //flushes the reponses from changing addresses
 Serial.print("ATDH\r");
 delay(20); //minimum delay for waiting for 8 bytes
 while(Serial.available() > 0)
 {
 addressHigh += (char) Serial.read();
 }
 Serial.print("ATDL\r");
 delay(20); //minimum delay for waiting for 8 bytes
 while(Serial.available() > 0)
 {
 addressLow += (char) Serial.read();
 }
 Serial.print("ATWR\r");
 delay(10);
 Serial.print("ATCN\r");
 Serial.println("");
 Serial.print("Coordinator = ");
 Serial.println(addressHigh);
 Serial.print("Address low = ");
 Serial.println(addressLow);
 Serial.println(response);
 return true;
 }
 else {
 return false;
 }
 }

109

void setup()
{
 Serial.begin(9600);
 configured = configureRadio(); //AT commands
}

void loop()
{
 if(configured) {
 Serial.print("Hello!");
 delay(3000);
 }
 else {
 delay(30000);
 configureRadio();
 }
}

Series 1 API Sender Test Code
#include <XBee.h>

XBee xbee = XBee();

unsigned long start = millis();

// allocate two bytes for to hold a 10-bit analog reading
uint8_t payload[] = { 0, 0 };

// with Series 1 you can use either 16-bit or 64-bit addressing

// 16-bit addressing: Enter address of remote XBee, typically the coordinator
//Tx16Request tx = Tx16Request(0x1874, payload, sizeof(payload));

// 64-bit addressing: This is the SH + SL address of remote XBee
XBeeAddress64 addr64 = XBeeAddress64(0x0013a200, 0x4008b490);
// unless you have MY on the receiving radio set to FFFF, this will be received as a RX16 packet
Tx64Request tx = Tx64Request(addr64, payload, sizeof(payload));

TxStatusResponse txStatus = TxStatusResponse();

int pin5 = 0;

int statusLed = 11;
int errorLed = 12;

void flashLed(int pin, int times, int wait) {

 for (int i = 0; i < times; i++) {
 digitalWrite(pin, HIGH);
 delay(wait);
 digitalWrite(pin, LOW);

 if (i + 1 < times) {
 delay(wait);
 }
 }
}

110

void setup() {
 pinMode(statusLed, OUTPUT);
 pinMode(errorLed, OUTPUT);

 xbee.begin(9600);
}

void loop() {

 // start transmitting after a startup delay. Note: this will rollover to 0 eventually so not best way to handle

 xbee.send(tx);

 // flash TX indicator
 flashLed(statusLed, 1, 100);
 }

 // after sending a tx request, we expect a status response
 // wait up to 5 seconds for the status response
 if (xbee.readPacket(5000)) {
 // got a response!

 // should be a znet tx status
 if (xbee.getResponse().getApiId() == TX_STATUS_RESPONSE) {
 xbee.getResponse().getZBTxStatusResponse(txStatus);

 // get the delivery status, the fifth byte
 if (txStatus.getStatus() == SUCCESS) {
 // success. time to celebrate
 flashLed(statusLed, 5, 50);
 } else {
 // the remote XBee did not receive our packet. is it powered on?
 flashLed(errorLed, 3, 500);
 }
 }
 } else {
 // local XBee did not provide a timely TX Status Response -- should not happen
 flashLed(errorLed, 2, 50);
 }

 delay(1000);
}

Series 1 API Receiver Test Code
#include <XBee.h>

XBee xbee = XBee();
XBeeResponse response = XBeeResponse();
// create reusable response objects for responses we expect to handle
Rx16Response rx16 = Rx16Response();
Rx64Response rx64 = Rx64Response();

int statusLed = 11;
int errorLed = 12;
int dataLed = 10;

111

uint8_t option = 0;
uint8_t data = 0;

void flashLed(int pin, int times, int wait) {

 for (int i = 0; i < times; i++) {
 digitalWrite(pin, HIGH);
 delay(wait);
 digitalWrite(pin, LOW);

 if (i + 1 < times) {
 delay(wait);
 }
 }
}

void setup() {
 pinMode(statusLed, OUTPUT);
 pinMode(errorLed, OUTPUT);
 pinMode(dataLed, OUTPUT);

