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Abstract

In this note, a fault-tolerant control strategy is proposed from a robust control perspective
by applying the recently introduced GIMC (Generalized Internal Mode Control) architecture.
This fault-tolerant control design consists of two parts: a nominal performance controller and
a robustness controller, and works in such way that when a sensor failure is detected, the
controller structure is reconfigured by adding a robustness loop to compensate the fault. This
note shows how to design such controllers for a single-input two-output gyroscope system so that
the performance with the nominal controller may be maintained in the case of sensor failure
and/or model uncertainties.

1 Introduction

Keeping good performance in the event of sensor/actuator failures are crucial in many applications,
especially if costly equipments are controlled. Consequently, fault detection and fault tolerant con-
trol have become very active research topics in recent years. The main challenge in the fault
detection field is to develop detection algorithms that could distinguish between faults and dis-
turbances into the system or model uncertainties [2, 3]. Thus, filters are designed such that the
effect of faults is maximized while the effect of disturbances is minimized. Several approaches have
been suggested: robust detection and isolation based on eigenstructure assignment [14], estimation
based on H2 and H∞ optimization [4, 12], detection and isolation by frequency domain optimiza-
tion [7, 13], detection based on model-based probabilistic approaches [6], etc. Most of the existing
research is focused on linear systems, but extensions to fault detection and isolation of nonlinear
systems have also been proposed in [5] and [8]. Furthermore, the applications of fuzzy logic [1] and
wavelet transforms [17] to fault detection have been recently introduced.

One way of synthesizing fault-tolerant controllers is by appealing toH∞ robust design techniques
[2, 9, 19]. Unfortunately, the standard H∞ based robust control design is based on the worst case
scenario which may never occur and it is not surprising to see that such a control system does not
perform very well even though it is robust to model uncertainties and sensor faults. On the other
hand, reconfigurable fault tolerant structures have also been studied where the model-matching
strategy is used to design linear [16] and nonlinear [10] controllers. In [11], a fault-tolerant strategy
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was suggested based on actuator and sensor fault compensations for a winding machine. The
problem of adaptive compensation for actuator failures was recently addressed in [15].

Motivated from the design limitations of H∞ techniques, one of the authors has recently in-
troduced a new controller architecture in [18], called Generalized Internal Model Control (GIMC),
which can overcome the classical conflict between performance and robustness in the traditional
feedback framework. This controller architecture uses the well-known Youla controller parameter-
ization in a completely different way. First of all, a high performance controller, say K0, can be
designed using any standard method, and then a robustification controller, say Q, can be designed
to guarantee robust stability and performance using any robust control techniques. The feedback
control system will be solely controlled by the high performance controller K0 in the normal case
and the robustification controller Q will only be active when there is a sensor fault or external
disturbances. In this paper, we shall test this GIMC control strategy on a gyroscope experiment
in our lab.

The paper is organized as follows. Section 2 describes the philosophy behind the GIMC ar-
chitecture. The details about the fault compensation strategy are shown in Section 3. Section 4
gives a description of the setup of the gyroscope experiment. In section 5, the GIMC controller is
designed and implemented for the gyroscope experiment. Both numerical simulation and experi-
mental results are reported. Section 6 gives some concluding remarks.

2 GIMC for Fault Tolerant Control

Let P0 be a nominal model of the linear plant P and K0 be a linear stabilizing controller for P0.
Suppose that K0 and P0 have the following coprime factorizations

K0 = Ṽ −1Ũ , P0 = M̃−1Ñ .

Then every controller K0 that internally stabilizes P0 can be written in the following form:

K = (Ṽ −QÑ)−1(Ũ +QM̃)

for some Q ∈ H∞ such that det(Ṽ (∞)−Q(∞)Ñ (∞)) 6= 0, see [19].
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Figure 1: Generalized internal model (GIMC) control structure.

