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Abstract

Cell loss probability (clp) is one of the most important measures of quality of service

in an ATM network. In this paper we present two routing algorithms for ATM networks

that meet the clp requirements of bursty ON-OFF sources that request connection

while ensuring that the clp requirements of the existing calls are not compromised.

The �rst algorithm checks the entire set of feasible routes while the second algorithm

remembers the last successful route for each OD pair and is consequently simpler
to implement. Our numerical results show that the clp requirements are achieved

while maintaining low call blocking probabilities. Further, the routing algorithms are

sensitive to the clp requirements and respond to small changes in them. If the clp

requirements are made stricter, then the routing algorithms continue to maintain these

new requirements at the expense of small increases in the call blocking probabilities.

Di�erent cell loss probability criteria can be accommodated for di�erent types of calls

which may di�er in parameters such as burstiness, average burst length and average or

peak rates. A comparison of the two algorithms in terms of the trade-o� between clp

and call blocking probability is also provided which con�rms the e�ectiveness of the

simpler second algorithm. We also present a feedforward neural network which is easily

trained and which can be used for the real time implementation of the algorithms.

Index Terms: ATM networks, routing and congestion control, call admission, quality of

service.
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1 Introduction

Asynchronous transfer mode (ATM) is a virtual-circuit (VC) oriented packet-switching tech-

nique that allows for integration of a wide variety of tra�c sources and provides selectable

quality of service (QoS). At the time of call setup, the quality of service is negotiated be-

tween the user and the network. For the call to be accepted, the network must be capable

of providing a negotiated quality of service, in e�ect, guaranteeing that as new calls are

admitted, the quality of service of the existing calls will not be compromised. If this can not

be guaranteed, the new call is rejected (or blocked). This results in a trade-o� between call

blocking probability and quality of service requirements. In ATM networks, as in telephone

networks, call blocking probability is an important measure of network performance. In

addition to the loss of revenues for the service providers, blocked calls result in customer

dissatisfaction and annoyance.

At the cell level, QoS is described by cell loss, cell delay and cell jitter. In this paper,

however, we restrict attention to cell loss probability (clp) as the only measure of QoS. It

is clear that stricter clp requirements result in higher call blocking rates. However, in an

ATM network employing statistical multiplexing and serving heterogeneous tra�c sources,

the level of sensitivity of call blocking probabilities to clp requirements is not clear. We

consider an ATM network that supports heterogeneous tra�c sources having di�erent tra�c

statistics and/or QoS requirements. Ensuring that the cell loss probability requirements of

calls are satis�ed, we then investigate the trade-o�s between call blocking probabilities and

cell loss probabilities.

Assuming that the clp of a new call can be guaranteed, a routing algorithm is needed that

can be used to select a path in the network over which the new call can be connected. For

the purpose of studying the trade-o�s described above, we develop two routing algorithms,

reminiscent of the adaptive routing algorithms suggested for the telephone network [17] [13],

that guarantee the negotiated clp for each call currently connected in the network as well as
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for the new calls requesting connection. If the clp requirements of a new call cannot be met

or if meeting it would compromise the clp of any of the existing calls in the network, the new

call is rejected. We show that this is achieved while maintaining a reasonable call blocking

probability. The computations necessary to make the routing decisions can be performed o�-

line through any fast computational paradigm and in Section 4 we show how a feed-forward

neural network can be gainfully utilized for such purpose.

Quality of service based routing is considered in [11] where the authors propose several

routing algorithms for ATM networks. These are based on the well known least loaded

routing (LLR) algorithm [5] used in circuit switched networks. The authors classify the

ATM networks into four classes according to the following: (1) homogeneous calls (i.e., all

calls have the same tra�c statistics and QoS requirements) without statistical multiplexing.

(2) homogeneous calls with statistical multiplexing. (3) heterogeneous calls (i.e., the calls

have di�erent tra�c statistics and/or QoS requirements) without statistical multiplexing.

(4) heterogeneous calls with statistical multiplexing. Of these, case (1) corresponds to single

rate circuit switching and has been investigated extensively in the literature (see for example

[16] [5] [17] [13] [23]). Cases (2) and (3) are investigated in [11]. Case (4) is not investigated.

However, ATM networks are currently envisaged to carry heterogeneous tra�c. Moreover,

statistical multiplexing cannot be avoided as, otherwise, in the presence of bursty sources

the network will be extremely ine�cient in its utilization of link capacities.

