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Abstract

Cell loss probability (clp) is one of the most important measures of quality of service
in an ATM network. In this paper we present two routing algorithms for ATM networks
that meet the clp requirements of bursty ON-OFF sources that request connection
while ensuring that the clp requirements of the existing calls are not compromised.
The first algorithm checks the entire set of feasible routes while the second algorithm
remembers the last successful route for each OD pair and is consequently simpler
to implement. Our numerical results show that the clp requirements are achieved
while maintaining low call blocking probabilities. Further, the routing algorithms are
sensitive to the clp requirements and respond to small changes in them. If the clp
requirements are made stricter, then the routing algorithms continue to maintain these
new requirements at the expense of small increases in the call blocking probabilities.
Different cell loss probability criteria can be accommodated for different types of calls
which may differ in parameters such as burstiness, average burst length and average or
peak rates. A comparison of the two algorithms in terms of the trade-off between cip
and call blocking probability is also provided which confirms the effectiveness of the
simpler second algorithm. We also present a feedforward neural network which is easily
trained and which can be used for the real time implementation of the algorithms.

Indexr Terms: ATM networks, routing and congestion control, call admission, quality of

service.
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1 Introduction

Asynchronous transfer mode (ATM) is a virtual-circuit (VC) oriented packet-switching tech-
nique that allows for integration of a wide variety of traffic sources and provides selectable
quality of service (QoS). At the time of call setup, the quality of service is negotiated be-
tween the user and the network. For the call to be accepted, the network must be capable
of providing a negotiated quality of service, in effect, guaranteeing that as new calls are
admitted, the quality of service of the existing calls will not be compromised. If this can not
be guaranteed, the new call is rejected (or blocked). This results in a trade-off between call
blocking probability and quality of service requirements. In ATM networks, as in telephone
networks, call blocking probability is an important measure of network performance. In
addition to the loss of revenues for the service providers, blocked calls result in customer
dissatisfaction and annoyance.

At the cell level, QoS is described by cell loss, cell delay and cell jitter. In this paper,
however, we restrict attention to cell loss probability (clp) as the only measure of QoS. It
is clear that stricter clp requirements result in higher call blocking rates. However, in an
ATM network employing statistical multiplexing and serving heterogeneous traffic sources,
the level of sensitivity of call blocking probabilities to clp requirements is not clear. We
consider an ATM network that supports heterogeneous traffic sources having different traffic
statistics and/or QoS requirements. Ensuring that the cell loss probability requirements of
calls are satisfied, we then investigate the trade-offs between call blocking probabilities and
cell loss probabilities.

Assuming that the clp of a new call can be guaranteed, a routing algorithm is needed that
can be used to select a path in the network over which the new call can be connected. For
the purpose of studying the trade-offs described above, we develop two routing algorithms,
reminiscent of the adaptive routing algorithms suggested for the telephone network [17] [13],

that guarantee the negotiated clp for each call currently connected in the network as well as



for the new calls requesting connection. If the clp requirements of a new call cannot be met
or if meeting it would compromise the clp of any of the existing calls in the network, the new
call is rejected. We show that this is achieved while maintaining a reasonable call blocking
probability. The computations necessary to make the routing decisions can be performed off-
line through any fast computational paradigm and in Section 4 we show how a feed-forward
neural network can be gainfully utilized for such purpose.

Quality of service based routing is considered in [11] where the authors propose several
routing algorithms for ATM networks. These are based on the well known least loaded
routing (LLR) algorithm [5] used in circuit switched networks. The authors classify the
ATM networks into four classes according to the following: (1) homogeneous calls (i.e., all
calls have the same traffic statistics and QoS requirements) without statistical multiplexing.
(2) homogeneous calls with statistical multiplexing. (3) heterogeneous calls (i.e., the calls
have different traffic statistics and/or QoS requirements) without statistical multiplexing.
(4) heterogeneous calls with statistical multiplexing. Of these, case (1) corresponds to single
rate circuit switching and has been investigated extensively in the literature (see for example
[16] [5] [17] [13] [23]). Cases (2) and (3) are investigated in [11]. Case (4) is not investigated.
However, ATM networks are currently envisaged to carry heterogeneous traffic. Moreover,
statistical multiplexing cannot be avoided as, otherwise, in the presence of bursty sources
the network will be extremely inefficient in its utilization of link capacities.

In this paper we consider case (4) above where the network performs statistical multiplex-
ing and handles heterogeneous traffic. Since we would like to guarantee the clp of every call
admitted by the network, an accurate method is needed for computing the clp of heteroge-
neous traffic sources from an ATM multiplexer. In [24] a computationally tractable model is
presented for homogeneous traffic. This work is extended to heterogeneous traffic in [25]. In
these two papers the arrival process into the multiplexer is modeled as a Markov modulated

deterministic process (M M DP) and the multiplexer is then modeled as an MM DP/D/1/K



queueing system. The authors make two renewal assumptions on the arrival process and the
server which make the problem mathematically tractable. The cell loss probability for the
multiplexer is then evaluated. However, as noted in [24], the renewal assumptions alter the
nature of the arrival and departure processes. As a result the MM DP/D/1/K model can
not account for short term or cell level congestion. Consequently, as the results in [24] [25]
indicate, the MM DP/D/1/K model is not very accurate in estimating the cell loss proba-
bility. We have also obtained several numerical results using the MM DP/D/1/K model all
of which confirm this. Since our goal is to provide guaranteed QoS, we have developed an
accurate method for the computation of clp which is presented in Section 3.