 // start serial
 xbee.begin(9600);

 flashLed(statusLed, 3, 50);
}

// continuously reads packets, looking for RX16 or RX64
void loop() {

 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) {
 // got something

 if (xbee.getResponse().getApiId() == RX_16_RESPONSE || xbee.getResponse().getApiId() == RX_64_RESPONSE) {
 // got a rx packet

 if (xbee.getResponse().getApiId() == RX_16_RESPONSE) {
 xbee.getResponse().getRx16Response(rx16);
 option = rx16.getOption();
 data = rx16.getData(0);
 } else {
 xbee.getResponse().getRx64Response(rx64);
 option = rx64.getOption();
 data = rx64.getData(0);
 }

 // TODO check option, rssi bytes
 flashLed(statusLed, 1, 10);

 // set dataLed PWM to value of the first byte in the data
 analogWrite(dataLed, data);
 } else {
 // not something we were expecting
 flashLed(errorLed, 1, 25);
 }
 }

112

}

Location System Tag Final Code
#include <XBee.h>

XBee xbee = XBee();

uint8_t payload[] = {102, 0, 2, 66, 47};
unsigned long start = millis();

boolean started;
XBeeAddress64 tag = XBeeAddress64(0x0013A200, 0x407BABC0); //Arduino 2009
XBeeAddress64 reader1 = XBeeAddress64(0x0013A200, 0x40715D34); //Arduino UNO
XBeeAddress64 reader2 = XBeeAddress64(0x0013A200, 0x4077939A);
XBeeAddress64 reader3 = XBeeAddress64(0x0013A200, 0x407BACD9);

TxStatusResponse txStatus = TxStatusResponse();

//DMTxRequest rd1 = DMTxRequest(reader1, payload, sizeof(payload));
//DMTxRequest rd2 = DMTxRequest(reader2, payload, sizeof(payload));
//DMTxRequest rd3 = DMTxRequest(reader3, payload, sizeof(payload));

//Tx64Request rd1 = Tx64Request(reader1, payload, sizeof(payload));
//Tx64Request rd2 = Tx64Request(reader2, payload, sizeof(payload));
//Tx64Request rd3 = Tx64Request(reader3, payload, sizeof(payload));
Tx16Request rd1 = Tx16Request(0x0001, payload, sizeof(payload));
Tx16Request rd2 = Tx16Request(0x0002, payload, sizeof(payload));
Tx16Request rd3 = Tx16Request(0x0003, payload, sizeof(payload));

Rx16Response rx16 = Rx16Response();

uint16_t received_16 = 0;

int count = 0;

void setup() {
 Serial.begin(9600);
 xbee.begin(9600);
 delay(5000);
}

void loop() {
 xbee.readPacket();

 if (xbee.getResponse().isAvailable())
 {
 if (xbee.getResponse().getApiId() == RX_16_RESPONSE)
 {
 xbee.getResponse().getRx16Response(rx16);
 received_16 = rx16.getRemoteAddress16();
 if(received_16 == 2)
 {
 for(int j = 0; j < 9; j++)
 {
 if (count == 0)
 {
 for(int i = 0; i <= 49; i++)

113

 {
 xbee.send(rd1);
 if (xbee.readPacket(5000))
 {
 Serial.println("Reader1");
 }
 delay(8);
 }
 count++;
 }
 else if (count == 1) {
 for(int i = 0; i <= 49; i++)
 {
 xbee.send(rd2);
 if (xbee.readPacket(5000))
 {
 Serial.println("Reader2");
 }
 delay(8);
 }
 count++;
 }
 else
 {
 for(int i = 0; i <= 49; i++)
 {
 xbee.send(rd3);
 if (xbee.readPacket(5000))
 {
 Serial.println("Reader3");
 }
 delay(8);
 }
 count = 0;
 }

// if (xbee.readPacket(5000))
// {
// if (xbee.getResponse().getApiId() == TX_STATUS_RESPONSE) //
// {
// xbee.getResponse().getZBTxStatusResponse(txStatus); //get acknowledge response
// if (txStatus.getStatus() == SUCCESS) { //txResponse received
// // Serial.println("Acknowledge packet received");
// } else {
// Serial.println("Acknowledge packet NOT received");
// }
// }
// } else {
// Serial.println("Acknowledge packet did not get here in 5 seconds");
// }
 delay(1000);
 }
 }
 }
 }
}

