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AUTOMATIC CONTROL TOPICS

Basic Tools

Laplace, Z transforms: basic properties, use in solving linear
differential/difference equations, application to system analysis, transfer
functions. Fourier transform, Fourier series: basic properties, application to
signal analysis, frequency response, spectral energy density.

Basic Concepts
Linearity, time invariance, causality, difference and differential systems,
linearization, signal-flow and block diagrams, BIBO and asymptotic stability.

Classical Control

Transient and steady state analysis and performance indicators, pole
location, sensitivity; frequency domain analysis, phase and gain margins;
Nyquist stability, Routh-Hourwitz criterion, root locus, lead and lag
compensator design, PID control; pole placement with fractional
controllers.

Sampled Data Systems
Basic A/D and D/A conversion, sampling theorem. Discretization of
continuous time systems, deadbeat control.

State Space Control for Continuous and Discrete Time Systems

State and state equations, transition matrix, solution of state equation.
Realization, controllability and stabilizability, observability and detectability,
Lyapunov stability, state feedback and pole placement, asymptotic
observers, state feedback with observers.

Representative References

C-T. Chen, System and Signal Analysis, Saunders College Publishing.

B.C. Kuo, Automatic Control Systems, Prentice Hall.

G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback Control of Linear
Systems, Addison Wesley.

G.F. Franklin, J.D. Powell, M.L. Workman, Digital Control of Dynamic Systems,
Addison Wesley.

K. Ogata, Discrete-time Control Systems, Prentice Hall.

W.L. Brogan, Modern Control Theory, Quantum Publishers, Inc.

T. Kailath, Linear Systems, Prentice Hall.

K. Ogata, Modern Control Engineering, Prentice Hall.

C. T. Chen, Linear system Theory and Design, 3rd Ed., Oxford University Press,
1999.
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M.S. Comprehensive /Ph.D. Qualifying Exam
Communication and Signal Processing Topics

Probability Theory and Random Processes

Basic concepts in probability theory; stationarity and wide sense stationarity of random
processes, power spectral density, linear filtering of random processes, minimum mean
squared error estimation, Gaussian and Poisson random processes.

Signals, Systems, and Digital Signal Processing

Continuous time and discrete time signals and systems: fundamental concepts, system
properties (causality, stability, time invariance, etc.); time and frequency domain
characterization of discrete and continuous time signals and systems; transform domain
techniques; sampling and reconstruction; sampling rate conversion, frequency-domain
analysis, aliasing and Nyquist rate concepts; discrete Fourier Transform and FFT
algorithms; design and implementation of FIR and IIR filters.

Analog Communication

Amplitude modulation techniques; frequency and phase modulation techniques; sampling,
quantization; pulse code modulation (PCM); effect of noise on continuous wave and
PCM systems.

Digital Communication

Signal space representation; baseband representation of bandpass signals and systems;
maximum likelihood (ML) detection and estimation; optimum receiver principles.
performance of optimum receivers; differential, partially coherent and non-coherent
detection of signals; bandwidth efficiency and power efficiency; receiver design and
performance analysis of digital modulation schemes in fading channels; linear block
codes and their decoding strategies, hard decision and soft decision decoding.

Representative References

=

Simon Haykin, Communications Systems, (Wiley).

2. J. G. Proakis and M. Salehi, Communication Systems Engineering, 2nd Edition, Prentice

Hall.

J. G. Proakis, Digital Communication, 4™ Edition, McGraw-Hill, 2000.

4. J. M. Wopzencraft and I. M. Jacobs, Principles of Communication Engineering, John
Wiley & Sons, New York, 1965.

5. Henry Stark and John W. Woods, Probability and Random Processes with Applications
to Signal Processing, 3rd Edition. Prentice-Hall.

6. Probability, Random Variables, and Stochastic Processes, A. Papoulis, 3rd edition,

McGraw-Hill, 1991.

S. K. Mitra, Digital Signal Processing, 3" edition, McGraw-Hill.

8. A. V. Oppenheim and R.W. Schafer, Discrete-time Signal Processing, Prentice-

Hall.
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COMPUTER ENGINEERING TOPICS

Appearing below is an outline of topics which computer-area questions will be based on. Most of the topics
clearly fall into one of the three question areas, Hardware, Software, and Applications, but questions in
one area can draw on topics from other areas. For example, the solution to an algorithm (software)
guestion might require knowledge of cache organization (hardware).

Topics described with "Proficiency in" (or similar wording) must be understood very well, as though you
were going to take a test in a course covering the topic. Topics described using "Competence with" (or
similar wording) must be understood well enough to solve problems or answer substantive questions,
however definitions or other background might be provided as part of the question. This information should
help students that know the material make a quick start solving the problem. For topics listed under
"Familiarity with" students should have a basic background in the area, including basic terminology, but
need not know many specifics. For these problems a greater amount of background will be provided,
enough so that a good student might be able to solve them without having taken any courses covering the
topic.

Logic Design
Proficiency with combinational and sequential logic theory at EE 2720 and EE 2730 level, including
Boolean algebra and basic minimization techniques. Proficiency in designing basic combinational and
sequential circuits.

Computer Arithmetic

Proficiency with signed integer representations and with full adder and carry look-ahead adder designs.
Competence with basic integer multiplication and division circuits. Competence with floating-point (FP)
representations, including IEEE 754, and with FP arithmetic. Familiarity with modular and residue
arithmetic.

Computer Instruction-Set Architecture (ISA) and Microarchitecture
Proficiency with 5-staged pipelined RISC (e.g., MIPS) implementations, including design rationale, direct
and bypassed data paths, control signals, and relationship between implementation and instructions.
Competence in assembly language programming, including RISC instruction sets. Competence with
instruction set design issues, including memory addressing modes, and the variety of jumps & branch
instructions.  Familiarity with interrupts, traps, and exceptions. Familiarity with pipeline depth and
superscalar width issues. Familiarity with caches and branch prediction techniques.

Computer Communication Networks

Competence with basic switching and multiplexing techniques. Familiarity with network layers and
protocol stacks, ARQ protocols, error detection and correction. Familiarity with Internet addressing and
routing standards and techniques. Familiarity with network reliability, availability, structural reliability
terminology and techniques.

March 4, 2010



Page 2 of 2

Algorithms and Data Structures

Proficiency with basic data structures (including arrays, stacks, linked lists, trees), basic algorithms
(including binary search, merge sort, tree searches), memory content and layout of numbers, pointers,
arrays, and structures complexity analysis of algorithms. Competence with advanced data structures
(including hash tables, graph representations), algorithmic paradigms (including divide and-conquer,
greedy, dynamic programming) and analysis techniques (including recurrence relations, amortized
analysis). Familiarity with computational complexity and intractability randomized, online and
approximation algorithms.