A great deal of other research work has been devoted to analyzing the performance of an
ATM multiplexer [1] [2] [6] [9] [10] [12] [18] [20]. In particular, in [6] [9] and [20] the authors
have studied queueing systems with periodic arrival processes when all the sources have the
same period. In [20] the authors have obtained upper and lower bounds to the queue length
distribution for a - D;/D/1 queueing system. Further results on these queueing systems
can be found in [15] and [18].

We use bursty ON-OFF models for sources and present two routing algorithms that meet
the clp requirements. Our numerical results show that the clp requirements are achievable
while maintaining low call blocking probability. Further, the routing algorithms are sensitive
to the clp requirements and respond to small changes in them. If the c¢lp requirements are
made stricter, then the routing algorithms continue to maintain these new requirements at
the expense of small increases in the call blocking probabilities. We also present a feedforward
neural network which is easy to train and which can be used for the real time implementation
of the algorithms.

The rest of the paper is organized as follows. In Section 2 we present our network model
and the routing algorithms. In Section 3 we develop accurate models for evaluating the

clp for an ATM multiplexer serving heterogeneous traffic. These models are used in the



routing algorithms of Section 2. In Section 4 we present the computational paradigm of a
feedforward neural network, demonstrate how it can be trained off-line and present numerical
results confirming its applicability for our model. Numerical results are presented in Section

5. Finally, conclusions are presented in Section 6.

2 The Network Model and the Routing Algorithms

We consider an ATM network consisting of ATM switches interconnected by high-speed
links. We assume that each pair of switches is connected by a single virtual path (VP),
i.e., the VP network is fully connected. Using a multiplexer followed by a buffer, each VP
serves a number of virtual circuits (VC’s). (Throughout this paper the terms VC and call
are used interchangeably.) We assume that all the VC’s on a VP share a buffer space that
is dedicated to the VP. (Since the VP consists of a number of VC’s, this assumption does
not significantly compromise the effects of statistical multiplexing on a link.)

The VP network is modeled as a directed graph (N, £), where A is the set of switches of
the network and L is the set of (directed) VP’s. The bandwidth of VP [ is Cj cells/sec. and
its buffer size is K cells. Also, we denote by P the set of all origin/destination (OD) pairs.

In order to make the task of managing routing decisions easier, VC’s are classified into
types based on their traffic characteristics and their QoS requirements. Since we consider
clp based QoS, the call routing decisions are based on the number of VC’s of each type
that the network carries. Since ATM utilizes virtual circuit switching, the routing policy
essentially consists of decision rules which determine (i) whether an arriving VC should be
accepted or rejected and (ii) if accepted, what particular path the VC should be assigned to.
Therefore, with each OD pair p we associate a route set R, consisting of all the paths that
a VC corresponding to this OD pair can take. Each route set consists of the direct route

(the route consisting of the single VP connecting the two nodes) and a number of alternate



routes. An alternate route r, consisting of VP’s [; and [, is denoted by 7, = {l1,l5}. In this
paper we only consider alternate routes that are comprised of two VP’s. Extension to the
general case is straightforward.

Let M;, denote the number of VC’s of type ¢ being routed through VP [ and let
M, = (M1, M>,...,M,q) denote the state of VP [, where ) denotes the total num-
ber of VC types. For a fixed state and a fixed buffer size of VP [ let p; , denote the fraction
of cells of type ¢ that are lost from the buffer. Let P, = (p;1,p12,... Pig). In order to
describe our routing algorithms, we assume that, given M; and K;, P; can be evaluated
from some existing procedure. In Section 3 we present a method for calculating these cell
loss probabilities. From now on we only assume that each switch has knowledge of the state
of all the VP’s in the network which share at least one link with any VP that passes through
this switch and uses this information to compute the clp’s for each VC type.

If a route consists of a single VP [, say, then the cell loss probabilities are given by P;.
For an alternate route 7, = {ly,l5}, we assume that the cell loss in the buffers of the two
VP’s are independent [3]. Then clp,, 4, the fraction of cells of type ¢ that are lost on route
Tp, 18 given by

Clp?“p,q =1- (1 - pll,Q)(l - pl2,Q)v (1)

where p;, , and py, , are the gth components of P;, and Py, respectively.

Assume that a VC of type ¢ arrives requesting connection for OD pair p. For ¢ =
1,2,... Q, let g, denote the maximum clp acceptable for VC of type ¢. We now present the
two routing algorithms.