A new implementation of the controller parameterization called Generalized Internal Mode
Control (GIMC) is proposed in [18] as shown in Figure 1. Note that

r(s) = Ñ(s)u(s)− M̃(s)y(s)

Hence r is the error between the estimated output and the true output of the system (residual
signal) [2]. Thus r = 0 if there is no model uncertainties, external disturbances or faults and then
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Figure 2: GIMC structure with failure detector.

the control system will be solely controlled by the high performance controller K0 = Ṽ −1Ũ . On
the other hand, the robustification controller Q will only be active when r 6= 0, i.e., there are either
model uncertainties or external disturbances or sensor/actuator faults.

Since the signal r represents the estimated output error (residual), this signal contains valuable
information in case of a sensor failure. Consequently, in order to have the exact nominal performance
in case of no-failure, r could be monitored to detect a sensor or actuator failure and then activate
the robustness loop, i.e. switch on the signal q. Thus, the GIMC structure can also be implemented
as shown in Figure 2. This will improve the performance of the overall GIMC structure, since there
is no degradation of nominal performance in order to improve robustness.

3 Fault Compensation

In general, the sensor and actuator faults can be modeled in a multiplicative form

ŷ(s) = [I + ∆s]y(s)
û(s) = [I + ∆a]u(s)

where ∆s,∆a ∈ H∞ represent the sensor and actuator perturbations due to the faults. Con-
sequently, if these terms are appended to the nominal plant P0, then the faulted input-output
mapping P (s) can be represented as

P (s) = P0[I + ∆a] (actuator fault)
P (s) = [I + ∆s]P0 (sensor fault) (1)

Thus the sensor or actuator fault can be modeled as model uncertainties. As a result, we consider
the following general class of uncertain models

P = P0 +W1∆W2 (2)

where P0 is the nominal plant, ∆ ∈ H∞ is an uncertainty block such that ‖∆‖∞ ≤ 1, W1 and
W2 are uncertainty weights such that P and P0 have the same number of unstable poles for all
allowable ∆. For example, P = (I + ∆)P0 with W1 = P0 and W2 = I may represent the sensor
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failures with ∆ = −I characterizing the lack of all sensor measurements and P = P0(I + ∆)
with W1 = I and W2 = P0 may represent actuator failures. Note that with this formulation,
disturbances could also be considered as faults. However, it is assumed that the fault detection
scheme can distinguish between disturbances and actual faults. In fact, this is feasible if some
knowledge about the frequency information of the faults and external disturbances is previously
known [7, 13].

We shall consider a basic robustness requirement in this paper, i.e. the closed-loop stability.
Hence our objective is to design Q to maximize the failure tolerance in the closed-loop system, i.e.

min
Q
‖Tzw‖∞ (3)

where Tzw is the closed-loop transfer function from signals w to z, see Figure 3. Fortunately, this
problem has an obvious answer if P0 ∈ H∞.
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Figure 3: GIMC Architecture with Uncertain Plant.

Theorem 1 Suppose W1,W2 ∈ H∞, P0 ∈ H∞ and K0 = Ṽ −1Ũ is a stabilizing controller of P0

that satisfies the closed-loop performance requirements, then

Q = −ŨM̃−1 (4)

is the optimal solution to the optimization problem minQ ‖Tzw‖∞. Moreover, if Q is chosen in this
way, ‖Tzw‖∞ = 0, the closed-loop transfer function from ref (reference) to u (control signal) is
given by

Turef = (I +K0P0)−1K0. (5)

Proof: From Figure 3, it can be seen that (with ref = 0)

u(s) = Ṽ −1
[
−Ũ {W1w(s) + P0u(s)}+Q

(
Ñu(s)− M̃{W1w(s) + P0u(s)}

)]
and z(s) = W2u(s). Therefore, since P0 = M̃−1Ñ and after some simplification

Tzw = −W2[I +K0P0]−1Ṽ −1[Ũ +QM̃ ]W1 (6)