Parallel and Distributed Computing

Competence in major parallel system organization topics including hardware organizations (CPU &
network), parallel program organizations (processes, tasks, or threads), communication models (message
passing or shared memory). Competence with metrics for analysis of performance including speedup,
efficiency, time complexity, and space complexity. Competence with use and implementation of basic
synchronization primitives and constructs including compare & swap, atomic memory operations,
semaphores, and barriers. Competence with basic parallel algorithms including reduction, sorting, leader
election, graph algs, etc. Competence with common interconnects including bus, crossbar, mesh,
hypercube networks.

Familiarity with other interconnects including Log n stage networks (e.g., omega), Clos and Benes
networks.

Operating Systems and Compilers

Competence with coordination concepts, constructs, and issues, including multiple-process access to
shared structures, mutual exclusion, and deadlock. (See also basic synchronization topics under Parallel
and distributed computing.) Competence with basic memory management issues including virtual and
physical addresses and their rationale virtual to physical address translation techniques, page swapping
basics. Competence with program compilation techniques, including control-flow and data-flow program
representations, dependencies and dependence testing, common optimizations, and common program
transformations.

Computer Vision and Image Processing

Proficiency in geometric and radiometric image formation. Proficiency in image segmentation,
enhancement and restoration techniques. Competence in image compression and morphological image
processing. Familiarity with pattern recognition techniques.

Logic Testing and Reliability

Familiarity with fault models, including the stuck-at model.

March 4, 2010
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ELECTRONICS ENGINEERING TOPICS

Circuits

Circuit applications of diodes. Circuit applications of BJT, MOSFETs and
JFETs in linear and digital circuits. Linear applications include amplifiers,
oscillators, differential amplifiers and operational amplifiers. Applications of
ideal operational amplifiers. Digital applications include internal operation
of standard logic gates used as building blocks in logic families such as TTL,
ECL, NMOS and CMOS.

Devices

Basics of carrier transport in semiconductor materials, physics of p-n junction
diodes, bipolar and field effect transistors. Derivation of terminal current-
voltage characteristics of discrete devices, large and small signal models.
Basic physics of photonic devices. Basic integrated circuit technology.

Fields
Static fields, Maxwell's equations, propagation through istropic medium,
reflections and basic antenna theory.

Representative References

M.N. Horenstein, Microelectronic Circuit and Devices, Prentice Hall.

Mitchell & Mitchell, Introduction to Electronic Design, 2nd Ed., Prentice Hall.
Gray & Mayer, Analysis and Design of Analog Integrated Circuits, 3rd Ed.,
John Wiley.

D. A. Hodges, H. G. Jackson and R. A. Saleh, Analysis and Design of Digital
Integrated Circuits in Deep Submicron Technology, 3rd Ed., McGraw-Hill.

B. Streetman, Solid State Electronic Devices, 3rd Ed., Prentice Hall.

J.P. McKelvey, Solid State and Semiconductor Physics, Harper & Row.

Shen, Applied Electromagnetics, 2nd Ed., Prindle-Weber-Schmidt.

11/2008
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POWER ENGINEERING TOPICS

Electric Machinery

Maxwell's equations; analysis of simple electromechanical devices using
Maxwell's equations; synchronous machines, voltage behind reactance model,
Park transformation, d,q equations; exact and approximate equivalent circuits
of single-phase transformers, nonlinear effects; modeling and calculation of its
parameters of transmission lines; modeling and analysis of direct current and
induction machines.

Power Systems

Per-unit calculations; symmetrical components; sequence impedances of
transformers, synchronous machines and induction motors, sequence
impedances and capacitances of transmission lines; sequence networks for
fault analysis; shunt faults (3-phase, LG, LLG, LL faults); series faults (1LO,
2L0O); power flow equations, (Decoupled) Newton-Raphson, Gauss/Gauss-Seidel
methods; optimal dispatch with/without line losses; transient stability, swing
equation, equal area criterion, effect of clearing time; low-frequency
oscillations, supplementary excitation/governor control; linear optimal
stabilization.

Power Electronics

Fourier series of nonsinusoidal voltages and currents; analysis of circuits with
nonsinusoidal voltage and current waveforms, nonsinusoidal active and
apparent powers; single-phase and three-phase rectifiers, controlled AC/DC
converters, DC/DC converters, inverters.

Representative References

R.D. Schultz & R.A. Smith, Introduction to Electric Power Engineering, John
Wiley, 1988.

V. DelToro, Electric Power Systems, Prentice Hall, 1992.

P.M. Andersen, Analysis of Faulted Power Systems, The Iowa State Univ.
Press, 1983.

Y.N. Yu, Electric Power System Dynamics, Academic Press, 1983.

M.H. Rashid, Power Electronics, Prentice Hall, 1988.

N. Mohan, T.M. Undeland, W.P. Robbins, Power Electronics, John Wiley, 1989.

11/2008
Rev. 11/93



Computer Hardware 2 Spring 2015

Because they represent unsigned integers in binary, conventional processors can quickly perform
operations like 2° and |r2*|, where r is the contents of a register and 7 is a small value. Suppose it
were necessary to quickly perform operations such as r3* and |r3~*]. Conventional processors would
have to resort to time-consuming multiply and divide instructions. These operations could be quickly
performed if the underlying integer representation was in radix 3 (ternary) rather than in radix 2
(binary). Consider a CPU that keeps integers in a binary-coded ternary (BCT) representation. The
representation is stored in conventional two-statc logic but each ternary digit is encoded using two
bits.

(a) Design an n-ternary-digit adder for such integers (which are represented using 2n bits) using basic
logic gates and binary full- and half-adders. The design should be in the form of a ripple adder
adapted to BCT so that it takes O(n) time and uses O(n) hardware.

(b) Design propagate and generate circuits for the BCT adder that can be used to construct a carry
lookahead BCT adder.



Computer Hardware 5 Spring 2015

Let S = {s1,52,, 5.} be a set of binary strings of maximum length n. For any string s; of length £ < n
and any integer 1 < o < /4, its a-prefix is the string consisting of the first « bits of s;. If & > £, then the
£-bit string does not have an a-prefix.

For 1 < @ < n, let k = k1kz-- ko be an a-bit binary string called the key. (Note that a should
not be considered fixed as it could be different for different instances of the problem.) This question
involves finding the longest string(s) in § whose a-prefix equals the key. In this problem we will call these
string(s), the longest string(s) of the key. There could be 0, 1 or multiple longest strings for a given key.

Answer the following questions. All answers must be justified.

(a) LetS={0,11,110,1101,1111}. Find all longest string(s) of S with the following key k as prefix.

(i) k=110
(i) k=01
(i) k=11

(b)  For this part assume that for any given key the longest string, if it exists, is unique. Design a
hardware module to find the longest string in S for any given k.

Assume that the key is input through a O(n)-bit register and that the set S is stored in a bank
of O(n)-bit registers. The output is a O(n)-bit longest string or an indication that no such string

exists. You can also assume that the gates used in your design allow unbounded fan-in and fan-out.
Speed should be the main objective of your design. For two equally fast solutions choose one with

less hardware cost. Find the order of time needed for your solution.