Algorithm 1

1. First try the direct route. Assume the VC is accepted and is routed through the direct
route using VP [. Compute the new clp for all VC’s that utilize VP [. If the clp of all

these VC’s is less than the maximum acceptable clp, then accept the new VC; else



2. Initialize the set of feasible routes, FR, to an empty set, FR +— (.

3. For each alternate route r, € R,, obtain the new clp for all VC’s that utilize route r,
or either of the two VP’s of r, if the VC is connected through r,. If all these clp’s are

less than the maximum acceptable clp’s, let FR = FRU{r,}-

4. If FR = 0, reject the VC; else

5. Let CLP,, = (clp,,1,¢lpr, 2, ... clpr, q). Define the cost function fe.q(-) as

Q C
fcost(CLPTp) = Z(@) . (2)

=1 Yq

Accept the VC for any route r,, where
T, = arg rll)rreli}pR{fcost(CLP,«p)}. (3)

Essentially, in the above algorithm if the cell loss probability requirements of all the
existing VC’s as well as the new VC can be met on some route, the VC is accepted. Preference
is given to the direct route. If the VC cannot be accommodated on the direct route, then it
is routed on the alternate route that results in the smallest network cost as measured in (2).
The Cost Function f.,(-)

In the previous algorithm if the direct route is not available and we have more than one
alternate route that is feasible, i.e., the set 7R has more than one candidate route, then we
need to make a choice between these candidate routes. In general, it is not easy to determine
which is the best candidate. One option is to choose the alternate route with the maximum
available bandwidth. However, this may cause higher VC blocking probability for VC’s
with higher bandwidth requirements that arrive later. Another option is to consider a cost

function that takes into account all the VC’s that are affected if the arriving VC is accepted



on a given route. Such cost functions, however, present the following problem. Consider a
candidate route r, € FR and an alternate route that has a VP in common with 7,. Further,
assume that the other VP of this route (not in common with r,) is heavily congested. Then
rp, may not be chosen to accept the incoming VC even if r, is lightly loaded. This is due to
the fact that we are considering all the VC’s affected by route r,, and the heavily congested
routes have a greater effect on such cost functions. In fact, accepting the incoming VC on
rp, would not have important repercussions on the heavily congested route. In comparison,
the cost function given by (2) presents a good compromise. It only considers the effects of
the chosen route on the two VP’s of the alternate routes. However, the choice of a route
in Algorithm 1 nevertheless requires the identification of a minimum cost path, which can
be time-consuming. We therefore suggest Algorithm 2 which remembers the previous good
path.

Algorithm 2

Initialize 2% = 0 for all p.

p

1. First try the direct route. Assume the VC is accepted and is routed through the direct
route. Compute the new clp for all the VC’s that utilize this VP. If the clp of all these

V(s is less than the maximum acceptable clp, then accept the new VC; else

2. If 79! = 0, then choose one of the alternate routes at random, say r, € R, set ro'

and go to step 3.

old — q.old
If r)'® # 0, set m, = 1)’

3. Obtain the clp for all VC’s that utilize route r, or either of the two VP’s of r,. If all
these clp’s are less than the maximum acceptable clp’s accept the new VC for route

rp; otherwise reject the VC and set r;ld = 0.

In Algorithm 2, we do not check the entire set R, for feasible routes; rather, we are

content to remember for each OD pair the last route that successfully served as an alternate



route and continue using it until it fails (i.e., the VC is rejected) at which point a new route
is chosen at random and the entire process started anew. While Algorithm 2 may result in a
larger VC blocking probability, it is considerably less complex to implement than Algorithm
1. Algorithm 2 is inspired by the Dynamic Alternate Routing scheme for circuit-switched

networks implemented in the British Telecom network [8].

3 Evaluation of the Cell Loss Probabilities

To implement the routing algorithms we need a procedure for evaluating the clp of each
type of VC given the number of various types of VC’s connected over a VP of bandwidth
C' and buffer size K. A VC is modeled as an ON-OFF source. The durations of the ON
and OFF periods for a VC of type ¢ are independent exponentially distributed random
variables with means aiq and ﬁ—lq, respectively. When a VC of type ¢ is in the OFF state, it
is idle and when it is in the ON state it transmits at the fixed rate of BP, bits/sec.. Thus
a VC of type ¢ is defined by three traffic parameters o, (5, and BPF,, as well as g,, the
required clp. Equivalently, the traffic parameters can be determined by BM,, L, and by,
where BM,, denotes the VC’s average bit rate, L, denotes the average burst length (in cells),
and b, denotes the burstiness. These parameters can be calculated from the previous three
as follows. BM, = BP,- 3,/(cg+ 34), Ly = BP, /(o - 424) (recall that an ATM cell consists
of 53 bytes or 424 bits) and b, = BP,/BM,,.