In this paper we consider case (4) above where the network performs statistical multiplex-

ing and handles heterogeneous tra�c. Since we would like to guarantee the clp of every call

admitted by the network, an accurate method is needed for computing the clp of heteroge-

neous tra�c sources from an ATM multiplexer. In [24] a computationally tractable model is

presented for homogeneous tra�c. This work is extended to heterogeneous tra�c in [25]. In

these two papers the arrival process into the multiplexer is modeled as a Markov modulated

deterministic process (MMDP ) and the multiplexer is then modeled as anMMDP=D=1=K
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queueing system. The authors make two renewal assumptions on the arrival process and the

server which make the problem mathematically tractable. The cell loss probability for the

multiplexer is then evaluated. However, as noted in [24], the renewal assumptions alter the

nature of the arrival and departure processes. As a result the MMDP=D=1=K model can

not account for short term or cell level congestion. Consequently, as the results in [24] [25]

indicate, the MMDP=D=1=K model is not very accurate in estimating the cell loss proba-

bility. We have also obtained several numerical results using the MMDP=D=1=K model all

of which con�rm this. Since our goal is to provide guaranteed QoS, we have developed an

accurate method for the computation of clp which is presented in Section 3.

A great deal of other research work has been devoted to analyzing the performance of an

ATM multiplexer [1] [2] [6] [9] [10] [12] [18] [20]. In particular, in [6] [9] and [20] the authors

have studied queueing systems with periodic arrival processes when all the sources have the

same period. In [20] the authors have obtained upper and lower bounds to the queue length

distribution for a
P
Di=D=1 queueing system. Further results on these queueing systems

can be found in [15] and [18].

We use bursty ON-OFF models for sources and present two routing algorithms that meet

the clp requirements. Our numerical results show that the clp requirements are achievable

while maintaining low call blocking probability. Further, the routing algorithms are sensitive

to the clp requirements and respond to small changes in them. If the clp requirements are

made stricter, then the routing algorithms continue to maintain these new requirements at

the expense of small increases in the call blocking probabilities. We also present a feedforward

neural network which is easy to train and which can be used for the real time implementation

of the algorithms.

The rest of the paper is organized as follows. In Section 2 we present our network model

and the routing algorithms. In Section 3 we develop accurate models for evaluating the

clp for an ATM multiplexer serving heterogeneous tra�c. These models are used in the
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routing algorithms of Section 2. In Section 4 we present the computational paradigm of a

feedforward neural network, demonstrate how it can be trained o�-line and present numerical

results con�rming its applicability for our model. Numerical results are presented in Section

5. Finally, conclusions are presented in Section 6.

2 The Network Model and the Routing Algorithms

We consider an ATM network consisting of ATM switches interconnected by high-speed

links. We assume that each pair of switches is connected by a single virtual path (VP),

i.e., the VP network is fully connected. Using a multiplexer followed by a bu�er, each VP

serves a number of virtual circuits (VC's). (Throughout this paper the terms VC and call

are used interchangeably.) We assume that all the VC's on a VP share a bu�er space that

is dedicated to the VP. (Since the VP consists of a number of VC's, this assumption does

not signi�cantly compromise the e�ects of statistical multiplexing on a link.)

The VP network is modeled as a directed graph (N ;L), where N is the set of switches of

the network and L is the set of (directed) VP's. The bandwidth of VP l is Cl cells/sec. and

its bu�er size is Kl cells. Also, we denote by P the set of all origin/destination (OD) pairs.

In order to make the task of managing routing decisions easier, VC's are classi�ed into

types based on their tra�c characteristics and their QoS requirements. Since we consider

clp based QoS, the call routing decisions are based on the number of VC's of each type

that the network carries. Since ATM utilizes virtual circuit switching, the routing policy

essentially consists of decision rules which determine (i) whether an arriving VC should be

accepted or rejected and (ii) if accepted, what particular path the VC should be assigned to.

Therefore, with each OD pair p we associate a route set Rp consisting of all the paths that

a VC corresponding to this OD pair can take. Each route set consists of the direct route

(the route consisting of the single VP connecting the two nodes) and a number of alternate
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routes. An alternate route rp consisting of VP's l1 and l2 is denoted by rp = fl1; l2g. In this

paper we only consider alternate routes that are comprised of two VP's. Extension to the

general case is straightforward.

Let Ml;q denote the number of VC's of type q being routed through VP l and let

Ml = (Ml;1;Ml;2; : : : ;Ml;Q) denote the state of VP l, where Q denotes the total num-

ber of VC types. For a �xed state and a �xed bu�er size of VP l let pl;q denote the fraction

of cells of type q that are lost from the bu�er. Let Pl = (pl;1; pl;2; : : : pl;Q). In order to

describe our routing algorithms, we assume that, given Ml and Kl, Pl can be evaluated

from some existing procedure. In Section 3 we present a method for calculating these cell

loss probabilities. From now on we only assume that each switch has knowledge of the state

of all the VP's in the network which share at least one link with any VP that passes through

this switch and uses this information to compute the clp's for each VC type.

If a route consists of a single VP l, say, then the cell loss probabilities are given by Pl.