(c) How would you approach the problem if there could be multiple longest strings for a given key.
Assume here that the lexicographically earliest string is output in case of multiple matches.



Computer Hardware 1 Fall 2013

This question is regarding to cache design.

(a) For the same cache size, is it possible for a direct-mapped cache having a better hit rate than a fully associative
cache? If so, give an example for the access pattern or the program using the caches; if not, justify the reason.

(b) For the same cache with different replacement policies, is it possible for the cache with the least-recently-used
(LRU) policy having a better hit rate than the optimal (OPT) replacement policy? If so, give an example for the
access pattern; otherwise, explain why not?

(c) For a dual-core processor, there is a shared last level cache between the two cores. Two threads (T1 and T2) can
run either individually or simultaneously. When the threads running individually, the last level cache hit ratio for the
two threads (T1 and T2) are H1 and H2 respectively. When the threads running simultaneously, the last level cache
hit ratio for the two threads (T1 and T2) is HI” and H2’ respectively. Is it possible for H1> > H1 and H2’ > H2? If
yes, list an example for the access patterns or write the programs; otherwise, justify your answer.



Computer Hardware 3 Fall 2013

Usually, we have two policies for memory disambiguation in an out-of-order executed processor: (1) a conservative
solution is stalling a load instruction and its dependent instructions until the early store’s address generation; (2)
another alternative is predicting the memory dependence between loads and earlier outstanding stores. Memory
dependence prediction allows loads to bypass earlier stores if no dependence is predicted. Otherwise, if dependence
is predicted, load values can be forwarded from the latest earlier stores without cache access. At the commit stage of
stores, the processor check correctness of predictions, if not, loads and their dependent instructions would be re-
executed.

Now consider a two-issue, out-of-order execution pipeline with following stages: Instruction Fetch (IF), Decode
(ID), Issue (IS), Execution / Address Generation (EX), Write Result (WR), Commit (CT). There are two integer
ALU units, two load/store units and one MUL unit.

For the following code section, the EX stage for MUL instructions requires 10 cycles. All other instructions’ EX
stages have only 1 cycle. Please note that SW instructions only write cache in CT stage.

1.MUL R2,R11,RI12
2. SW R1, 0(R2)
3.LW R3, 20(R4)
4. ADD R5,R3,R6
5.LW R7, 100(R8)
6. SUB R9,R7,R8
7. ADDI R10, R5, 20

(a) If this pipeline employs the policy (1) mentioned above for memory dependence, show execution steps with
timing for the above code section.

(b) If this pipeline employs the policy (2) mentioned above for memory dependence, the memory dependence
predictor predicts that there is no dependence for both loads. Two loads (inst. 3 and 5) are executed without stalls,
However, after the store address generation, instruction 3 has a true dependence with instruction 2 but instruction 5
doesn’t have, show execution steps with timing for the above code section.

(c) Design a memory dependence predictor. The predictor would provide two predictions: dependence, no
dependence. Draw a diagram for your design and specify the circumstances for each prediction.



Computer Hardware 4 Fall 2013

Let * be any associative binary operation. The prefizx computation (with respect to *) on an array
A = (ag,a1,- -, an—1) produces a second array B = (bg, b1, -, bn—1), where b; = ag *xaj * - - - x a;, for any
0 € i < n. The figure below shows prefix computation circuits for n = 4 and 8. In these figures, each
box represents hardware for applying * to its two inputs.

bO b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3

.é

|

T

a0 a1l a2 a3 a0 a1t a2 a3 a4 a5 a6 a7

(a) Draw a similar prefix computing circuit for 16 inputs.
(b)  Adapt the given circuit for 8 inputs to work for 5 inputs.

(¢c) Describe the circuit for the general case of n = 2F inputs, and prove that it correctly performs the
prefix computation.

(d) Observe that adding 1 to an n-bit number amounts to' complementing all lower order bits up to

unchanged
——
the first 0. For example, 10110 01111114+ 1= 10110 1000000 .
S———

complemented
An n-bit binary counter counts up from 0 to 2" — 1 and then back to 0. Describe how a fast prefix
computing circuit can help build a fast counter.



Computer Hardware 5 Fall 2013

(a) “In the field of computer science, a binary decision diagram (BDD) or a propositional directed
acyclic graph (PDAG) is a data structure that is used to represent a Boolean function The data
structure is created using the Shannon expansion where a switching function is split into two
sub-functions (cofactors) by assigning one variable (cf. if-then-else normal form). [Wikipedial.”
For example, the BDD for an AND gate with inputs x1 and x2 is as follows:

BDD for a 2-input AND gate

Using this concept, show the BDD for a (i) 2-input OR gate with inputs x1 and x2 and (ii) 1-bit Full
Adder with inputs A, B, and C;, and outputs S; and C,,,.

(b) In the figure shown above (BDD for a 2-input AND gate), if each event (x; as 1 or 0) is equally
likely, find the probability of (a) output being 1 and (b) output being 0. What will happen to (b) if
the probability of x; being 1 changes to % ?



Computer Software 2 . Fall 2015

In many applications a high-dimensional relationship is represented in fewer dimensions. This problem
involves representing a two dimensional N x N mesh in a one dimension. Part (a) of the figure below
shows a 4 x 4 mesh with elements numbered by two dimensional coordinates (7, c), where 0 < r,¢ < 4 are
the row and column numbers.

a) (oegneixads 1 4> s
X X7
7 7 6 5 /4 223 6 7
(XX |
N
11 8 9 10 \11 9 120513
15 15 >14< >13< /12 11 14 15
S
(a) 2D coordinates (b) row-major (c) snake (d)Z-order

Let N = {0,1,---,N — 1}. Then N x N is the set of all doublets in the N x N “plane;” part (a) of
the figure above shows these doublets for N = 4. Let S = {0,1,---,N% — 1}; verify that N x N and
S have the same number of elements. A 1-dimensional projection (or mapping) of N x N is a bijection
f : Nx N — S that maps the doublets (2-dimensional quantities) of N x N to unique (1-dimensional)
numbers of S. Parts (b)—(d) of the figure above show three such projections; the underlying shading
traces the numbers 0 to 15 in order.

The N x N mesh has 2N(N — 1) edges. For any edge e = (u,v), where u,v are nodes and a given
1-dimensional projection f, define the dilation of e (with respect to f) as |f(u) — f(v)|. Each edge of the
mesh connects nodes that are “adjacent” in the relationship represented by the mesh. The dilation of the
edge represents the distance the 1-dimensional projection has induced between the nodes u,v connected
by e. The average of the dilations of all 2N (N — 1) edges of the mesh is the dilation of the projection f.

For example consider the edge between nodes (0, 3) and (1, 3). In the three projections shown in parts
(b)—(d) above, the dilations of this edge are 4, 1, and 2, respectively.

(a)  Determine the dilations of the edge between nodes (1,0) and (2,0) in the above three projections.

(b) For an N x N mesh, prove that the dilations of the projections shown in parts (b) and (¢) of the
above figure is ©(N).