Let X(t) = (X1(t), Xa(t), ..., Xg(t)) where, for ¢ = 1,2, ..., Q, X,(t) indicates the number
of VC’s of type ¢ that are in the ON state at time ¢. Clearly {X(¢),t > 0} is an irreducible
finite-state Markov Process. For n = 0,1, 2, ... define &, as the nth transition epoch of X(¢).
Let & = 0 and let X (&) = (0,0,...,0). Let X, = X(&"). Then {X,} is an irreducible

Markov chain. Let P denote the transition probability matrix of {X(¢),t > 0}, and let P;



denote the (i, j) element of P, where i = (iy, s, ...,ig) and j = (ji1, j2, ..., jo). Then

,

W if jo=iq+1; jx=1ix for Vk#gq;
Py=1 iao iy =iy —1; je =i for Wk #q, (4)
0 otherwise.

where v; = Zqul[(Mq — 1g) By + 1g0).

Let T, = &1 — &,. Given that X(&7) =i = (44,4, ...,ig), then T}, is an exponential
random variable with parameter ;. Furthermore, if X(&) =1 = (i1, 42, ..., ig), then during
the interval [£,,&,11), cells of type ¢ arrive according to a periodic or deterministic process
at a fixed rate B;, = i,BP,. However, since the sequence {,} is random, the first cell
of type ¢ arrives at the multiplexer with some random delay of T, , after &,. It is clear
that 7,, € [0, B%_q . We assume that the sequence {7, ,} is an independent sequence of
uniformly distributed random variables. Consider the nth transition epoch &, of X(¢) and
let 7, ¢ denote the elapsed service time of the cell in transmission at the moment &,,. We also
assume that {7} is a sequence of independent random variables each uniformly distributed
on the interval [0, %] Further, it is assumed that the sequences {7,;}, i = 0,1,...,0Q), are
independent of each other and of the sequence {X,}.

Let Y'(t) denote the number of cells in the buffer (including the one being served) at
time ¢. Given that X (&) = i = (1,42, ...,9¢) and given the values of the phases T, for
i=0,1,...,Q, during the interval [&,,&, 1), the process Y (¢) evolves deterministically. Let
Y, = Y(&F). Then our assumptions on the sequences {7}, i = 0,1, ...,Q, imply that the
sequence {(X,,Y,)} is a Markov chain. We evaluate Q, the transition probability matrix of

this chain. Let T,, = (Tno, T, - Tng) and let 7 = (79,71, ..., 79). Then

Pr((Xns1, Yori) = (,d) [ (X, Ya) = (LF), T, = 1) = Bjaj4 (), (5)
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where a} 4(r) = P (Vo1 = d|(X,, Ys) = (ik), T, = 7). Let al , = Er_[al ,(T,)] and define

the (K +1) x (K + 1) matrix A; = [a} 4. The matrix Q can then be expressed as

Piayia ia Piayib Aia Pia,iz ia
P Ay By A, Py i Ay,

Q= ; (6)
P Ay PogAi - PliAg

where i, 1, ..., 1,, represents the lexicographical ordering of the state space of X(t).

Having obtained the matrix Q, we can evaluate 7, the stationary distribution of the
chain {(X,,Y,)}. We denote by my; the steady state probability that the chain is in state
(i, k). Given that (X,,Y,) = (i, k), denote by Ni(,‘fc) and R the number of cells of type ¢
that arrived and the number of cells of type ¢ that were lost during the interval [£,,&,11),
respectively (the computation of these is described in Section 3.1). Then p,, the cell loss

probability for VC’s of type ¢, is given by

 Su B[R] m
Y E [Nii)] Tik

Pq

3.1 Computational procedures

To evaluate the matrix Q, we need to compute the set of values {a}‘ﬂ,d}. For a fixed value
of 7, aj, 4(r) can be evaluated from the evolution of the process Y'(t). Give that X, = i,
T, =1, and Y, = k, during the interval [£,,&,,1) the multiplexer can be modeled by the
> D;/D/1/K queuing system [20] running for a period of 7}, secs. The arrival process is the
superposition of () independent periodic sources (with different periods) with arrival rates

B;, and initial phases 7, for ¢ = 1,2, ..., Q; the service rate is equal to the link capacity C
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cells/sec. with an initial phase 75, and the buffer size is K.

Fix the values of i, £ and 7. Let t; = 0 and let ¢y, ¢5, 3, ... be the buffer state transition
times in the - D;/D/1/K model. Let I, = [t,_1,t,). Note that the value of Y(¢) is fixed for
all ¢ € I,.. For ease of notation, we use “Y (I.) = I” instead of “Y (t) = [, for all ¢t € I,”. Define

T as the set of time intervals in the Y2 D;/D/1/K model for which the buffer contains d

cells, i.e., Y(t) = d for t € T, Therefore Z¥ = |J I,. Then
r:Y(I)=d
aha(r) == P (T, € ID) = 3 [exp (—it, 1) —exp (—t,)]. (8)
r:Y (I;)=d

Since the model is deterministic, given the values of i, £ and 7, we can straightforwardly
calculate the values of #1,ts,t3,.... In fact, a simulation procedure for 3 D;/D/1/K can be
used to compute a}c’d(z) very efficiently. It should be pointed out that when E,?:l B;, < C,
then for d = 0 and d = 1 equation (8) involves an infinite number of terms on the right
hand side. (The number of cells in the buffer decreases to zero and thereafter it alternates
between zero and one.) This is also true in the case when Z,?:l B;,>C,and ford =K —1
and d = K. However, in both cases the series converges rapidly and, thus, can be accurately
approximated by a finite sum. We evaluate a ; from aj ,(z) by Monte Carlo simulation.
The transition matrix Q can then be evaluated from (6). Having obtained Q, we can use the
balance equations to obtain the stationary distribution 7 (see [24] and [25] for more details).