114

Location System Reader Final Code
#include <XBee.h>
#include <NewSoftSerial.h>

XBee xbee = XBee(); //make instance of xbee

NewSoftSerial nss(2,3);
uint8_t rssi[149];

uint8_t payload[] = {0};
XBeeAddress64 tag = XBeeAddress64(0x0013A200, 0x407BABC0);
XBeeAddress64 reader1 = XBeeAddress64(0x0013A200, 0x40715D34);
XBeeAddress64 reader2 = XBeeAddress64(0x0013A200, 0x4077939A);
XBeeAddress64 reader3 = XBeeAddress64(0x0013A200, 0x407BACD9);
XBeeAddress64 received;
XBeeResponse response = XBeeResponse();

uint16_t received_16;

//DMTxRequest coord = DMTxRequest(reader2, payload, sizeof(payload));
//Tx64Request coord = Tx64Request(reader2, payload, sizeof(payload));
//DMTxRequest respond = DMTxRequest(tag, payload, sizeof(payload));

//Tx64Request respond = Tx64Request(tag, payload, sizeof(payload));
Tx16Request coord = Tx16Request(0x0002, payload, sizeof(payload));

Rx16Response rx16 = Rx16Response();
Rx64Response rx64 = Rx64Response();

DMRxResponse rxDM = DMRxResponse();
int count;

uint8_t dbCmd[] = {'D', 'B'};

AtCommandRequest atRequest = AtCommandRequest(dbCmd);

AtCommandResponse atResponse = AtCommandResponse();

int incomingByte;

uint8_t option = 0;
uint8_t data = 0;
uint8_t length = 0;
void setup()
{
 xbee.begin(9600);
 //Serial.begin(9600);
 delay(5000);
 nss.begin(9600);
 count = 0;
}

void loop()
{
 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) { //received packet

115

 if (xbee.getResponse().getApiId() == RX_16_RESPONSE || xbee.getResponse().getApiId() == RX_64_RESPONSE ||
xbee.getResponse().getApiId() == RX_RESPONSE) {
 if (xbee.getResponse().getApiId() == RX_16_RESPONSE) {
 xbee.getResponse().getRx16Response(rx16);
 received_16 = rx16.getRemoteAddress16();
 //data = rx16.getApiId();
 data = rx16.getData(0);
 Serial.println("16 Response");
 if(received_16 > 6)
 {
 rssi[count] = rx16.getRssi();
 delay(7);
 Serial.print("RSSI = ");
 Serial.println(rssi[count], HEX);
 count++;
 Serial.print("COUNT = ");
 Serial.println(count);
 }
 if(received_16 == 2)
 {
 Serial.println("RESET");
 count = 0;
 }
 } else if (xbee.getResponse().getApiId() == RX_64_RESPONSE) {
 Serial.println("64 Response");
 xbee.getResponse().getRx64Response(rx64);
 received = rx64.getRemoteAddress64();
 if(received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())
 {
 rssi[count] = rx64.getRssi();
 count++;
 delay(7);
 Serial.print("COUNT = ");
 Serial.println(count);
 }
 } else if (xbee.getResponse().getApiId() == RX_RESPONSE) {
 xbee.getResponse().getDMRxResponse(rxDM);
// for(int i = 0; i < rxDM.getDataLength(); i++)
// {
// data = rxDM.getData(i);
// Serial.print("Data = ");
// Serial.println(data, DEC);
// }
 received = rxDM.getRemoteAddress64();
 if(received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())
 {
 rssi[count] = sendAtCommand();
 count++;
 delay(7);
 Serial.println("COUNT = ");
 Serial.println(count);
 //get DB and send to coord
 }
 }

 }
 }

116

 if(count == 149)
 {
 payload[0] = gaussian(rssi);
 Serial.print("Gaussian Avg = ");
 Serial.print(payload[0], DEC);
 xbee.send(coord);
 count = 0;
 }
}

byte sendAtCommand() {
 xbee.send(atRequest);