(¢) With N = 2" for some integer n > 1, prove that for an N x N mesh, the dilation of the projection
in part (d) of the figure above is O(N log N).

Hint: Observe that the projection recursive connects the four quadrants of the mesh as a “Z.”
Determine a recurrence relation for an upper bound on the dilation and solve it.



Computer Software 3 Fall 2015

Let G = (V, E) with n vertices and m edges be an undirected graph with weighted edges.
Suppose we are given a minimum spanning tree 7 of G. Now let a new edge e = (u, v) with
weight w(e) be added to G. Let G + e denote the graph with added edge e.

(a) Construct an efficient algorithm to test whether 7 remains a minimum spanning tree
of G + e. Note any assumptions that you make about what data structures are used to represent
tree T and graph G. Analyze the time complexity of your algorithm and explain why it is correct.

(b) Suppose that T is no longer a minimum spanning tree. Construct an efficient
algorithm to update tree T to a new minimum spanning tree. Analyze the time complexity of

your algorithm and explain why it is correct.



Computer Software 5 Fall 2015

Let A denote an array with » distinct elements. The INSERTION-SORT algorithm is as
follows.

INSERTION-SORT(A)
forj=2ton

key = A[J]

i=j—1

while i > 0 and A[i] > key
A[i+1] = A[i]
i=i-1

A[i+1] = key

(a) Define an inversion as follows: “If i <j and A[i] > A[j], then the pair (i, ;) is called an
inversion of 4.” For an array A4, prove that INSERTION-SORT runs in time O(n + I), where I is the
number of inversions in 4.

(b) Let 4 denote an array of “nearly sorted” elements, that is, each element in 4 is within
g positions of its correct location. For a nearly sorted array 4, prove that INSERTION-SORT runs

in time O(ng).



Computer Software 1 Spring 2015

We want to run a multi-task application on a square mesh of cores, where the mesh has
size m x m, the application with n < m” tasks, and we can map at most one task to each core. For
an application with multiple tasks, let a task graph for that application contain a vertex v; for each
task #; and an edge (v;, v) for each pair of communicating tasks # and #. Edge (v;, v;) has weight
w(v;, v) equal to the number of bits communicated between tasks 7; and #. If core ¢, handles task
t; and core ¢, handles task #;, then the communication energy for this pair of tasks is w(v;, v))
times 1 (a bit-energy constant) times the Manhattan distance between ¢, and c,. (The Manhattan
distance is the magnitude of the difference of the row indices plus the magnitude of the
difference of the column indices.) Given a two-dimensional mesh of cores and a task graph, the
task mapping problem is to map each task to a core (at most one task to a core) in a way that
minimizes communication energy.

Describe two heuristics to approximately solve the task mapping problem. Identify the
strengths and weaknesses of both. Specify which of the two heuristics you expect to perform

better and explain why.



Computer Software 2 Spring 2015

Let G = (¥, E) denote an undirected graph in which each edge e; € E has bandwidth b(e;).
The bottleneck rate b(P) of a path P between two vertices u, v is the minimum bandwidth of any
edge in P. The best achievable bottleneck rate for pair u, v is the maximum over all paths P
between u and v of the value b(P).

Prove that a spanning tree T exists in G such that, for every pair of vertices u, v, the
bottleneck rate of unique path in T between u and v is equal to the best achievable bottleneck rate
for u, v. Give an efficient algorithm to construct such a spanning tree. Derive the time

complexity of your algorithm.



Computer Software 3 Spring 2015

Consider a system in which a counter needs to be incremented using bit level operations. It is well-known
that to increment a binary number, all you need to do is complement all the bits from the right up to
the rightmost 0. For example incrementing 1010 1011 0111 1111 gives 1010 1011 1000 0000. For this

unchanged compl;:ented
problem the cost of the incrementing equals the number of bits complemented.

Answer the following parts. All answers must be justified.

(a) Determine the cost of increment the following binary numbers.

(i) 000
(i) 010
(i) 111

(b)  What is the worst case cost of incrementing an n-bit counter?

(c)  If the n-bit counter is incremented from 0 to 2™ -1, then prove that the amortized cost per increment
(that is, the average cost per increment) is O(1) (upper bounded by a constant).

n . 2
For this part, you can use the fact that Z Ez; =20 ;1 .

=1

(d) To prove part (c), is it necessary for the counter to start at 0?



Computer Software Q4 Spring 2015

A D
A C
l Type-l l IType—i[
P
B D a c
(1) )

Given a rectangle patch ABCD (Figure (1)). If you glue AB with CD, following the direction indicated by
the Type-I arrow, you will get a cylinder. But if you glue AB with DC instead, i.e. A glued to D, B glued to C,
following the direction indicated by Type-II arrow, you will get a Mdbius strip. Suppose there is a 2D robot living in
a giant planet that is either a cylinder or Mébius strip, can you develop algorithms to help the robot identify whether
the planet is a cylinder or a Mdbius strip?

(a) Suppose the robot can move freely on this surface, but it can only examine and mark a very small neighboring
region on the surface to detect whether a point is on the boundary and label it when needed. Describe an
algorithm for the robot to differentiate the cylinder and Mobius strip.

(b) This is another method. Suppose the robot has a way to tessellate the planet to F' triangles, E edges, and
V' vertices, as shown in Figure (2). And the robot can mark arrows along edges inside faces, then use the
consistency of the directions of arrows from neighboring faces to differentiate the cylinder and Mébius strip.
Develop an algorithm based on this idea, and analyze its time complexity.



Computer Applications Q2 Fall 2014

Given two points vi = (z1,y1) and vo = (212.y2), any point p located on line
segment [V}, va] can be represented by:

p= (1= Ajvi+ Avy, (1)

where 0 < A < 1 is called p’s barycentric coordinate. The barycentric coordinate for
any point between v, and vs is between 0 and 1, and it is linear with respect to v, and
Va.

(1) Now consider three non-collinear points vy, vo, v, which forms a triangle
[v1,v2.v3). Any point p inside triangle [v;.va2. v3] can also be represented using
barycentric coordinates linearly that interpolates these three points. Derive the barycen-
tric coordinates for a point inside the triangle. Note that coordinates should have each
of its components ranging inside (0. 1].

(2) Further generalize this barycentric coordinates to n, (n > 3) points in n-
dimensional space.



Computer Application 3 Fall 2014
An image whose profile is given across an edge in Fig 1 is deteriorated with a white Gaussian noise.

i. Propose an operator (single operator or composition of operators) that processes the image
with a kernel-based function to reduce effect of the noise and to detect the edge.
ii. What is the purpose of using this kernel-based function proposed; what type of a filter can it

be?
iii. How does your operator detect the edge pixel?
iv. lllustrate your answers over the image profile.
V. How can you increase computation performance of your operator for multiple images?

Sigma = 50

...................