Finally, to compute p, we need to evaluate £ [Rl(qk)] and F [Ni(jc)]. For fixed values of i, &
and 7 let s§ = 0, and let s7 denote the time when the jth cell of type ¢ is lost from the buffer

during the period [, &,41). Then

BIRQIT, =1] = ¥ jPURY =T, =1) = 3 jP(T, € 5], 51.1))
J: J:
= Elj[eXp(—%sg)—exp(—%s?+1)]- (9)
]:

12



As in the case of the computation of a}cyd(z), we choose a number of samples for 7 and for each
sample evaluate E[Ri(:]k) |T,, = 7] from the simulation of the }> D;/D/1/K model. E[quk)] is

then calculated by averaging the results. Finally for £ [Ni(jc)] we have

1 1

EIN{9) = B, E[T, — T,,] = B;, (= —
[ 1,k] q [ a‘I] q(,yi 2Biq

).

We would like to point out that these computations can be performed off-line and are
not part of the real-time routing decisions that the network management needs to make at
the time of VC setup. Subsequently, the results can be used to train a feedforward neural
network as described in Section 4 which allows the clp to be computed in real time.

Figure 1 shows a comparison of the cell loss probability obtained from the model described
in this section vs. simulation. There are two types of VC’s and the cell loss probability is
plotted as a function of the number of VC’s of type 2. There are M; = 40 VC’s of type one.
The VP bandwidth is C' = 50 Mbps and the buffer capacity is K = 17 cells. The parameters
of the VC’s are BM,; = BM, = .5, L1 = Ly = 100, by = 2.5 and by = 25. It can be seen that
the two results are very close. Several other examples were considered all of which confirmed
the close match. For comparison we also show the results from the MM DP/D/1/K model,
[25], vs. simulation in Figure 2. We would like to point out that when this model was used

in the routing algorithms, the clp requirements of the VC’s could not be guaranteed.

4 A Neural Network for c/lp Computations

In cases where the number of VC types is high and the number of VC’s in each type is
also high, an attractive approach to compute the clp’s in real time is to use an artificial
neural network (ANN). Such networks have been successfully utilized in other applications

in ATM networks (see for example [14] [4] and [19]). Once the analytical computations are
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performed the results can be used to train a neural network which can be used to provide
the clp’s in real time. The input to such a network consists of the number of VC’s of each
type and the output is the clp of each VC type. If it is desired to design an ANN for all
the VP’s in the network, then the parameters of the VP’s such as bandwidth, buffer size,
etc., can also be provided as inputs to the ANN. As an example we trained an ANN for the
case presented in Figure 1. The training set contained 255 training vectors (M, My, p1, ps),
where M; and M, are the number of VC’s of type 1 and 2, respectively, and p; and p,
are the clp’s corresponding to VC’s of type 1 and 2, respectively. The network is a three
layer feedforward network with four input units, 40 hidden units and two output units. The
activation function in the input units is given by the linear function g(h) = h whereas the
activation function for all the other units (neurons in either the hidden or output layers) is

given by the sigmoidal function
1 — el=h)

g(h) = 11 o (10)

Since the values of clp in the region of interest are very small (in general no greater than
1073), a transformation was applied to the value p, of the training pair, ¢ = 1,2, in order to
improve the learning in such region. The actual output value to be learned, denoted by pj,
is defined as

108;1(5(1) + 1 if Py > 10—24 ,

Py = (11)
1 if p, < 10724,
for ¢ = 1,2. Observe that the output of the activation function for the output unit defined
by Equation (10) is in the range [—1, 1] which is also the range of values for py.
The backpropagation algorithm, [21], is used in the training process. Figure 3 shows a
comparison of the ¢lp’s from analytical results with those from the ANN. It can be seen that
the ANN is able to learn the mapping very closely (the maximum observed error is less than

5%). Once the network is trained, given the number of VC’s of each type, it can produce

the clp’s in a single forward pass. This computation is very fast and can be performed in

14



real-time.

In this application the universal approximation property of the feedforward neural net-
works is very useful [7]. Since the function representing the ¢lp in terms of the number of
VC’s of each type is a smooth function, a small number of training vectors is sufficient to
achieve successful training. In general, the properties inherent to neural networks such as
learning capability, adaptability and generalization capability are elements that make them

attractive candidates for the implementation of such a mapping.