Consequently, the optimal solution to the robust stability problem is

min
Q
‖Tzw‖∞ = 0, Q = −ŨM̃−1
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since M̃−1 ∈ H∞. Next, note that

u(s) = Ṽ −1
[
Ũ (ref(s)− Pu(s)) +Q

(
Ñu(s)− M̃Pu(s)

)]
with Q = −ŨM̃−1 and after some calculations and simplifications, we have

u(s) = Ṽ −1Ũref(s)− Ṽ −1ŨM̃−1Ñu(s)

Therefore, Turef = [I +K0P0]−1K0 since K0 = Ṽ −1Ũ .

2

Thus, if the q signal is introduced into the closed-loop, the control system is equivalent to
running in an open loop with a reference ref and an open-loop controller K = [I+K0P0]−1K0. Of
course, this will not be the case if additional performance criteria are included in the H∞ design.

On the other hand, if the plant P0 is not stable, then a weighted H∞ approximation has to be
solved, as it is seen from (6). Moreover, this problem can be put in an LFT framework, as seen in
Figure 4, with the generalized plant G given by

G =

[
−W2SK0W1 W2SṼ

−1

−M̃W1 0

]
(7)

where S = (I +K0P0)−1. Hence, Q is chosen according to

γ = min
Q
‖Fl (G,Q) ‖∞ (8)

and internal stability is guaranteed if ‖∆‖∞ < 1/γ. Alternatively, if an output uncertainty (sensor
fault) is considered for the unstable plant P0, i.e. P = (I + ∆)P0. The generalized plant G will
now be given by

G =

[
−S̃P0K0 S̃P0Ṽ

−1

−M̃ 0

]
(9)

where S̃ = (I + P0K0)−1. Note that in this case γ ≥ 1 since this will represent that the maximum
tolerable uncertainty is always ‖∆‖∞ < 1. Otherwise, the uncertainty could take the value ∆ = −I
(sensors outage) and the closed-loop will become unstable.
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Figure 4: Generalized linear fractional transformation.

We want to point out that it may not always be desirable to have the compensation signal
q active all the time if P0 is stable and the controller Q in Theorem 1 is used. This is because
in this case the control system will operate in an open-loop fashion with an equivalent open-loop
controller [I+K0P0]−1K0 and the system performance has no tolerance to disturbances and model
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mismatches. Consequently, it is recommended to adopt the controller structure in Figure 2 where
the compensation signal q is introduced only when a sensor failure is detected.

It is important to mention that with the configuration of Figure 2, the closed-loop system is
not linear time-invariant anymore. So, it is natural to ask about the stability of the overall closed-
loop with this scheme. However, note that once a fault is detected, the switch is activated and the
compensation signal q enters into the system and remains active until the proper sensor replacement
is done. Consequently, the switching is performed only once during the system operation. Thus,
the signal q is not continuously switched on and off. Therefore, if there exists a ∆ ∈ H∞ such
that Tyr /∈ H∞, after the fault is detected and q is activated, the closed-loop will be stable again
if P0 ∈ H∞ and Q is selected according to (4). For P0 /∈ H∞, the closed-loop stability is again
recovered if ‖∆‖∞ < 1/γ and Q satisfies (8).

4 Experiment Description

The fault tolerant structure will now be tested in a MIMO gyroscope experiment. The plant, shown
in Figure 5, consists of a high inertia brass rotor suspended in an assembly with four angular degrees
of freedom. The rotor spin torque is provided by a DC motor (motor #1). The first transverse
gimbal assembly (body C) is driven by another DC motor (motor #2) to effect motion about axis
2. Both motors have restrictions on rotation rates to commands change, which are represented by
saturations of ±10V in their input voltages. In this paper, we shall consider a special case where
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Figure 5: A gyroscope system.