Signal

I i 1 i 1 H ! i 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig 1 Image profile across an edge



Computer Application 4 Fall 2014

Assume that an image is represented by its average image index Avindx defined in equation {1). Asan
engineer you propose a similarity index, called normalized average image difference NAID defined in
equation (2), between two images based on their Avindx. You are asked to compare two images /; and
I, whose elements are non-negative.

a. How would you test whether this method is ‘robust’ to a noise in the images compared?

b. What would be the relation between the NAID and a threshold T such that the proposed
similarity measure is ‘robust’? Explain your answer formally. State all assumptions you
consider.

The proposed similarity measure: Two images are said to be dissimilar if their normalized average image
difference NAID is greater than a threshold T. Hint: Signal = Original Signal + Noise.

Zx,y 1(xy)

Avindx(l) = >

(1)

__ |Avindx(1;)-Avindx(13)|
NAID(h 1) = Ty 11 (L) +12(xy) )




Computer Applications 1 Fall 2015

This problem involves an asynchronous distributed system of nodes connected in a ring. Each node has
a unique id (that also a reflects a priority) for the problem below.

Let the nodes be vg, v1, - - -, vn_1 connected in a ring in the order shown. Let the id of v; be z;; note
that the z; may not be ordered on the ring. Each pair of adjacent nodes, v; and v(;;1)( mod n), Shares
a resource. That is, each node has two shared resources associated with it. There is a conflict, if two
adjacent nodes attempt to access the same resource simultaneously.

The object is for each node to access each of its two resources one time without conflict. We will
require that higher id nodes have higher priority than lower id nodes.

Consider the following algorithm for the problem.

e Each node communicates its id with its neighbors in the ring
e If a node has higher priority than both its neighbors, it accesses (both of) its resources.

e It changes its priority to be —oo (very low) and informs its neighbors.

(a)  Illustrate the algorithm for two small cases, one in which it proceeds very fast and another in which
it proceeds very slow.

(b)  For the general case of the n-node ring, what is the best case and worst case time complexities of
the algorithm. What is the order of messages sent over the ring. Explain your answers.

(c) Prove that the algorithm is conflict free for the general case of n nodes.

(d) Prove that the algorithm terminates for the general case of n nodes. For this part assume that the
algorithm terminates when all nodes have accessed their resources.



Computer Applications Q2 Fall 2015

Given a set of points P = {py, D3, ..., Do} On a line segment L. A Voronoi Diagram V(P) is a
decomposition of L determined by P. The Voronoi diagram V (P) partitions L into n segments
V(P) = {vy,v,, ..., v, }. Each segment v; corresponds to a point p;, consisting all points closer to
p; than to any other points p;:

vi={plpeLlp-ml<|p—p;lj#i}

(1) Given L and the point set P, design an algorithm to find the decomposition of L and
analyze your algorithm’s complexity.

If we further try to optimize all the points {p;} to minimize the following energy:
n

F(P) = Fpu oz ip) = . | Ix = pildx
v

i=1

(2) Explain when a minimizer of F is found, how will P distribute and why. Design an
algorithm to solve this optimization.



Computer Applications Q3 Fall 2015

A half-plane h(a, b, ) is a region in R? defined as h(a, b,c) = {(x,y)|ax + by < c}.

Given a set of half-planes {hy, hy, ..., h,}, defined by {(ay, by, ¢1), (a3, b3, ¢3), ..., (@n, by, €)'}
respectively, prove that (1) the intersection of all these half-planes is a convex region; (2) this
convex region is a polygonal region whose boundary has at most n straight edges.

Note that: 1) a region Q is convex if for every pair of points within this region, ¥p, q € Q, any
point on the straight line segment that joins them is also within the region, namely, pq < Q.

2) A region is a polygonal region if its boundary is formed by a set of line segments. And this
region can be unbounded.



Fall 2015

Circuits and Systems
Problem 1

In the circuit below a 0 to 5V square wave is applied to the input.

a) What is the output voltage when the input square wave is high?

b) What is the charge on the capacitor when the input square wave is high?
¢) What is the charge on the capacitor when the input square wave is low?

d) How much charge is transferred from the positive supply to ground each
cycle.

e) What is the current drawn by the circuit if the input square wave is at a
frequency of 1 kHz?

m

ne T T




Fall 2015

Circuits and Systems
Problem #2

a) For the CMOS inverter shown below, calculate and plot the current that flows through

the transistor as a function of 0 € Vin <Vpb.

VDD

|

@— o Vour
Vino—@
| E __C.
|
=T > I
GND -

Given: Vpp = 5V
For n-MOSFET: For p-MOSFET:
unCox = 20 HA/V? HpCox = 10 pA/V?.
W/L =2 and Vinn = 1V W/L=4and |Vinp| =1V

Where Vinn and Vinp are threshold voltages of n-and p-MOSFETs. L and W are channel
length and gate width of the MOSFET. p is the mobility of carriers in the channel region.
Cox is the gate gate oxide capacitance /area.

MOSFET I-V Relations:

Ip = 0.5uCox(W/L){2(Vas-Vin)Vps-Vps?} (Linear region)

Ip = 0.5uCox(W/L){(Vas-V)* } (Saturation region)

Where Vs is the gate-to-source voltage and Ip is the drain current.

b) Compute dynamic power dissipation. Given CL = 0.01 pF and Tp= 100 nS.



Fall 2015
Circuits and Systems
Problem 3
a) Convert the following logic into CMOS integrated circuit and show substrate
body connections of all MOSFETs to the appropriate power supply voltages, i.e., Vbp
and Ground. Label each transistor in your circuit. Write the truth table showing ON and
OFF states of all transistors. Note: Number of driver transistors must be equal to the

number of load transistors.

Y = {(A+B).C}
b) Divide voltage transfer characteristics of a typical CMOS inverter in 5 separate
regions for = 1 where § = Bn/Bp. Pn and Bp are transconductance parameters of n- and p-

channel MOSFETs, respectively. Write ON and OFF states and corresponding regions of

operation of n- and p-channel MOSFETs in each section.



Fall 2015

Circuits and Systems
Problem 4

Consider the op-amp circuit shown below. The individual bits of the 4-bit binary input
word, s §; 53 54, are used to controlled to position of the switches with the resistor
connected to 0 V if sy = 0 and connected to the input signal viy if sy = 1. Resistors are R,
=2R, R, = 4R, R; = 8R, and Ry = 16R, where R is a finite resistor.

(a) Find the output voltage voyt with the data input 0110 if viy = 2 sin(4000a%) V.

(b) In (a), what will be the new output voltage if the input changes to 1011.

(c) Make a table giving the output voltages for all 16 possible input combinations.

R
AAAY

R, R, R; R, + Vour

ta
N
||I




Fall 2015

Circuits and Systems
Problem §

For the amplifier circuit shown in the figure below,
a) Calculate the resistance values Rci, Rcz, Res, Res, Reer and Regz.

Given: Vec = +15V, Vg = -15V, Transistor base-emitter voltage during conduction
Veeony = 0.7V.