5 Simulation Results

We have conducted a number of simulations to examine the performance of the routing
Algorithms 1 and 2 in terms of the trade-offs between cell loss probability and call blocking
probability. The VP network used in the simulations is shown in Figure 4 where the VP’s
are numbered as shown. (We have conducted more simulations on a six node and an eight
node network [22]. The results and conclusions, which are not presented here, are similar
to those in the following.) Each VP has a bandwidth of 50 Mbps. It is assumed that the
arrival process of VC’s of type ¢ for OD pair p is Poisson with rate A7 and that these arrival
processes are independent for different VC types and different OD pairs. The VC durations
are assumed to be exponential random variables with a mean of 10 secs and are independent
of earlier arrival times and durations. For brevity of presentation, in all the examples we
considered bidirectional VC’s and only two VC types. We obtain the clp and the VC blocking
probability (vebp) for the two types of VC’s for all the OD pairs.

The clp’s of a given VC type on the different routes in the route set of an OD pair can
be different due to the interactions between different VC’s going over the same VP’s. We
present, the clp’s for each VC type on each route in order to exhibit this difference. On the

other hand the VC blocking probability is simply a function of an OD pair and the VC type
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and so it is presented for each OD pair/VC type. To facilitate the graphical presentation,
we have used two numbering systems presented in Table 1. In order to present the clp for
each VC type on each route in the route set of an OD pair, we assign a number to each
route/type pair (denoted r-type in the table and figures). For example for OD pair (0,2) in
Table 1, there are three routes, namely routes {2}, {1,4} and {3,11}, and thus there are
six r-type numbers, namely 1,2,3,16,17, and 18. To present the VC blocking probability for
each VC type for every OD pair we have assigned a number (denoted OD-type in the table
and figures) to each OD pair/VC type. For example in Table 1, OD-type=4 corresponds to
VC’s of type 1 on OD pair (0, 3) and OD-type=9 corresponds to VC’s of type 2 on OD pair
(0,3). In the figures we have plotted the clp vs. the r-type and the vcbp vs. the OD-type.
Figures 5 and 6 present the clp and the wcbp, respectively, obtained from simulations
using Algorithm 1. The parameters of the VC types are given in Table 2. The arrival rates
for the OD pairs are given by A} = 2.1, \) = 2.7, forp =2,...,5and A} = .3, forp =1,2,...,5.
The two VC types have equal mean rates BM and average burst length L. Type 2 VC’s,
however, are 10 times more bursty than type 1 VC’s (the type 2 peak rate BP; is 10 times
bigger than the type 1 peak rate BP;). Notice that BP, = iC’ = 12.5 Mbps. Each VP has
a buffer space of 17 cells. The clp requirements for VC’s of type 1 and 2 are g; = 10~ and
g> = 107%, respectively. As Figure 5 shows the algorithm meets the QoS requirements of
both VC types. Clearly in such a setting the type 2 VC’s experience a larger clp and vcbp
and this is demonstrated in the figures. The dotted line in these figures show the average clp
and the average vcbp for each VC type. (Note that changes to the arrival rates will result
in changes in the cell loss probabilities and for certain combination of arrival rates they
can be closer to the required QoS.) The same simulation was performed using Algorithm 2
(Algorithm 2) and the results are shown in Figures 7 and 8. It can be seen that except for
one r-type, the QoS requirement is satisfied. As pointed out earlier, Algorithm 2 provides a

less strict control over the resulting clp’s.
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A comparison of Figures 5 and 7 shows that the ¢lp’s for different route/types resulting
from the two algorithms are close and the average clp’s for the two VC types are very close.
Comparing Figures 6 and 8 shows that the vchbp resulting from Algorithm 2 is generally
higher than that from Algorithm 1. This is of course due to the fact that for each OD pair
Algorithm 1 searches the entire set of alternate routes while Algorithm 2 only recalls the last
route that successfully served as an alternate route. Consequently, Algorithm 1 may admit
calls that are rejected by Algorithm 2. However, as these figures show the increase in vchp
is not large and, in fact, the average vchbp increases only slightly. We should point out that
this is a small cost to pay as Algorithm 2 is much simpler to implement

In order to verify the control of the algorithms on QoS, we increased ¢; slightly from
g1 =107° to g; = 3 x 107° and left g, = 10~* unchanged. The results for Algorithm 1 are
presented in Figures 9 and 10. A comparison of Figures 5 and 9 shows that the average clp
has increased from 3.1 x 107 to 4.5 x 1076 for type 1 VC’s and from 2.7 x 1075 to 3.4 x 107°
for type 2 VC’s. This shows the responsiveness of the algorithm to the QoS requirements.
Even slight adjustment of the QoS requirement results in an adjustment of the resulting
clp’s. A comparison of Figures 6 and 10 shows that the average vcbp remains unchanged for
type 1 VC’s and decreases slightly for type 2 VC’s in Figure 10 indicating that even a slightly
less restrictive QoS requirement results in a lower vcbp. Similar results are obtained using
Algorithm 2 and are shown in Figures 11 and 12. Comparing the performance of the two
algorithms in terms of clp’s and vcbp’s we can draw similar conclusions as in the previous
case.