 //wait for response packet
 if(xbee.readPacket(5000)) {
 if(xbee.getResponse().getApiId() == AT_COMMAND_RESPONSE) {
 xbee.getResponse().getAtCommandResponse(atResponse);

 if (atResponse.isOk()) {
 Serial.print("Command [");
 Serial.print(atResponse.getCommand()[0]);
 Serial.print(atResponse.getCommand()[1]);
 Serial.println("] was successful!");

 if (atResponse.getValueLength() > 0) {
 Serial.print("Command value length is ");
 Serial.println(atResponse.getValueLength(), DEC);

 Serial.print("Command value: ");

 for (int i = 0; i < atResponse.getValueLength(); i++) {
 Serial.println(atResponse.getValue()[i], DEC);
 return atResponse.getValue()[i];
 }
 Serial.println("");
 }
 }
 else {
 Serial.print("Command return error code: ");
 Serial.println(atResponse.getStatus(), HEX);
 }
 } else {
 Serial.print("Expected AT response but got ");
 Serial.print(xbee.getResponse().getApiId(), HEX);
 }
 } else {
 if (xbee.getResponse().isError()) {
 Serial.print("Error reading packet. Error code: ");
 Serial.println(xbee.getResponse().getErrorCode());
 } else {
 Serial.println("No Response from radio");
 }
 }
}

uint8_t gaussian(uint8_t rssi[])
{

117

 double rssi_sum = 0; //summation
 for(int i = 0; i <= 149; i++)
 {
 rssi_sum += rssi[i];
 }

 int rssi_avg = rssi_sum / 150; //find mean of all 50 values
 return rssi_avg;

}

Location System Coordinator Final Code
#include <XBee.h>
#include <NewSoftSerial.h>

XBee xbee = XBee(); //make instance of xbee

NewSoftSerial nss(6,7); // (RX, TX)

uint8_t payload[] = {0};
XBeeAddress64 tag = XBeeAddress64(0x0013A200, 0x40715D91);
XBeeAddress64 reader1 = XBeeAddress64(0x0013A200, 0x40715D34);
XBeeAddress64 reader2 = XBeeAddress64(0x0013A200, 0x4077939A);
XBeeAddress64 reader3 = XBeeAddress64(0x0013A200, 0x407793A7);
XBeeAddress64 received;
XBeeResponse response = XBeeResponse();

Tx16Request tag1 = Tx16Request(0x007, payload, sizeof(payload));
Tx16Request reset_r1 = Tx16Request(0x0001, payload, sizeof(payload));
Tx16Request reset_r3 = Tx16Request(0x0003, payload, sizeof(payload));

DMTxRequest respond = DMTxRequest(tag, payload, sizeof(payload));

Rx16Response rx16 = Rx16Response();
Rx64Response rx64 = Rx64Response();

DMRxResponse rxDM = DMRxResponse();

uint8_t dbCmd[] = {'D', 'B'};
int count;
uint8_t rssi[149];

AtCommandRequest atRequest = AtCommandRequest(dbCmd);

AtCommandResponse atResponse = AtCommandResponse();

int incomingByte;

uint8_t option = 0;
uint8_t data = 0;
uint8_t length = 0;

uint16_t received_16 = 0;

void setup()
{
 xbee.begin(9600);

118

 //Serial.begin(9600);
 xbee.send(reset_r1);
 xbee.send(reset_r3);
 delay(5000);
 xbee.send(tag1);
 nss.begin(9600);
 count = 0;
}

void loop()
{
 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) { //received packet
 if (xbee.getResponse().getApiId() == RX_16_RESPONSE || xbee.getResponse().getApiId() == RX_64_RESPONSE ||
xbee.getResponse().getApiId() == RX_RESPONSE) {
 if (xbee.getResponse().getApiId() == RX_16_RESPONSE) {
 xbee.getResponse().getRx16Response(rx16);
 received_16 = rx16.getRemoteAddress16();
 if (received_16 > 6)
 {
 rssi[count] = rx16.getRssi();
 count++;
 delay(7);
 Serial.print("COUNT = ");
 Serial.println(count);
 }
 else if(received_16 == 1)
 {
 nss.print(1, HEX);
 nss.print(rx16.getData(0), HEX);
 Serial.println("READER1");
 }
 else if(received_16 == 3)
 {
 nss.print(3, HEX);
 nss.print(rx16.getData(0), HEX);
 Serial.println("READER3");
 }