For Qi and Qa: For Q3 and Qu:

Ici =Ic2=0.1 mA Ic3=Ica=1mA

Va1 = Vep2 = Vec/2 Va3 = Veas = (Vee-Vasz)/2
Br=Po=50 Br = Po =150

Here, Pois d.c. common-emitter current gain and Br is forward small signal current gain.
VcBx is the collector to base voltage and Vsx is base voltage of transistor Qx.
b) Calculate the above resistance values if the supply voltages are now reduced to that

Vcc=+6V, VEg =-6V.
Vee




Spring 2015
Circuits and Systems
Problem 5

Consider the op-amp circuit shown below. Given 0 < § < 1.
and answer the following questions.

Assume an ideal op-amp
(a) Find a general expression for the output voltage, v,

(b) Find an expression for common mode rejection ratio (CMRR).

(c) When R, = 10kQ and R, = 100 kQ, estimate the resistance tolerance, 6, required
for a guaranteed CMRR of 80 dB.

R, Ry(1 - 9)
AVAVAY. NV —0

NONGR
R 1

NV AA%




SPRING 2014
Physical Electronics
Problem 1

A silicon diode has the doping profile as shown in the figure below. Np and N, are donor
concentration and acceptor concentration, respectively. Given,

N _E
Do =1, exp( E, kTEF ) and n, = n, exp( Er - E, )

kT

where #; is the intrinsic carrier concentration, E; is the intrinsic Fermi level, Er is the
Fermi level, k is the Boltzmann constant and T is the temperature. rng and po are electron
and hole concentrations in equilibrium. x, and x, are n-side and p-side widths of the
depletion region. Assume that —x, < —x for all applied biases of interest.

Impurity
Aconcentration
Np 7
i
]
]
:
1
-X _xo )
: P 1 >
: Xn X
!
]
]
)
]
i
e e -N,

Given, n;=1.45 x 10" cm™, k=138 x 10P J/K, T=300K, Np=5 x 10 cm™, N, = 1
x 10' cm'J, and xo = 0.5 pm. .

(a) Assuming impurities are 100% ionized, derive the expression for the built-in
potential at thermal equilibrium. Justify your answer and show detailed steps.

(b) Calculate the built-in voltage (V4;), x, and x,,.
(c) Draw an equilibrium band diagram.

(d) When a forward bias of 0.45 V is applied, repeat (b).



Fall 2015

Physical Electronics
Problem 1

For a given cubic lattice, assume that each atom is a hard sphere. Let the surface of each atom is
in contact with its nearest neighbor. Determine the percentage of total unit cell volume that is
occupied in each of the following:

a) a simple cubic lattice

b) a face-centered cubic lattice

¢) a body-centered cubic lattice

d) diamond lattice



Fall 2015

Physical Electronics

Problem 2

The following schematic shows a PN junction, where p-type silicon is doped with a dopant concentration
of N,, and n-type silicon is doped with a dopant concentration of Ny. The thickness of the depletion region

(or space-charge region) in p-type silicon is x,, and that in n-type silicon is x,.
N, Ny

negative positive

charge  charge

1

+ + + +

+ o+ 4+

| —
|
|-

p i
|-
1
|-

—x, +=0 o,

v

a) Draw the charge density of the pn-junction.

b) Draw the electric field in the pn-junction

¢) Express the maximum intensity of the electric filed, using Na, Ng, g, x», X5, and &. (g is unit charge, and
&s is the permittivity of silicon) Where is the maximum intensity of the electric field located?

d) Express the built-in potential, V5 in terms of Ni, Ny, g, Xn, X, and &. (g is unit charge, and &s is the
permittivity of silicon)

e) Express x, in terms of N, N g, Vi and €. (You can assume charge-neutrality and complete ionization
of the dopant.)



Physical Electronics Fall 2015
Problem 3

Consider a silicon sample under light illumination with an intensity of I, = 0.1 W/em?® on
the surface of the sample. Absorption coefficient for several semiconductor materials is
shown in the graph below. The Planck constant, A, is 6.626 x 1034 J-s.

L s e LB S o e o e e L e s e
T T T T 3

—
o
W
e
4

._.
<
-
1

T

1000 £

Absorption Coefficient [cm']

10 ..... U W B B PO VR S A U B G R T ¥
0.3 0.6 0.9 1.2 1.5 1.8
Wavelength [pm]

(a) When the wavelength of light is 1 um, determine the photon flux intensity at a
depth of 5 um from the surface. Assume that the surface does not reflect the

incident light and the ambient temperature is 300 K.
(b) Repeat (a) at a depth of 10 pm.

(c) Determine the generation rate of excess electron-hole pairs at depths of 5 pm and
10 um from the surface.

(d) Discuss whether the answers found in (c) will be dependent on temperature or not.
Provide the reasons for your answer.



Fall 2015

Physical Electronics

Problem 4

The following is the minority carrier transport equation. (Each sub-question is not related to each other.)

0’ (on) d(on) & _ 9(on)
D——+uE—=+g'——=—-—- forp-type
" o H, o g T o p-typ
on : Excessive minority carrier D,, : Diffusion coefficient
7, : Minority carrier life time g': Photogeneration rate

1) What is u,? (answer in 2 words.)

2) At high electric field (E>100kV/cm), the velocity of the carrier is saturated to vsa. Modify the
minority carrier transport equation, to model the electron’s velocity saturation and justify your
answer. (The electron is assumed to move in +x direction.)

3) The distribution of the excess minority carrier at t = 0 is as below (dnp > 0).

Sn(x),, =x(l-x)  0<x<1

on(x),., =0 x<0, l<x
Will the excess minority carrier concentration (d» ) at x=0.5 increase or decrease when =0?
Justify your answer. (You can assume that photo-generation rate is very low and that the minority
carrier life time is very large.)

What is the electric field that will keep the minority carrier concentration (» ) constant at =0
and x = 1/3? Justify your answer. (You cannot ignore the photo-generation rate and the minority
carrier life time.)



Physical Electronics
Problem 5

The magnetic field in a sourceless region in free space is given by
H = H,sin (%) s &

(a) Show that V-H=0.
(b) Find the electric field E .

2
(c) Show that (%] + B =a’Eu,.

Fall 2015



SPRING 2014

Physical Electronics
Problem 3

The figure below illustrates a semiconductor block for measuring the Hall effect. A
current (/) is applied in +y direction and a magnetic field (B) is applied in +z direction.
Answer the following questions.

4

(a) Explain how the Hall effect can be used to distinguish the doping type of a
semiconductor.

(b) Derive an expression of the Hall voltage ¥V for a p-type semiconductor. Define
parameters if necessary.

(c) Consider that the silicon Hall sensor whose geometry is L = 1 mm, W = 50 um,
and d = 5 um in the figure shown above is placed in the known magnetic field (B).
When B = 50 mT (or 0.05 Wb/mz), I=1mA, and Vp = 5 V, the measured Hall
voltage (Vy) is 5 mV. Determine the type, concentration, and mobility of the
majority carrier.

(d) Will the Hall voltage have temperature dependence? Present your view on this.