For an alternate route rp = fl1; l2g, we assume that the cell loss in the bu�ers of the two

VP's are independent [3]. Then clprp;q, the fraction of cells of type q that are lost on route

rp, is given by

clprp;q = 1� (1� pl1;q)(1� pl2;q); (1)

where pl1;q and pl2;q are the qth components of Pl1 and Pl2, respectively.

Assume that a VC of type q arrives requesting connection for OD pair p. For q =

1; 2; : : : Q, let gq denote the maximum clp acceptable for VC of type q. We now present the

two routing algorithms.

Algorithm 1

1. First try the direct route. Assume the VC is accepted and is routed through the direct

route using VP l. Compute the new clp for all VC's that utilize VP l. If the clp of all

these VC's is less than the maximum acceptable clp, then accept the new VC; else
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2. Initialize the set of feasible routes, FR, to an empty set, FR  � ;.

3. For each alternate route rp 2 Rp, obtain the new clp for all VC's that utilize route rp

or either of the two VP's of rp if the VC is connected through rp. If all these clp's are

less than the maximum acceptable clp's, let FR = FR
S
frpg.

4. If FR = ;, reject the VC; else

5. Let CLPrp = (clprp;1; clprp;2; : : : clprp;Q). De�ne the cost function fcost(�) as

fcost(CLPrp) =
QX
q=1

(
clprp;q
gq

) : (2)

Accept the VC for any route r�p, where

r�p = arg min
rp2FR

ffcost(CLPrp)g: (3)

Essentially, in the above algorithm if the cell loss probability requirements of all the

existing VC's as well as the new VC can be met on some route, the VC is accepted. Preference

is given to the direct route. If the VC cannot be accommodated on the direct route, then it

is routed on the alternate route that results in the smallest network cost as measured in (2).

The Cost Function fcost(�)

In the previous algorithm if the direct route is not available and we have more than one

alternate route that is feasible, i.e., the set FR has more than one candidate route, then we

need to make a choice between these candidate routes. In general, it is not easy to determine

which is the best candidate. One option is to choose the alternate route with the maximum

available bandwidth. However, this may cause higher VC blocking probability for VC's

with higher bandwidth requirements that arrive later. Another option is to consider a cost

function that takes into account all the VC's that are a�ected if the arriving VC is accepted
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on a given route. Such cost functions, however, present the following problem. Consider a

candidate route rp 2 FR and an alternate route that has a VP in common with rp. Further,

assume that the other VP of this route (not in common with rp) is heavily congested. Then

rp may not be chosen to accept the incoming VC even if rp is lightly loaded. This is due to

the fact that we are considering all the VC's a�ected by route rp, and the heavily congested

routes have a greater e�ect on such cost functions. In fact, accepting the incoming VC on

rp would not have important repercussions on the heavily congested route. In comparison,

the cost function given by (2) presents a good compromise. It only considers the e�ects of

the chosen route on the two VP's of the alternate routes. However, the choice of a route

in Algorithm 1 nevertheless requires the identi�cation of a minimum cost path, which can

be time-consuming. We therefore suggest Algorithm 2 which remembers the previous good

path.

Algorithm 2

Initialize roldp = 0 for all p.

1. First try the direct route. Assume the VC is accepted and is routed through the direct

route. Compute the new clp for all the VC's that utilize this VP. If the clp of all these

VC's is less than the maximum acceptable clp, then accept the new VC; else

2. If roldp = 0, then choose one of the alternate routes at random, say rp 2 Rp, set r
old
p = rp

and go to step 3.

If roldp 6= 0, set rp = roldp .

3. Obtain the clp for all VC's that utilize route rp or either of the two VP's of rp. If all

these clp's are less than the maximum acceptable clp's accept the new VC for route

rp; otherwise reject the VC and set roldp = 0.

In Algorithm 2, we do not check the entire set Rp for feasible routes; rather, we are

content to remember for each OD pair the last route that successfully served as an alternate

8



route and continue using it until it fails (i.e., the VC is rejected) at which point a new route

is chosen at random and the entire process started anew. While Algorithm 2 may result in a

larger VC blocking probability, it is considerably less complex to implement than Algorithm

1. Algorithm 2 is inspired by the Dynamic Alternate Routing scheme for circuit-switched

networks implemented in the British Telecom network [8].