the gimbal axis 3 is locked so that bodies A and B become one rigid body. The resulting plant is
useful for demonstrations of gyroscopic torque action where the position and rate, q4 and ω4, may
be controlled by rotating gimbal #2, q2, while the rotor is spinning. Taking the coordinate frame
definition from Figure 5, a nonlinear model can be obtained. A linearized version around the origin
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can be derived as follows:

ẋ =

 0 0 1
0 0 JDΩ

IC+ID

0 −JDΩ
ID+KA+KB+KC

0

x +

 0
1

ID+IC
0

T2

[
q2

q4

]
=

[
0 0 ID+KA+KB+KC

−JDΩ

1 0 0

]
x (10)

where Ω is the spin speed of the rotor disk (body D), T2 is the torque applied through motor 2, and
Ix, Jx,Kx (x = A,B,C and D) are the scalar moments of inertia about the ith (i=1,2,3) direction
respectively in bodies A,B,C and D. Note that this model is valid only for small displacements
around the operating point.

5 Controller Design

Following the procedure outlined previously, first a nominal controller K0 is obtained using (10) as
a plant model. Hence, the nominal plant P0 is given by

P0 =
1

s(s2 + 389.2)

[
10.33s
−38.69

]
(11)

where the open-loop poles are located at 0 and ±19.729j. Hence P0 has all its poles on the
imaginary axis. Consequently, P0 6∈ H∞. A high-gain observer-based controller is designed such
that the closed-loop poles are located at

State Feedback

{
−10± 40j
−30

Observer


−35
−36
−37

This controller results in a fairly fast response with a small overshoot while keeping the controlling
voltage between the limits of the saturation. In the next step of the GIMC controller design,
the robustness controller Q is designed to tolerate sensor faults as presented in (1). In this way,
sensor faults are modeled by uncertainty in the output signal. This uncertainty representation
can also be viewed as output multiplicative uncertainty. Next, the system is put in the standard
LFT framework by using (9). Consequently, Q is chosen according with the following optimization
criterion (robust-stabilization) γ = minQ ‖Fl(G,Q)‖∞.

As a result, the optimization scheme gives a controller Q with γ = 1.0, this value is expected
since this represents that the complete sensors outage cannot be tolerated. For comparison an H∞
controller is designed based also on measurement uncertainty. However, in order to make the H∞
formulation well-posed, a small penalty ε is imposed on the control signal. Thus, the following
optimization problem is formulated

γ = min
K∞
‖Fl(G,K∞)‖∞ where G =


0 P0

0 ε

I P0


Like in the GIMC controller, the resulting H∞ controller K∞(s) gives again γ = 1.0. Finally,

the performance of the three controllers K0,K∞ and GIMC are investigated. In this feedback
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Figure 6: Simulation with sensor fault at 8 sec.

configuration, there are two sensor measurements q2 and q4 (Axes 2 and 4). We consider the case
when there is a sensor outage of Axis 2, i.e

q̂2(t) =

{
q2(t) t < t0

0 t ≥ t0

where q̂2(t) represents the measurement, q2(t) the true reading and t0 the failure time. Thus, the
simulation of the response to a square wave reference signal is computed with sensor fault in Axis
2 (q2) at t0 = 8 sec as shown in Figure 6.

From these plots, it is seen that the system with the nominal controller becomes unstable in
the event of sensor fault. On the other hand, the systems with H∞ and GIMC controllers remain
stable. It can also be seen that the system response with the H∞ controller is not clearly affected
by the sensor fault, but the drawback is its slow response. As expected, the system with the GIMC
controller keeps the performance of the nominal controller in the case of no fault, but in the case
of fault, it still maintains stability with reasonable tracking.