POWER 1 SPRING 2014

A. Develop power equation of the three-phase unbalanced linear-time invariant (LTI)
load specified in terms of line-to-line admittances for harmonics ¥Yrs, ¥st, ¥1r, assuming that
the supply voltage is sinusoidal, but symmetrical and of the positive sequence.

B. Specify phenomena that affect the power factor of such loads.

C. Calculate the rms values of the active, reactive and unbalanced currents in the circuit

shown in Figure and the power factor, A, of the supply, assuming that Zg = 2+j3 Q.

480V RO » :er
480V 80 > ‘rrj
480V 1O >

1 i
Zau Q




POWER 2 SPRING 2014

A Buck-Boost DC/DC converter supplied with voltage U = 200 V is used for the control of
the output voltage on the resistance R, = 15 Q from U, = 100 V to U, = 300 V. Draw the
structure of the converter, the waveforms of the inductor and capacitor currents. Calculate
inductance L and capacitance C of the converter if the switching frequency is equal to f= 15 kHz
and output voltage ripples cannot be higher than 5 % of the output voltage.



AUTOMATIC CONTROL 2 Spring 2015

Let (A, B,C, D) be a realization of order n, and A be a Schur stability matrix. Let P and Q
be the observability and reachability gramians, respectively. That is,

P=ATPA+CTC, Q= AQAT + BBT.

1. Let P = UX,U* be singular value decomposition where U is unitary, and Z, is diagonal
and of rank 7, < n. Show that similarity transform S = U7 yields observability Kalman
decomposition.

2. Let @ = VE,VT be singular value decomposition where V is unitary, and X, is diagonal
and of rank 7. < n. Show that similarity transform S = V7 yields reachability Kalman
decomposition.

3. Suppose that A is not a Schur stability matrix but satisfying A;(A)\¢(A4) # 1 for all
(4, k). In this case the two Lyapunov equations still have unique solutions P and Q. Can
you use the same method as 1. and 2. for finding the Kalman decompositions? Why or
why not?



AUTOMATIC CONTROL 3 Spring 2015

Consider a linear system with the following state space realizaiton

o= [ 0)ae] 0]
y = [b 1]z

1. Determine the condition for the controllability and the stabilizability of the system.
2. Determine the condiiton for the observability and detectability of the system.

3. Let a = 1. Find a state feedback u = F'z if possible so that the closed eigenvalues are at

—1 and —10. Find another state feedback if possible so that the closed eigenvalues are at
—10 and —10.

4 Leta = 1 and b = 0. Find a state estimator (or observer) so that the states can be
asymptotically estimated.



AUTOMATIC CONTROL 4 Spring 2015

Let a transfer matrix be given by

1 10(s+5)
s+1 s(s+1)
G(s) =
1 20
s5+2 s

1. Find a minimal (controllable and observable) realization for G.
2. Find a Smith-McMillian form for the transfer matrix G.

3. Find the transmission zeros of the system.

4. Suppose z is a zero. Then find a vector u = [ (11 ] so that G(z)u = 0.



AUTOMATIC CONTROL 5 Spring 2015

Consider a unity feedback system with open loop transfer function

_ K(s-1)
Gls) = s(s — 2)(s + 10)

1. Draw root locuses for K > 0 and K < 0 respectively.
2. Show that the feedback system cannot be stabilized by any stable controller.

3. Suppose C(s) is a controller that stabilizes the feedback system. Discuss the possible
controller poles and zeros locations.



AUTOMATIC CONTROL 1 Fall 2015
For a unity negative feedback control system, the open loop system is given by
K(s+2)(s—1)
s?(s+9)

1. Use Routh-Hurwitz method to find the range of K for which the feedback system is
stable.

KG(s) =

2. Sketch the Nyquist plot, and find range of K that makes the feedback system stable.

3. Sketch the zero-degree root locus to validate the result in the previous two parts.



AUTOMATIC CONTROL 4 FALL 2015

Consider a unity negative feedback system with a plant model given by

10
P(s) = s—1
and a controller given by
s+b
Cls) = 2=
for some real parameter b.
r(t) u(t) y()
C(s) P(s)

Fig. 1 Feedback control system

1. Write a state space realization of the feedback system.

2. Find the closed-loop transfer function from r to y when b = —1. Is the system bounded
input and bounded output stable from r to y?

3. Discuss the closed-loop stability, controllability, and observability when b = —1.
4. Discuss the closed-loop stability, controllability, and observability when b = 5.



AUTOMATIC CONTROL 5 FALL 2015
Let a transfer matrix be give by

—
W |

0 1

1. Find a minimal (controllable and observable) realization for G.
2. Find a Smith-McMillian form for G(s).

3. Find the poles and the transmission zeros of the system.



COMMUNICATIONS AND SIGNAL PROCESSING 1 FALL 2015

A 4

x(n) ——»| Hy(2) Hy(z) > n(»)

x(n) — G(@) |—— y2(n)

The above figure depicts two linear time-invariant causal systems. Assume that G(z) =
Hi(2) Hy(z) is always true, and G(z) is of irreducible form (no common factor be-
tween numerator and denominator polynomials) and represents a bounded-input bounded-
output (BIBO) stable system. Some pole(s) of H;(z) would be allowed to be out-
side the unite circle of the z-plane. The discrete-time Fourier transforms (DTFTs) of
the output signals y;(n) and y»(n) are denoted by Y; (¢7%) = i 11(n)e 9“™ and

n=—oo

Yo (e?¥) = 3 ya(n)e 9", respectively, where j = /—1.

n=—oo

1. Is it true that we will always obtain y;(n) = y2(n) no matter what kind of

bounded input z(n) we apply? Justify your answer in rationale.

2. Use a particular example here. Assume that G(z) = &£ %, where f is a real
number and |B| < 1. Construct H:(z) = ;% and Ha(2) = 55—2:772, where v, K

are real numbers and v # 3, K # 0. Use these transfer functions to implement
the causal systems depicted above. What is the restriction on 7 to guarantee the
BIBO stability of the cascade system? What is the restriction on -y to guarantee
y1(n) = ya(n) for any arbitrary bounded input signal z(n)?

3. A system transfer function, say H;(z), which has some pole(s) outside the unite
circle of the z-plane, obviously cannot represent a causal stable system. How
do we build a compensator Ho(z) such that G(z) = Hi(z)Ha(z) where G(z)
represents a causal stable system and the corresponding output magnitude spectra
satisfy |Y; (e7%)| = |Ya (e7%)|, for all w?



COMMUNICATIONS AND SIGNAL PROCESSING 2 FALL 2015

The 4-PAM (pulse amplitude modulation) alphabet A = {+£1, +3} might be called
unfair in the sense that some symbols are more likely to be decoded erroneously than
others. In other words, the conditional error probability P(error|a) depends on which
symbol a is transmitted. The goal of this problem is to modify 4-PAM to make it fair,
in the sense that the conditional error probability P(error|a) does not depend on which
symbol a is transmitted. Consider a new 4-ary alphabet A’ = {£1, £33}, where the
parameter § determines how far to move the outer points. This alphabet reduces to
the conventional 4-PAM alphabet when 3 = 1.