3 Evaluation of the Cell Loss Probabilities

To implement the routing algorithms we need a procedure for evaluating the clp of each

type of VC given the number of various types of VC's connected over a VP of bandwidth

C and bu�er size K. A VC is modeled as an ON-OFF source. The durations of the ON

and OFF periods for a VC of type q are independent exponentially distributed random

variables with means 1
�q

and 1
�q
, respectively. When a VC of type q is in the OFF state, it

is idle and when it is in the ON state it transmits at the �xed rate of BPq bits/sec.. Thus

a VC of type q is de�ned by three tra�c parameters �q, �q and BPq, as well as gq, the

required clp. Equivalently, the tra�c parameters can be determined by BMq, Lq and bq,

where BMq denotes the VC's average bit rate, Lq denotes the average burst length (in cells),

and bq denotes the burstiness. These parameters can be calculated from the previous three

as follows. BMq = BPq ��q=(�q+�q), Lq = BPq=(�q � 424) (recall that an ATM cell consists

of 53 bytes or 424 bits) and bq = BPq=BMq.

Let X(t) = (X1(t); X2(t); :::; XQ(t)) where, for q = 1; 2; :::; Q, Xq(t) indicates the number

of VC's of type q that are in the ON state at time t. Clearly fX(t); t � 0g is an irreducible

�nite-state Markov Process. For n = 0; 1; 2; ::: de�ne �n as the nth transition epoch of X(t).

Let �0 = 0 and let X(�0) = (0; 0; :::; 0). Let Xn = X(�+n ). Then fXng is an irreducible

Markov chain. Let P denote the transition probability matrix of fX(t); t � 0g, and let Pi j
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denote the (i; j) element of P, where i = (i1; i2; :::; iQ) and j = (j1; j2; :::; jQ). Then

Pi j =

8>>>>>>>><
>>>>>>>>:

�iq (Mq�iq)


i

if jq = iq + 1; jk = ik for 8k 6= q;

iq�q

i

if jq = iq � 1; jk = ik for 8k 6= q;

0 otherwise.

(4)

where 
i =
PQ

q=1[(Mq � iq)�q + iq�q].

Let Tn = �n+1 � �n. Given that X(�+n ) = i = (i1; i2; :::; iQ), then Tn is an exponential

random variable with parameter 
i. Furthermore, if X(�+n ) = i = (i1; i2; :::; iQ), then during

the interval [�n; �n+1), cells of type q arrive according to a periodic or deterministic process

at a �xed rate Biq = iqBPq. However, since the sequence f�ng is random, the �rst cell

of type q arrives at the multiplexer with some random delay of � n;q after �n. It is clear

that � n;q 2 [0; 1
Biq

]. We assume that the sequence f� n;qg is an independent sequence of

uniformly distributed random variables. Consider the nth transition epoch �n of X(t) and

let � n;0 denote the elapsed service time of the cell in transmission at the moment �n. We also

assume that f� n;0g is a sequence of independent random variables each uniformly distributed

on the interval [0; 1
C
]. Further, it is assumed that the sequences f� n;ig, i = 0; 1; :::; Q, are

independent of each other and of the sequence fXng.

Let Y (t) denote the number of cells in the bu�er (including the one being served) at

time t. Given that X(�+n ) = i = (i1; i2; :::; iQ) and given the values of the phases � n;i for

i = 0; 1; :::; Q, during the interval [�n; �n+1), the process Y (t) evolves deterministically. Let

Yn = Y (�+n ). Then our assumptions on the sequences f� n;ig, i = 0; 1; :::; Q, imply that the

sequence f(Xn; Yn)g is a Markov chain. We evaluate Q, the transition probability matrix of

this chain. Let � n = (� n;0;� n;1; :::;� n;Q) and let � = (�0; �1; :::; �Q). Then

Pr ((Xn+1; Yn+1) = (j; d ) j (Xn; Yn) = (i;k);� n = � ) = Pi j a
i
k;d (� ); (5)
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where ai
k;d(�) = P (Yn+1 = d j(Xn; Yn) = (i;k);� n = �). Let ai

k;d = E� n

h
ai
k;d(� n)

i
and de�ne

the (K + 1)� (K + 1) matrix Ai = [ai
k;d]. The matrix Q can then be expressed as

Q =

2
66666666666664

Pia;iaAia Pia;ibAia ::: Pia;izAia

Pib;iaAib Pib;ibAib ::: Pib;izAib

...
... :::

...

Piz;iaAiz Piz;ibAiz ::: Piz;izAiz

3
77777777777775

; (6)

where ia; ib; :::; iz; represents the lexicographical ordering of the state space of X(t).

Having obtained the matrix Q, we can evaluate �, the stationary distribution of the

chain f(Xn; Yn)g. We denote by �ik the steady state probability that the chain is in state

(i; k). Given that (Xn; Yn) = (i; k), denote by N
(q)
i;k and R

(q)
i k the number of cells of type q

that arrived and the number of cells of type q that were lost during the interval [�n; �n+1),

respectively (the computation of these is described in Section 3.1). Then pq, the cell loss

probability for VC's of type q, is given by

pq =

P
ik E

h
R(q)

i k

i
�i k

P
ik E

h
N

(q)
i k

i
�ik

: (7)

3.1 Computational procedures

To evaluate the matrix Q, we need to compute the set of values fai
k;dg. For a �xed value

of � , ai
k;d(�) can be evaluated from the evolution of the process Y (t). Give that Xn = i,

� n = � , and Yn = k, during the interval [�n; �n+1) the multiplexer can be modeled by the

P
Di=D=1=K queuing system [20] running for a period of Tn secs. The arrival process is the

superposition of Q independent periodic sources (with di�erent periods) with arrival rates

Biq and initial phases �q for q = 1; 2; :::; Q; the service rate is equal to the link capacity C
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cells/sec. with an initial phase �0, and the bu�er size is K.