In the next example we change the VC type parameters to those in Table 3. The only
change made to the type parameters is that BM; is increased to 5 Mbps. This is equivalent
to making the two peak rates equal, i.e., BP, = BP, = iC’. The arrival rates are given by
)\11J =.1 and )\12, = .25 for p=1,2,...,5. The results for Algorithm 1 are shown in Figures 13

and 14 and those for Algorithm 2 are shown in Figures 15 and 16. It can be seen that the QoS
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requirements are again satisfied. However in this case VC’s of type 1 suffer a higher blocking
probability than before as they have a larger average rate. With the two VC types having
the same peak rate, the type with higher burstiness (type 2) can take greater advantage of
the statistical multiplexing nature of the network. We observe that in this case the control
for the clp is stricter than before for both VC types, with most of the clp values for each
r-type being significantly below their maximum values ¢g; and gy. The reason for this is that
due to the high peak rates of all the VC’s, each accepted VC greatly affects the clp in the
route assigned to it. In order to guarantee the required clp’s, the algorithms are conservative
in call admission resulting in lower ¢lp’s than the maximum allowed values g; and g,. Note
also that, as before, the two algorithms are comparable in their performance.

To observe the effect of buffer size and to further verify the control of the algorithms we
perform a set of simulations where the buffer size for every VP is only 6 cells (instead of 17
cells in the previous examples). The parameters for the VC types are given in Table 2 and
the arrival rates are given by A\j = A} = .2 and A} = .6 for p = 2,...,5 and ¢ = 1,2. The
results for Algorithm 1 are shown in Figures 17 and 18 and for Algorithm 2 in Figures 19
and 20. Due to the small size of the buffer, admission of new VC on a particular route can
significantly affect the clp of all the VC’s that are currently utilizing this route. This effect is
more pronounced for VC’s of type 2 which have a higher bandwidth demand. Consequently,
the algorithms exercise a stricter control on call admission. This results in the resulting clp’s
being further from the QoS requirements. Note that the QoS requirement was met for every
r-type in the network using either of the two algorithms. However, in order to guarantee the
clp requirements of the two VC types, the algorithms are forced to satisfy a more stringent
clp requirement for VC’s of type 2. This is a consequence of the small buffer size which
does not allow the network to perform statistical multiplexing effectively. As Figures 5 and
7 show when the buffer sizes are larger, the clp’s for the two VC types are closer to their

respective maximum values and thus are substantially different.
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6 Conclusions

We have presented two routing algorithms that meet the clp requirements of bursty ON-OFF
sources that request connection while ensuring that the clp requirements of the existing calls
are not compromised. The second routing algorithm is particularly easy to implement and
in terms of the trade-off between clp and wcbp is comparable to the first algorithm. Our
numerical results show that the clp requirements are achievable while maintaining low call
blocking probability. Further, the routing algorithms are sensitive to the clp requirements
and respond to small changes in them. If the clp requirements are made stricter, then the
routing algorithms continue to maintain these new requirements at the expense of small
increases in the call blocking probabilities. We have also presented a feedforward neural
network which is easy to train and which can be used for the real time implementation of the
algorithms. Different cell loss probability criteria can be accommodated for different types
of calls which may differ in parameters such as burstiness, average burst length and average
or peak rates. Numerical results have been provided which demonstrate the effectiveness of

the routing algorithms.

References

[1] Anick, D., Mitra, D. and Sondhi, M.M., “Stochastic theory of a data-handling system

with multiple sources,” BSTJ, vol. 61, pp. 1871-1894, 1982.

[2] Baiocchi, A., Melazzi N.B., Listanti M., Roveri A. and Winkler R., “Loss Performance
Analysis of an ATM Multiplexer Loaded with High-speed On-off Sources,” IEEE J.

Select. Areas Commun., vol. 9, no. 3, pp. 388-393, Sept. 1992.

[3] Bertsekas, D. and Gallager, R., Data Networks, Second Edition, Prentice-Hall Inc.,

1992.

19



[4]

7]

[10]

[11]

[12]

Chong, S., Li, S.Q. and Ghosh, J., “Predictive Dynamic Bandwidth Allocation for Effi-
cient Transport of Real-Time VBR Video over ATM,” IEEFE J. Select. Areas Commun.,

vol. 13, no. 1, pp. 12-23, Jan. 1995.

Chung, S.P., Kaspher, A. and Ross, K.W., “Computing Approximate Blocking Probabil-
ities for Large Loss Networks with State-Dependent Routing,” IEEE/ACM Transactions

on Networking, vol. 1, no. 1, pp. 105-115, February 1993.

Eckberg, A.E., “The Single Server Queue with Periodic Arrival Process and Determin-

istic Service Time,” IEEE Trans. Commun., vol. 27, pp. 556-562, March 1979.

Hornik, K., Stinchcombe, M. and White H., “Multilayer feedforward networks are uni-

versal approximators,” Neural Networks, vol. 2, no. 5, 359-366, 19809.

Gibbens, R.J., and Kelly, F.P., “Dynamic routing in fully connected networks,” IMA

Journal of Mathematical Control and Information, vol. 7, pp. 77-111, 1990.