 Serial.println("16 Response");
 } else if (xbee.getResponse().getApiId() == RX_64_RESPONSE) {
 xbee.getResponse().getRx64Response(rx64);
 received = rxDM.getRemoteAddress64();
 if (received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())
 {
 rssi[count] = rx64.getRssi();
 count++;
 delay(7);
 Serial.print("COUNT = ");
 Serial.println(count);
 }
 else if(received.getMsb() == reader1.getMsb() && received.getLsb() == reader1.getLsb())
 {
 nss.print(1, HEX);
 nss.print(rxDM.getData(0), HEX);
 Serial.println("READER1");
 }

119

 else if(received.getMsb() == reader3.getMsb() && received.getLsb() == reader3.getLsb())
 {
 nss.print(3, HEX);
 nss.print(rxDM.getData(0), HEX);
 Serial.println("READER3");
 }
 Serial.println("64 Response");
 } else if (xbee.getResponse().getApiId() == RX_RESPONSE) {
 xbee.getResponse().getDMRxResponse(rxDM);
 received = rxDM.getRemoteAddress64();
 if (received.getMsb() == tag.getMsb() && received.getLsb() == tag.getLsb())
 {
 rssi[count] = sendAtCommand();
 count++;
 delay(7);
 xbee.send(respond);
 Serial.print("COUNT = ");
 Serial.println(count);
 }
 else if(received.getMsb() == reader1.getMsb() && received.getLsb() == reader1.getLsb())
 {
 nss.print(1, HEX);
 nss.print(rxDM.getData(0), HEX);
 Serial.println("READER1");
 }
 else if(received.getMsb() == reader3.getMsb() && received.getLsb() == reader3.getLsb())
 {
 nss.print(3, HEX);
 nss.print(rxDM.getData(0), HEX);
 Serial.println("READER3");
 }
 }
 }
}
 if(count == 149)
 {
 payload[0] = gaussian(rssi);
 nss.print(2, HEX);
 nss.print(payload[0], HEX);
 Serial.print("Gaussian Avg = ");
 Serial.println(payload[0], HEX);
 count = 0;
 Serial.flush();
 }
}

byte sendAtCommand() {
 xbee.send(atRequest);

 //wait for response packet
 if(xbee.readPacket(5000)) {
 if(xbee.getResponse().getApiId() == AT_COMMAND_RESPONSE) {
 xbee.getResponse().getAtCommandResponse(atResponse);

 if (atResponse.isOk()) {
 Serial.print("Command [");
 Serial.print(atResponse.getCommand()[0]);
 Serial.print(atResponse.getCommand()[1]);

120

 Serial.println("] was successful!");

 if (atResponse.getValueLength() > 0) {
 Serial.print("Command value length is ");
 Serial.println(atResponse.getValueLength(), DEC);

 Serial.print("Command value: ");

 for (int i = 0; i < atResponse.getValueLength(); i++) {
 Serial.print(atResponse.getValue()[i], DEC);
 return atResponse.getValue()[i];

 }
 Serial.println("");
 }
 }
 else {
 Serial.print("Command return error code: ");
 Serial.println(atResponse.getStatus(), HEX);
 }
 } else {
 Serial.print("Expected AT response but got ");
 Serial.print(xbee.getResponse().getApiId(), HEX);
 }
 } else {
 if (xbee.getResponse().isError()) {
 Serial.print("Error reading packet. Error code: ");
 Serial.println(xbee.getResponse().getErrorCode());
 } else {
 Serial.println("No Response from radio");
 }
 }
}

uint8_t gaussian(uint8_t rssi[])
{
 double rssi_sum = 0; //summation
 for(int i = 0; i <= 149; i++)
 {
 rssi_sum += rssi[i];
 }

 int rssi_avg = rssi_sum / 150; //find mean of all 50 values
 return rssi_avg;
}

Location System Arduino Mega Final Code
uint8_t incomingbyte = 0;
uint8_t incomingbyte2 = 0;
uint8_t incomingbyte3 = 0;
int incomingByte;
int rssi;
char tag1[13] = "4500BE9285EC";
boolean reading = false;
int index;
char tagString[13];