1. In the presence of additive white Gaussian noise (AWGN) with maximum like-
lihood (ML) detection, is P(error|ja = =+1) larger or smaller than P(error|la =
+3)? Explain.

2. Does there exist a real value for the parameter 5 such that fairness is achieved, in
the sense that P(errorja = £1) = P(error|a = +38)? If necessary, assume that
signal-to-noise ratio (SNR) is 4 dB.

3. If yes, specify the value of 3 that achieves fairness. If no, explain why it is

impossible.



COMMUNICATIONS AND SIGNAL PROCESSING 3 FALL 2015

Let X and Y be statistically independent and identically distributed (i.i.d.) random
variables ~ A (0, 1) (Gaussian with zero mean and unit variance). Let W = X + 7Y,
and let V = X + sin(0)Y, where 6 is a constant.

1. Find the expectations of W, V, and WV.

2. Find a numerical value for the constant @ in the range —7 < 6 < 7 so that W and

V are uncorrelated.

3. Find a numerical value for the constant 6 in the range —7 < § < 7 so that W and

V are statistically independent.



COMMUNICATIONS AND SIGNAL PROCESSING 4 FALL 2015

Consider a Gaussian channel with binary input z € {—1, +1} and real output alphabet
Ay, with transition probability given by

where « is the signal amplitude.

1. Compute the probability of z given y, assuming that the two inputs are equally
likely. Put your answer in the form

1

P(z=1ly,a0) =10

where g(y) is a function of y.

2. Assume that a single bit is to be transmitted, and the two inputs are equally likely.
What is the optimal decision rule to determine £ € {1, —1} based on y, and what
is the probability of error P.(a,0)? Express your answer in terms of the signal

22
to noise ratio o /02, and the @ function: Q(z) = [° e 7 da

3. If « is an unknown random variable uniformly distributed over an interval [0, 1],
find the new decision rule for £ € {1, —1}, under the same assumption of equal
prior probabilities. To evaluate the resulting average error probability, can we
integrate the average error probability P.(«a, o) obtained in the second part over

the density function of o given here? Justify your answer.



COMMUNICATIONS AND SIGNAL PROCESSING 5 FALL 2015

Assume that X, is a wide-sense stationary random sequence with autocorrelation
function Rx[k] = E[X,X,+«), where n and k are integer-valued discrete-time vari-
ables. The random sequence Y, is obtained from X, by Y,, = X, + "X, _, where

B # 0 is a real-valued constant.
1. Find the autocorrelation function of Y,.
2. Find the cross-correlation function of X, and Y;,.

3. Determine those values of 8 for which Y;, is wide sense stationary.

4. Determine those values of 3 for which X, and Y, are jointly wide sense station-

ary.



COMMUNICATIONS AND SIGNAL PROCESSING 1 SPRING 2015

The unit-step input signal u(n) is defined as 1 for n > 0 and 0 for n < 0. Consider a
causal, linear and time-invariant (LTI) system whose input signal is given by z(n) =

u(n — 1) and whose output signal is given by

y(n) =2"u(—n — 2) — (1/5)"u(n — 1).
1. Determine the impulse response h(n) of this LTI system.

2. Find the transfer function H(z).

3. Determine whether the LTI system is stable or not, in a bounded-input bounded-
output (BIBO) sense.

4. If the LTI system has the input signal z(n) = 3"u(n) + u(—n), determine the

corresponding output signal y(n).



COMMUNICATIONS AND SIGNAL PROCESSING 2 SPRING 2015

Let the random process Y (t) be given by

dyY(t)
Y(t)=X(t) -2——=
where X (t) is a random process with mean function px(t) = 5t, and the covariance
function
1
Cxx(t,ty) = ——m—.

1. Find the mean function py (t).
2. Find the covariance function Cyy (¢;, t2).

3. Is the random process Y (¢) wide sense stationary? Why?



COMMUNICATIONS AND SIGNAL PROCESSING 3 SPRING 2015

A single binary equally-likely message is to be transmitted across a filtered additive
white Gaussian noise (AWGN) channel. The frequency response of the channel filter
is given by H.(f) = sinc(f) = %(’fr—fl The channel noise power spectral density is
given by Sy, (f) = Ny/2.

The following signal set is used to transmit a single message across the channel.

S = {so(t), s1(t)}
where s1(t) = —so(t) and where
1, O0<t<?2
so(t) = .
0, otherwise.

1. Sketch the block diagram of the minimum probability of error receiver for this

signal set. You must clearly describe the function of each block.

2. Find the probability of error for your receiver.



COMMUNICATIONS AND SIGNAL PROCESSING 4 SPRING 2015

At a casino, people line up to pay $20 each to be a contestant in the following game:
The contestant flips a fair coin repeatedly. If he/she flips head 20 times in a row,
he/she walks away with R = 20 million dollars; otherwise, then walks away with
R = 0 dollars.

1. Find the probability mass function (PMF) of R, the reward earned by the contes-

tant, and draw its corresponding cumulative distribution function (CDF) Fg(r).

2. Compute E[R], the average of R, and what is the average of net gain of the

contestant, considering the cost of each ticket?

3. The casino counts “losing contestants" who fail to win the 20 million dollar prize.
Let L equal the number of losing contestants before the first winning contestant.
What is the PMF of L?

4. Why does the casino offer this game?

5. If a player questions the fairness of this game in terms of the biasness of the “fair"
coin, what kind of procedure you would recommend to test if the coin is fair or

not, please justify your answer.



COMMUNICATIONS AND SIGNAL PROCESSING 5 SPRING 2015

Consider a system whose input is z(t), and corresponding output is y(t), answer the

following questions with your justification.

1. If y(t) = z(2t), is this system time-invariant? What is the relationship between
the input Fourier transform X (jw) and output Fourier transform Y (jw)? Can we

have a properly defined impulse response h(t) for such a system?

2. For another system, which is linear and time invariant, if its input is da(t) =
% [u(t) — u(t — A)], where u(t) is the unit step function, the corresponding out-
put is denoted as ha(t). For any other bounded input z(t), provide an approxi-
mation Z(t) of z(¢) using da (t) and its scaled and shifted transformations. What

is the resulting output of the same system for such an input Z(¢)?

3. If the relationship between z(t) and y(t) is characterized by a first order differ-
ential equation %}(% + ay(t) = z(t), where a # 0 is a real number, what is the

constraint on a so that the system is bounded?

4. For a bounded system governed by the above differential equations under a par-
ticular ao, if the input z(t) is a zero mean white Gaussian random process whose
power spectral density (PSD) is Ny/2 over the entire frequency domain, is the
output process y(t) also second order stationary? If yes, what is the resulting
PSD? Can we sample y(t) at ¢; # to, respectively, so that y(¢;) and y(tz) are

statistically independent?