Fix the values of i, k and � . Let t0 = 0 and let t1; t2; t3; ::: be the bu�er state transition

times in the
P
Di=D=1=K model. Let Ir = [tr�1; tr). Note that the value of Y (t) is �xed for

all t 2 Ir. For ease of notation, we use \Y (Ir) = l" instead of \Y (t) = l; for all t 2 Ir". De�ne

I(d) as the set of time intervals in the
P
Di=D=1=K model for which the bu�er contains d

cells, i.e., Y (t) = d for t 2 I(d). Therefore I(d) =
S

r:Y (Ir)=d

Ir. Then

ai
k;d(� ) == P

�
Tn 2 I

(d)
�
=

X
r:Y (Ir)=d

[exp (�
itr�1)� exp (�
itr)] : (8)

Since the model is deterministic, given the values of i, k and � , we can straightforwardly

calculate the values of t1; t2; t3; ::: . In fact, a simulation procedure for
P
Di=D=1=K can be

used to compute ai
k;d(� ) very e�ciently. It should be pointed out that when

PQ
q=1Biq < C,

then for d = 0 and d = 1 equation (8) involves an in�nite number of terms on the right

hand side. (The number of cells in the bu�er decreases to zero and thereafter it alternates

between zero and one.) This is also true in the case when
PQ

q=1Biq > C, and for d = K � 1

and d = K. However, in both cases the series converges rapidly and, thus, can be accurately

approximated by a �nite sum. We evaluate ai
k;d from ai

k;d(� ) by Monte Carlo simulation.

The transition matrix Q can then be evaluated from (6). Having obtained Q, we can use the

balance equations to obtain the stationary distribution � (see [24] and [25] for more details).

Finally, to compute pq we need to evaluate E[R
(q)
i;k ] and E[N

(q)
i;k ]. For �xed values of i, k

and � let sq0 = 0, and let sqj denote the time when the jth cell of type q is lost from the bu�er

during the period [�n; �n+1). Then

E[R
(q)
i;k j� n = � ] =

1P
j=1

jP (R
(q)
i;k = jj� n = � ) =

1P
j=1

jP (Tn 2 [sqj ; s
q
j+1))

=
1P
j=1

j[exp(�
is
q
j)� exp(�
is

q
j+1)]: (9)
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As in the case of the computation of ai
k;d(� ), we choose a number of samples for � and for each

sample evaluate E[R(q)
i;k j� n = � ] from the simulation of the

P
Di=D=1=K model. E[R(q)

i;k ] is

then calculated by averaging the results. Finally for E[N
(q)
i;k ] we have

E[N
(q)
i;k ] = BiqE[Tn � � n;q] = Biq(

1


i

�
1

2Biq

):

We would like to point out that these computations can be performed o�-line and are

not part of the real-time routing decisions that the network management needs to make at

the time of VC setup. Subsequently, the results can be used to train a feedforward neural

network as described in Section 4 which allows the clp to be computed in real time.

Figure 1 shows a comparison of the cell loss probability obtained from the model described

in this section vs. simulation. There are two types of VC's and the cell loss probability is

plotted as a function of the number of VC's of type 2. There are M1 = 40 VC's of type one.

The VP bandwidth is C = 50 Mbps and the bu�er capacity is K = 17 cells. The parameters

of the VC's are BM1 = BM2 = :5, L1 = L2 = 100, b1 = 2:5 and b2 = 25. It can be seen that

the two results are very close. Several other examples were considered all of which con�rmed

the close match. For comparison we also show the results from the MMDP=D=1=K model,

[25], vs. simulation in Figure 2. We would like to point out that when this model was used

in the routing algorithms, the clp requirements of the VC's could not be guaranteed.