121

char tagString1[13];
void setup()
{
 Serial3.begin(9600);
 Serial.begin(9600);
 Serial1.begin(9600);
 pinMode(3, OUTPUT); //power for RFID reader
 digitalWrite(3, HIGH);
 rssi = 0;
 index = 0;
}

void loop()
{
 incomingbyte = 0;
 incomingbyte2 = 0;
 incomingbyte3 = 0;
 incomingByte = 0;

 if(Serial1.available())
 {
 incomingByte = Serial1.read();
 if(incomingByte == 2)
 {
 reading = true;
 Serial.println("Header");
 }
 if(incomingByte == 3)
 {
 reading = false;
 for(int i = 0; i < 12; i++)
 {
 tagString1[i] = tagString[i+1];
 Serial.println("Byte");
 Serial.println(tagString1[i]);
 }
 Serial.println("Footer");
 }
 else if (reading && incomingByte != 10 && incomingByte != 13)
 {
 tagString[index] = incomingByte;
 index++;
 }
 }

 if(Serial3.available())
 {
 incomingbyte = Serial3.read();
 if (incomingbyte < 58)
 {
 incomingbyte = incomingbyte - 48;
 }
 else
 {
 incomingbyte = incomingbyte - 55;
 }
 switch (incomingbyte)
 {

122

 case 1:
 Serial.println("READER1");
 incomingbyte2 = Serial3.read();
 if (incomingbyte2 < 58)
 {
 incomingbyte2 = incomingbyte2 - 48;
 }
 else
 {
 incomingbyte2 = incomingbyte2 - 55;
 }
 incomingbyte3 = Serial3.read();
 if (incomingbyte3 < 58)
 {
 incomingbyte3 = incomingbyte3 - 48;
 }
 else
 {
 incomingbyte3 = incomingbyte3 - 55;
 }
 rssi = (incomingbyte2 << 4) | incomingbyte3;
 Serial.println(rssi);
 rssi = 0;
 break;

 case 2:
 Serial.println("READER2");
 incomingbyte2 = Serial3.read();
 if (incomingbyte2 < 58)
 {
 incomingbyte2 = incomingbyte2 - 48;
 }
 else
 {
 incomingbyte2 = incomingbyte2 - 55;
 }
 incomingbyte3 = Serial3.read();
 if (incomingbyte3 < 58)
 {
 incomingbyte3 = incomingbyte3 - 48;
 }
 else
 {
 incomingbyte3 = incomingbyte3 - 55;
 }
 rssi = (incomingbyte2 << 4) | incomingbyte3;
 Serial.println(rssi);
 rssi = 0;
 break;

 case 3:
 Serial.println("READER3");
 incomingbyte2 = Serial3.read();
 if (incomingbyte2 < 58)
 {
 incomingbyte2 = incomingbyte2 - 48;
 }
 else

123

 {
 incomingbyte2 = incomingbyte2 - 55;
 }
 incomingbyte3 = Serial3.read();
 if (incomingbyte3 < 58)
 {
 incomingbyte3 = incomingbyte3 - 48;
 }
 else
 {
 incomingbyte3 = incomingbyte3 - 55;
 }
 rssi = (incomingbyte2 << 4) | incomingbyte3;
 Serial.println(rssi);
 rssi = 0;
 break;

 default:
 break;
 }
 }
}
boolean checkTag(char tag[], char tagString[])
{
 for(int i = 0; i < 12; i++)
 {
 if(tag[i] != tagString[i])
 {
 Serial.print("i = ");
 Serial.println(i);
 return false;
 }
 }
 return true;
}

124

Appendix D: XBee API Library
Code that was added into the XBee-API Library (Section 8.4.2) to support Digimesh data frames for

transmitting and receiving.

Header File
class DMTxRequest : public PayloadRequest {
public:
 /*
 Creates tx request with choice of optioon and not the default frameID
 */
 DMTxRequest(XBeeAddress64 &addr64, uint8_t option, uint8_t *payload, uint8_t payloadLength, uint8_t frameId,
uint8_t radius);
 /*
 Creates tx request with default (ack enabled) ptioon and the default frameID
 */
 DMTxRequest(XBeeAddress64 &addr64, uint8_t *payload, uint8_t payloadLength);

 DMTxRequest();

