EE7700 – Computational Photography

Bahadir K. Gunturk

In recent years, the fields of computer graphics, computer vision and photography have converged to give rise to a new and active research area -- Computational Photography. The goal is to overcome the limitations of traditional cameras and obtain additional scene-related information using computational techniques and new imaging systems.

Outline

- Introduction to Camera
 - o Optics
 - Pinhole camera, lenses, perspective transformation, aperture, shutter, depth of field, aberrations, point spread function
 - Sensors
 Photons to electrons, microlenses, aliasing and antialiasing, noise sources, dynamic range, ISO
- In-camera technologies
 - Focusing and metering
 - Auto focusing, metering technology, shooting modes
 - Post-capture pipeline
 - Color capture, demosaicking, white balancing, denoising, enhancement, EXIF data
- Extending the dynamic range
 - High dynamic range imaging, HDR image capture, tonemapping
- Extending the depth of field
 - Light fields and plenoptic cameras
 - Light field theory, light field capture techniques, digital refocusing, 3D display
 - Computational extension of depth of field
 - Deconvolution approach, coded apertures, focus sweep, wavefront coding
- Improving illumination
 - Programmable illumination
 - Flash + no-flash imaging
- Removing camera shake and motion blur
 - Optical image stabilization
 - In-lens and in-body technologies, fluttered shutter
 - Digital image stabilization
 - Blind image deconvolution
- Combining multiple images
 - Panorama creation
 - Image registration, warping, blending
 - Super-resolution
 - Optical flow estimation, multi-frame restoration
 - Compositing and editing
 Graph cut segmentation, content-aware image resizing

Grading (Tentative)

- Assignments 30%
- Semester Project 30%
- Midterm 20%
- Final 20%