4 A Neural Network for clp Computations

In cases where the number of VC types is high and the number of VC's in each type is

also high, an attractive approach to compute the clp's in real time is to use an arti�cial

neural network (ANN). Such networks have been successfully utilized in other applications

in ATM networks (see for example [14] [4] and [19]). Once the analytical computations are
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performed the results can be used to train a neural network which can be used to provide

the clp's in real time. The input to such a network consists of the number of VC's of each

type and the output is the clp of each VC type. If it is desired to design an ANN for all

the VP's in the network, then the parameters of the VP's such as bandwidth, bu�er size,

etc., can also be provided as inputs to the ANN. As an example we trained an ANN for the

case presented in Figure 1. The training set contained 255 training vectors (M1;M2; p1; p2),

where M1 and M2 are the number of VC's of type 1 and 2, respectively, and p1 and p2

are the clp's corresponding to VC's of type 1 and 2, respectively. The network is a three

layer feedforward network with four input units, 40 hidden units and two output units. The

activation function in the input units is given by the linear function g(h) = h whereas the

activation function for all the other units (neurons in either the hidden or output layers) is

given by the sigmoidal function

g(h) =
1 � e(�h)

1 + e(�h)
: (10)

Since the values of clp in the region of interest are very small (in general no greater than

10�3), a transformation was applied to the value pq of the training pair, q = 1; 2, in order to

improve the learning in such region. The actual output value to be learned, denoted by p0q,

is de�ned as

p0q =

8>>><
>>>:

log(pq)
12

+ 1 if pq > 10�24 ;

�1 if pq � 10�24 ;

(11)

for q = 1; 2. Observe that the output of the activation function for the output unit de�ned

by Equation (10) is in the range [�1; 1] which is also the range of values for p0q.

The backpropagation algorithm, [21], is used in the training process. Figure 3 shows a

comparison of the clp's from analytical results with those from the ANN. It can be seen that

the ANN is able to learn the mapping very closely (the maximum observed error is less than

5%). Once the network is trained, given the number of VC's of each type, it can produce

the clp's in a single forward pass. This computation is very fast and can be performed in
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real-time.

In this application the universal approximation property of the feedforward neural net-

works is very useful [7]. Since the function representing the clp in terms of the number of

VC's of each type is a smooth function, a small number of training vectors is su�cient to

achieve successful training. In general, the properties inherent to neural networks such as

learning capability, adaptability and generalization capability are elements that make them

attractive candidates for the implementation of such a mapping.

5 Simulation Results

We have conducted a number of simulations to examine the performance of the routing

Algorithms 1 and 2 in terms of the trade-o�s between cell loss probability and call blocking

probability. The VP network used in the simulations is shown in Figure 4 where the VP's

are numbered as shown. (We have conducted more simulations on a six node and an eight

node network [22]. The results and conclusions, which are not presented here, are similar

to those in the following.) Each VP has a bandwidth of 50 Mbps. It is assumed that the

arrival process of VC's of type q for OD pair p is Poisson with rate �qp and that these arrival

processes are independent for di�erent VC types and di�erent OD pairs. The VC durations

are assumed to be exponential random variables with a mean of 10 secs and are independent

of earlier arrival times and durations. For brevity of presentation, in all the examples we

considered bidirectional VC's and only two VC types. We obtain the clp and the VC blocking

probability (vcbp) for the two types of VC's for all the OD pairs.

The clp's of a given VC type on the di�erent routes in the route set of an OD pair can

be di�erent due to the interactions between di�erent VC's going over the same VP's. We

present the clp's for each VC type on each route in order to exhibit this di�erence. On the

other hand the VC blocking probability is simply a function of an OD pair and the VC type
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and so it is presented for each OD pair/VC type. To facilitate the graphical presentation,

we have used two numbering systems presented in Table 1. In order to present the clp for

each VC type on each route in the route set of an OD pair, we assign a number to each

route/type pair (denoted r-type in the table and �gures). For example for OD pair (0; 2) in

Table 1, there are three routes, namely routes f2g, f1; 4g and f3; 11g, and thus there are

six r-type numbers, namely 1,2,3,16,17, and 18. To present the VC blocking probability for

each VC type for every OD pair we have assigned a number (denoted OD-type in the table

and �gures) to each OD pair/VC type. For example in Table 1, OD-type=4 corresponds to

VC's of type 1 on OD pair (0; 3) and OD-type=9 corresponds to VC's of type 2 on OD pair

(0; 3). In the �gures we have plotted the clp vs. the r-type and the vcbp vs. the OD-type.

Figures 5 and 6 present the clp and the vcbp, respectively, obtained from simulations

using Algorithm 1. The parameters of the VC types are given in Table 2. The arrival rates

for the OD pairs are given by �11 = 2:1, �1p = 2:7, for p = 2; :::; 5 and �2p = :3, for p = 1; 2; :::; 5.