 XBeeAddress64& getAddress64();
 void setAddress64(XBeeAddress64& addr64);
 uint8_t getOption();
 void setRadius(uint8_t radius);
 uint8_t getRadius();
 void setOption(uint8_t option);
 uint8_t getFrameData(uint8_t pos);
 uint8_t getFrameDataLength();

private:
 XBeeAddress64 _addr64;
 uint8_t _option;
 uint8_t _radius;
};

class DMRxResponse : public RxResponse {
public:
 DMRxResponse();
 uint8_t getRssiOffset();
 XBeeAddress64& getRemoteAddress64();
private:
 XBeeAddress64 _remoteAddress;
};

.CPP File
//Digimesh TX request with input of option/frameID/radius
DMTxRequest::DMTxRequest(XBeeAddress64 &addr64, uint8_t option, uint8_t *data, uint8_t dataLength, uint8_t frameId,
uint8_t radius) : PayloadRequest(TX_REQUEST, frameId, data, dataLength, radius)
{
 _addr64 = addr64;
 _option = option;
 _radius = radius;
}

//default option/frameID/radius for DM_TXrequest

125

DMTxRequest::DMTxRequest(XBeeAddress64 &addr64, uint8_t *data, uint8_t dataLength) : PayloadRequest(TX_REQUEST,
DEFAULT_FRAME_ID, data, dataLength, RADIUS)
{
 _addr64 = addr64;
 _option = ACK_OPTION;
 _radius = RADIUS;
}

//default constructor
DMTxRequest::DMTxRequest() : PayloadRequest(TX_REQUEST, DEFAULT_FRAME_ID, NULL, 0) {

}
//outputs correct frame for TX request
uint8_t DMTxRequest::getFrameData(uint8_t pos) {
 if (pos == 0) {
 return (_addr64.getMsb() >> 24) & 0xff;
 } else if (pos == 1) {
 return (_addr64.getMsb() >> 16) & 0xff;
 } else if (pos == 2) {
 return (_addr64.getMsb() >> 8) & 0xff;
 } else if (pos == 3) {
 return _addr64.getMsb() & 0xff;
 } else if (pos == 4) {
 return (_addr64.getLsb() >> 24) & 0xff;
 } else if (pos == 5) {
 return (_addr64.getLsb() >> 16) & 0xff;
 } else if (pos == 6) {
 return (_addr64.getLsb() >> 8) & 0xff;
 } else if (pos == 7) {
 return _addr64.getLsb() & 0xff;
 } else if (pos == 8) {
 return RESERVED_1;
 } else if (pos == 9) {
 return RESERVED_2;
 } else if (pos == 10) {
 return _radius;
 } else if (pos == 11) {
 return _option;
 } else {
 return getPayload()[pos - TX_API_LENGTH];
 }
}
XBeeAddress64& DMTxRequest::getAddress64() {
 return _addr64;
}

void DMTxRequest::setAddress64(XBeeAddress64& addr64) {
 _addr64 = addr64;
}

uint8_t DMTxRequest::getOption() {
 return _option;
}

void DMTxRequest::setRadius(uint8_t radius) {
 _radius = radius;
}

126

uint8_t DMTxRequest::getRadius() {
 return _radius;
}

void DMTxRequest::setOption(uint8_t option) {
 _option = option;
}

uint8_t DMTxRequest::getFrameDataLength() {
 return TX_API_LENGTH + getPayloadLength();
}

//constructor
DMRxResponse::DMRxResponse() : RxResponse() {
 _remoteAddress = XBeeAddress64();
}

XBeeAddress64& DMRxResponse::getRemoteAddress64() {
 return _remoteAddress;
}

uint8_t DMRxResponse::getRssiOffset() {
 return DM_RSSI_OFFSET;
 }

//framedata starts at 1 to account for frame id coming after api id
void XBeeResponse::getDMRxResponse(XBeeResponse &dmRxResponse) {
 DMRxResponse* dmRx = static_cast<DMRxResponse*>(&dmRxResponse);

 dmRx->setFrameData(getFrameData());
 setCommon(dmRxResponse);

 dmRx->getRemoteAddress64().setMsb((uint32_t(getFrameData()[1]) << 24) + (uint32_t(getFrameData()[2]) << 16) +
(uint16_t(getFrameData()[3]) << 8) + getFrameData()[4]);
 dmRx->getRemoteAddress64().setLsb((uint32_t(getFrameData()[5]) << 24) + (uint32_t(getFrameData()[6]) << 16) +
(uint16_t(getFrameData()[7]) << 8) + getFrameData()[8]);
}