Gravey, A., “Temps d’attente et nombre de clients dans une file nD/D/1,” Annales de

I’Institue H. Poincare-Probabilities et Statistiques, vol. 20, no. 1, pp. 53-73, 1984.

Guerin, R., Ahmadi, H. and Naghshineh, M., “Equivalent Capacity and its Application
to Bandwidth Allocation in High-Speed Networks,” IFEEE J. Select. Areas Commun.,

vol. 9, no. 7, pp. 968-981, Sept. 1991.

Gupta, S., Ross, K.W. and El Zarki, M., “On Routing in ATM Networks,” Routing in

Communication Networks, Martha Steenstrup, ed., Prentice Hall, 1995, pp. 49-74.

Heffes H. and Lucantoni D.M., “A Markov Modulated Characterization of Packetized
Voice and Data Traffic and Related Statistical Multiplexer Performance,” IEEE J. Se-

lect. Areas Commun., vol. 4, no. 6, pp. 856-868, Sept. 1986.

20



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Hegde, M.V., Min, P.S. and Rayes, A., “State Dependent Routing: Traffic Dynamics
and Performance Benefits” Journal of Network and Systems Management vol. 2., no. 2,

pp. 125-149, 1994.

A. Hiramatsu, “ATM Communications Network Control by Neural Networks,” IEEE

Transactions on Neural Networks, vol. 1, no. 1, pp. 122-130, March 1990.

Humblet, P.A., Bhargava, A. and Hluchyj, M.G., “Ballot Theorems Applied to the
Transient Analysis of nD/D/1 Queues,” IEEE/ACM Trans. on Networking, vol. 1, no.

1, pp. 81-95, Feb 1993.

Mitra, D., Gibbens, R.J. and Haung, B.D., “State-Dependent Routing on Symmetric
Loss Networks with Trunk Reservation-1,” IEEE Trans. Commun., vol. 41, no. 2, pp.

400-411, Feb 1993.

Mitra, D., Gibbens, R.J. and Huang, B.D., “Analysis and Optimal Design of Aggre-
gated Least-Busy-Alternative Routing on Symmetric Loss Networks with Trunk Reser-

vations,” International Teletraffic Congress, 13, pp. 477-481, Copenhagen 1991.

Norros, 1., Roberts, J.W., Simonian, A. and Virtamo, J.T., “The Superposition of
Variable Bit Rate Sources in an ATM Multiplexer,” IEEE J. Selct. Areas in Commun.,

vol. 9, no. 3, pp. 378-387, April 1991.

Park, Y.K., Cherkassky, V. and Lee, G., “Omega Network-Based ATM Switch with
Neural Network-Controlled Bypass Queueing and Multiplexing,” vol. 12, no. 9, pp.

1471-1480, Dec. 1994.

Roberts, J.W. and Virtamo, J.T., “The Superposition of Periodic Cell Arrival Processes

in an ATM Multiplexer,” IEEE Trans. Commun., vol. 39, no. 2, pp. 298-303, Feb. 1991.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning Internal Representations

by Error Propagation,” Parallel Distributed Processing, vol. 1, chap. 8, 1986.

21



[22] Sanchez-Barrera, J., “ Call admission and routing in ATM networks,” M.S. thesis, Dept.

of ECE. LSU, Baton Rouge, LA, 1994.

[23] Vargas, C., Hegde, M., Naraghi-Pour, M. and Min, P., “Shadow Prices for LLR and

ALBA,” IEEE/ACM Transactions on Networking, vol. 4, no. 5, pp. 796-807, Oct. 1996.

[24] Yang T. and Tsang D.H.K., “A Novel Approach to Estimating Cell Loss Probabil-
ity in an ATM Multiplexer Loaded with Homogeneous On-Off Sources,” IEEE Trans.

Commun., vol. 43, no. 1, pp. 117-126, Jan. 1995.

[25] Yang T. and Li H., “Individual Cell Loss Probabilities and Background Effects in ATM

Networks,” Proc. IEEE GLOBECOM 93, pp. 1373-1379, 1993.

22



Table 1: 4-Node Network Paths.

4-Node Network Paths

OD OD-type Paths r-type
Call type 1 || Call type 2 Call type 1 | Call type 2
IP); 1 16
(0,2) | 6 (1.4] 2 17
3,117 3 18
{4} 4 19
(1,2) 2 7 (5,117 5 20
(6.2] 6 o1
(10 7 22
(3,2) 3 8 110,47 3 53
(9.2} 9 21
(3] 10 25
(0,3) 4 9 1.5] 11 26
2.7 12 27
1] 13 23
(0,1) 5 10 2.8] 14 29
{3,10} 15 30

Table 2: First set of types parameters.

| Call Type | BM | L | b | %in ON | BP |

Type 1

0.5

100

2.5

40

1.25

Type 2

0.5

100

25

4

12.5

Table 3: Second set of types parameters.

| Call Type | BM | L | b | %in ON | BP |

Type 1

5

100

2.5

40

12.5

Type 2

0.5

100

25

4

12.5
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