The two VC types have equal mean rates BM and average burst length L. Type 2 VC's,

however, are 10 times more bursty than type 1 VC's (the type 2 peak rate BP2 is 10 times

bigger than the type 1 peak rate BP1). Notice that BP2 =
1
4
C = 12:5 Mbps. Each VP has

a bu�er space of 17 cells. The clp requirements for VC's of type 1 and 2 are g1 = 10�5 and

g2 = 10�4, respectively. As Figure 5 shows the algorithm meets the QoS requirements of

both VC types. Clearly in such a setting the type 2 VC's experience a larger clp and vcbp

and this is demonstrated in the �gures. The dotted line in these �gures show the average clp

and the average vcbp for each VC type. (Note that changes to the arrival rates will result

in changes in the cell loss probabilities and for certain combination of arrival rates they

can be closer to the required QoS.) The same simulation was performed using Algorithm 2

(Algorithm 2) and the results are shown in Figures 7 and 8. It can be seen that except for

one r-type, the QoS requirement is satis�ed. As pointed out earlier, Algorithm 2 provides a

less strict control over the resulting clp's.
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A comparison of Figures 5 and 7 shows that the clp's for di�erent route/types resulting

from the two algorithms are close and the average clp's for the two VC types are very close.

Comparing Figures 6 and 8 shows that the vcbp resulting from Algorithm 2 is generally

higher than that from Algorithm 1. This is of course due to the fact that for each OD pair

Algorithm 1 searches the entire set of alternate routes while Algorithm 2 only recalls the last

route that successfully served as an alternate route. Consequently, Algorithm 1 may admit

calls that are rejected by Algorithm 2. However, as these �gures show the increase in vcbp

is not large and, in fact, the average vcbp increases only slightly. We should point out that

this is a small cost to pay as Algorithm 2 is much simpler to implement

In order to verify the control of the algorithms on QoS, we increased g1 slightly from

g1 = 10�5 to g1 = 3� 10�5 and left g2 = 10�4 unchanged. The results for Algorithm 1 are

presented in Figures 9 and 10. A comparison of Figures 5 and 9 shows that the average clp

has increased from 3:1�10�6 to 4:5�10�6 for type 1 VC's and from 2:7�10�5 to 3:4�10�5

for type 2 VC's. This shows the responsiveness of the algorithm to the QoS requirements.

Even slight adjustment of the QoS requirement results in an adjustment of the resulting

clp's. A comparison of Figures 6 and 10 shows that the average vcbp remains unchanged for

type 1 VC's and decreases slightly for type 2 VC's in Figure 10 indicating that even a slightly

less restrictive QoS requirement results in a lower vcbp. Similar results are obtained using

Algorithm 2 and are shown in Figures 11 and 12. Comparing the performance of the two

algorithms in terms of clp's and vcbp's we can draw similar conclusions as in the previous

case.

In the next example we change the VC type parameters to those in Table 3. The only

change made to the type parameters is that BM1 is increased to 5 Mbps. This is equivalent

to making the two peak rates equal, i.e., BP1 = BP2 =
1
4
C. The arrival rates are given by

�1p = :1 and �2p = :25 for p = 1; 2; :::; 5. The results for Algorithm 1 are shown in Figures 13

and 14 and those for Algorithm 2 are shown in Figures 15 and 16. It can be seen that the QoS
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requirements are again satis�ed. However in this case VC's of type 1 su�er a higher blocking

probability than before as they have a larger average rate. With the two VC types having

the same peak rate, the type with higher burstiness (type 2) can take greater advantage of

the statistical multiplexing nature of the network. We observe that in this case the control

for the clp is stricter than before for both VC types, with most of the clp values for each

r-type being signi�cantly below their maximum values g1 and g2. The reason for this is that

due to the high peak rates of all the VC's, each accepted VC greatly a�ects the clp in the

route assigned to it. In order to guarantee the required clp's, the algorithms are conservative

in call admission resulting in lower clp's than the maximum allowed values g1 and g2. Note

also that, as before, the two algorithms are comparable in their performance.

To observe the e�ect of bu�er size and to further verify the control of the algorithms we

perform a set of simulations where the bu�er size for every VP is only 6 cells (instead of 17

cells in the previous examples). The parameters for the VC types are given in Table 2 and

the arrival rates are given by �11 = �21 = :2 and �ip = :6 for p = 2; :::; 5 and i = 1; 2. The

results for Algorithm 1 are shown in Figures 17 and 18 and for Algorithm 2 in Figures 19

and 20. Due to the small size of the bu�er, admission of new VC on a particular route can

signi�cantly a�ect the clp of all the VC's that are currently utilizing this route. This e�ect is

more pronounced for VC's of type 2 which have a higher bandwidth demand. Consequently,

the algorithms exercise a stricter control on call admission. This results in the resulting clp's

being further from the QoS requirements. Note that the QoS requirement was met for every

r-type in the network using either of the two algorithms. However, in order to guarantee the

clp requirements of the two VC types, the algorithms are forced to satisfy a more stringent

clp requirement for VC's of type 2. This is a consequence of the small bu�er size which

does not allow the network to perform statistical multiplexing e�ectively. As Figures 5 and