In addition, these controllers are also tested experimentally. The responses to a square wave
command signal (without fault) are shown in Figure 7. The results present a peculiar behavior of the
experimental configuration. While the rotor is spinning, the control signal applies an input voltage
to motor #2 in order to rotate this gimbal, which produces a corresponding angular velocity in the
gimbal #4 (q4) direction. But due to friction mainly, small displacements of gimbal #2 (q2) do not
produce any motion in Axis 4. This behavior could be characterized by a dead-zone nonlinearity,
but it is more complicated than that. Because, it is not coming from the dc-motor characteristics,
instead it is related to interactions among gyroscope components. Consequently, the H∞ controller
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Figure 7: Experimental responses without fault.
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Figure 8: Experimental response with sensor fault at 2.2 sec.
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response is drastically affected, since almost no movement in the Axis 4 direction is detected,
producing a useless controller.

Meanwhile, the experimental response of the nominal controller K0 is not much different from
the simulation due to the high gain of this controller. On the other hand, the response with
the GIMC controller is affected since there is large error between the model and true system.
Nevertheless, the system with this controller still maintains good tracking.

Finally, the experimental response with fault in Axis 2 (q2) sensor is tested. The fault is
programmed at 2.2 seconds, i.e. the reading from that sensor is switched off after 2.2 seconds. No
external disturbances are considered during testing. The results are shown in Figure 8. The plot
shows how the nominal controller K0 immediately produces an unstable response, as predicted by
simulation. Now, the real advantage of the GIMC architecture is obvious: even in the case of sensor
fault (outage) the tracking capabilities are not significantly affected. After the sensor fault, q tries
to compensate the nominal control signal û to preserve stability and to keep the tracking response.
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Figure 9: Experimental response: switching on the robustness signal q after detecting sensor failure
(6 sec.).

Now, the idea proposed in Figure 2 is followed. Thus, the robustness loop is switched on only
in the case of a sensor failure. The failure condition is then detected by monitoring the signal r
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(residual). However, it is needed to choose an strategy to detect a sensor failure from the residual
r. The following simple approach is chosen since external disturbances are not considered, check
the standard behavior of this signal for no-failure case and set a threshold value such that if r goes
above it the signal q is activated. The approach taken is by no means the most efficient way to
detect the sensor failure, specially if external disturbances are considered. Other approaches like
monitoring the statistics of r could lead to a more efficient detection. However, only the overall
application is intended to be illustrated here. Nevertheless, if external disturbances are considered
to influence the system, a detection strategy based on the norm of a weighted residual r̂ over a
finite period of time T [17] can be adopted, i.e.

J = ‖r̂(t)‖2,t,T =

√∫ t

t−T
r̂T (τ)r̂(τ)dτ > Jth (12)

where r̂(s) = R(s)
[
Ñu(s)− M̃y(s)

]
, Jth is a threshold value to prevent false triggering, and R(s)

is a filter chosen to maximize the sensitivity to faults and minimize the effect of disturbances [7].
The fault-tolerant approach is tested in the experimental setup with failure of Axis 2 (q2), sensor

outage, after 6 sec as shown in Figure 9. From this plot, it is clear that the controller is able to
stabilize the system and achieve good performance even after the failure. Thus, the performance
of the GIMC architecture is drastically improved since there is no sacrifice of performance for
robustness before the fault.

6 Conclusion

The motivation of this work has been to present how the GIMC architecture can be adopted to the
fault tolerant control problem in MIMO (Multi-Input Multi-Output) systems. The GIMC architec-
ture is motivated from H∞ design and this particular configuration has appealing characteristics
for fault-tolerant control. The advantage of this new architecture over standard control is success-
fully demonstrated on a SITO (Single-Input Two-Output) configuration of a gyroscope system.
The classical H∞ based controller has shown to be useless in our experiment due to unmodeled
nonlinearities in the system. Hence, the GIMC controller is presented as an extension of the H∞
technique that overcome the conservativeness of the latter one. Moreover, from the analysis of the
properties of the signals in the GIMC architecture, it is possible to derive a reconfigurable control
strategy that keeps the nominal performance for no-sensor failure and maintains stability and good
tracking in case of a sensor fault in our system.
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