7 show when the bu�er sizes are larger, the clp's for the two VC types are closer to their

respective maximum values and thus are substantially di�erent.
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6 Conclusions

We have presented two routing algorithms that meet the clp requirements of bursty ON-OFF

sources that request connection while ensuring that the clp requirements of the existing calls

are not compromised. The second routing algorithm is particularly easy to implement and

in terms of the trade-o� between clp and vcbp is comparable to the �rst algorithm. Our

numerical results show that the clp requirements are achievable while maintaining low call

blocking probability. Further, the routing algorithms are sensitive to the clp requirements

and respond to small changes in them. If the clp requirements are made stricter, then the

routing algorithms continue to maintain these new requirements at the expense of small

increases in the call blocking probabilities. We have also presented a feedforward neural

network which is easy to train and which can be used for the real time implementation of the

algorithms. Di�erent cell loss probability criteria can be accommodated for di�erent types

of calls which may di�er in parameters such as burstiness, average burst length and average

or peak rates. Numerical results have been provided which demonstrate the e�ectiveness of

the routing algorithms.
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Table 1: 4-Node Network Paths.

4-Node Network Paths

OD OD-type Paths r-type
Call type 1 Call type 2 Call type 1 Call type 2

f2g 1 16
(0,2) 1 6 f1,4g 2 17

f3,11g 3 18
f4g 4 19

(1,2) 2 7 f5,11g 5 20
f6,2g 6 21
f11g 7 22

(3,2) 3 8 f10,4g 8 23
f9,2g 9 24
f3g 10 25

(0,3) 4 9 f1,5g 11 26
f2,7g 12 27
f1g 13 28

(0,1) 5 10 f2,8g 14 29
f3,10g 15 30

Table 2: First set of types parameters.

Call Type BM L b % in ON BP

Type 1 0.5 100 2.5 40 1.25
Type 2 0.5 100 25 4 12.5

Table 3: Second set of types parameters.

Call Type BM L b % in ON BP

Type 1 5 100 2.5 40 12.5
Type 2 0.5 100 25 4 12.5
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Figure 1: Simulation vs. analytical results
from the model in Section 3.
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Figure 2: Simulation vs. analytical results
from MMDP=D=1=K model.
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Figure 5: Cell Loss Probability vs. r-type
(Algorithm 1, g1 = 10�5; g2 = 10�4).
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Figure 6: VC Blocking Probability vs. OD-
type (Algorithm 1, g1 = 10�5; g2 = 10�4).
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Figure 7: Cell Loss Probability vs. r-type
(Algorithm 2, g1 = 10�5; g2 = 10�4).
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Figure 8: VC Blocking Probability vs. OD-
type (Algorithm 2, g1 = 10�5; g2 = 10�4).
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Figure 9: Cell Loss Probability vs. r-type
(Algorithm 1, g1 = 3� 10�5; g2 = 10�4).
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Figure 10: VC Blocking Probability vs. OD-
type (Algorithm 1, g1 = 3� 10�5; g2 = 10�4).
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Figure 11: Cell Loss Probability vs. r-type
(Algorithm 2, g1 = 3� 10�5; g2 = 10�4).
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Figure 12: VC blocking probability vs. OD-
type (Algorithm 2, g1 = 3� 10�5; g2 = 10�4).
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Figure 13: Cell Loss Probability vs. r-type
(Algorithm 1, g1 = 10�5; g2 = 10�4), second
set of type parameters.
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Figure 14: VC blocking probability vs. OD-
type (Algorithm 1, g1 = 10�5; g2 = 10�4),
second set of type parameters.
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Figure 15: Cell Loss Probability vs. r-type
(Algorithm 2, g1 = 10�5; g2 = 10�4), second
set of type parameters.
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Figure 16: VC blocking probability vs. OD-
type (Algorithm 2, g1 = 10�5; g2 = 10�4),
second set of type parameters.
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Figure 17: Cell Loss Probability vs. r-type
(Algorithm 1, g1 = 10�5; g2 = 10�4), bu�er
size K = 6.
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Figure 18: VC blocking probability vs. OD-
type (Algorithm 1, g1 = 10�5; g2 = 10�4),
bu�er size K = 6.
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Figure 19: Cell Loss Probability vs. r-type
(Algorithm 2, g1 = 10�5; g2 = 10�4), bu�er
size K = 6.

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

N=4 C=50Mbps K=6cells BM=0.5Mbps L=100cells b1=2.5 b2=25

OD−type

V
C

 B
lo

ck
in

g 
P

ro
b.

(v
cb

p)

avg. vcbp {g1=1e−5}

avg. vcbp {g2=1e−4}

Figure 20: VC blocking probability vs. OD-
type (Algorithm 2, g1 = 10�5; g2 = 10�4),
bu�er size K = 6.
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