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FAULT DETECTION

Model/Residual Based

White Box Approach




Residual

- If amodedl is not available, must

develop one using experimental data

Modeling in Real Time




For TLRN, training
Issues are still
open problems

*Backpropagation
through time (BPTT)
eKalman filter and
EKF-based training of
ANNs
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BPTT for RNN training
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Extended Kalman Filter training

 EKFisastate estimation technique for nonlinear systems
derived by linearizing the well-known linear-systems
Kaman filter around the current estimates.

* |Inorder to apply EKF to the task of estimating optimal weights of Recurrent
Neural Networks(RNN), we interpret the weights of the network as the state
of adynamical system.

x(n+1) =1(x(n), u(n)) + q(n) w(n+1) =w(n) +q(n)
d(n) = h,(x(n)) d(n) = h,(w(n), u(n))

w : vector containing all the weights of the RNN.

The output d(n) of the RNN is afunction h of the weights and the inpui.

The NN training task now takes the form of estimating the state from an initial
guess W(0) and the sequence of outputs and inputs: d(0), ...d(n), u(0), ..., u(n).



EKF Algorithm for RNN training

Predict Update

(1) Project the state ahead (1) Computethe Kalmangain
W, =W, K=RH,/ (H PH,' )_l

(2) Project theerror covarianceahead (2) Update the estimate with measurement z,
P =R W, =W, + K(dk — h(w;,u(k)))

(3) Update the error covariance
P=(-KH)P




How good isthe model that we just devel oped?

Testing goodness of fit:
Autocorrelation functions
Chi-squared tests
Kolmogoroff-Smirnov tests

Under no-fault conditions, in the presence of
only random disturbances, the residuals must
be random




Kolmogoroff-Smirnov Test

e Hy F(X) = Fy(x) True,

 H fase

Form the empirical estimate of F(x) and use astest statistic
the maximum distance between F(x) and F,(x):

q = max [F(x) — Fo(X)|

Find a constant ¢ such that P{ g>c|H,} = o

Where o, = 2exp(-2nc?) (Kolmogoroff approximation)

Accept H, iff g <sgrt[(-1/2n) In(a/2)] = ¢

o will be the probability of false alarm (type | error)
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For uncertain systems, it cannot be guaranteed that
residuals under no-fault conditions will be random!




These pattern various faults



* Y Ou cannot correct what
you cannot see

e At the onset of afault
normal datais nuisance

« Signal Processing can
eliminate nuisance data
without requiring math
models

Filter Banks

FAULT DETECTION

Model Free/DSP Based

Black Box Approach

Model Free characterization in
terms of changesin energy
distribution

CWT & STFT

 “Enough” experimental data
can replace a mathematical
model

eUnsupervised clustering does
not require a model
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Stick Input

F14 SIMULINK MODEL
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Angle(s’ "

-1 If residuals are not available???
I
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By examining the sensor reading one cannot see the onset of the fault

F14 ANGLE OF ATTACK

T T [
Fault free actuator
| —— Faulty actuator

Input to DSP algorithms
- filter bank in this case
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Actuator Fault
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It may be possible to classify faults
Faults cause changes in energy distribution
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Pseudo Power Signature

* Pseudo power signature

Develop asignature that characterizes the
energy distribution of asignal in a manner
that is essentially independent of the
duration of the signal.



Pseudo Power Signature

o Time-frequency energy density function

2 =] [scita) BE &

(a,b)eR

<:@b Scalogram of afunction with CWT c,(a,b)
C(a,b) = [cx(a,b)’ (2)

The scalogram can be used as a time-frequency
energy density function.
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(DASC2002)

Signhature subspace

Uses Singular Vaue Decomposition to
approximate a function of two variables

e.g. If two values are significant
c; (a,b) = 0,5, (a)r,(b) + 0,5, (A)r, (D)

= ¢} (a,) € spar{s,(a),s,(a)}; Vb



Distance | ndicator

\

c’(a,) distance to subspace

signature

S\a
normal operation = c’(a,) e span{s,(a),s,(a)}; Vb



Data generated with 1-axis model of F14

SENSOR SIGNAL
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Things are beginning to get gray



These pattern various faults



Things are getting whiter

We can determine (unstable) poles of a system
Required knowledge of input: it is bounded

Selectivity of Sensibivity Measure
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And Whiter

o If the input is a stationary random process with arational
spectrum we know we can ‘whiten’ input and have an

ARMAX model of the form _
White sequence

m m
Yo T Z;Jai Yo = Z;)bjek—j
i= j=
u, = ;bjek_j
V, = U, 1y Uncorrelated!

m
yk+n(m+1) + Zlal yk+n(m+1)—i — un
| =

Faster than
Decimated output has a pure AR model Yule-Walker



How Useful Are Residuals?

If there is no random noise in the system, residuals
are very useful (FDI using parity check methods
etc.)

How to enhance the useful

If there is noise, Information hidden in the residuals
residuals may be too
fuzzy to use directly.

AutoRegressive modeling of theresiduals ...
AR parameters estimated by a Kalman filter
In real time




Using the
| FAC Benchmark Problem for FDI
Ship Propulsion System

http://www.control.auc.dk/ftc/html/body_ship _propulsion_.html

Available M odels- One Engine and one propeller
Two Engines and two propellers

Detailed Description of the Benchmark availablein:

o|zadi-Zamanabadi R. and M. Blanke (1999), A Ship Propulsion System Model for
Fault-Tolerant Control, In Control Engineering Practice, 7(2), 227-239.

o|zadi-Zamanabadi R. and M. Blanke (1998), A Ship Propulsion System as a Benchmark
for Fault-tolerant Control, Technical report, Control Engineering Dept., Aaborg
University



In the ship propulsion system, we
Introduced a slowly developing fault in
the engine torque. The output is the ship
speed, and the controller output is the

fuel Index.

Residuals are collected at both the system output
and controller output nodes.
As expected, the controller output residuals are
more sensitive (than the system output) to the fault.




The residuals are modeled with AR-Kaman-filter,
and the AR-predicted residual signal shows drastically
enhanced performance for early fault detection/warning.

|ssues in closed-loop FDI: in the presence of
controllers, residuals at the system output
becomes | ess sensitive to faults; the
smarter the controller, the worse the
output residuals!
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Using the AR-predicted
residuals at the controller
output appearsto be
the best option.

If the residuals are purely random, then any attempt to fit AR
or any other type of model must fall — essentially, the
Kaman filter will then ssimply extract the zero signal

from the noisy data.
When afault starts, the AR-parameters will shape up
according to the type of the fault. All we need isan
excellent real-time AR estimation tool.




Students:

Sundara Kumar (AR modeling, closed-loop FDI)
Venu Gopal Siddhanti (EKF for TLRN training)
Nageswara Rao (quality of residuals, hypothesi s tests)
Dilip Vutukuru, Silpa Mutukuru, Karuna Pilla
(closed-loop FDI, smart controllers and FDI)

Min Luo (FDI, Subspace signatures)

Pallavi Chetan (STFT signatures, clustering)
Santosh Desirgju (Detection of Change)
James Henderson (Strain test data analysis)



A Curious Little Problem
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iZonmolked System Performance: 1ms Detection Delay
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iZonrollked System Performance: 1ms Switch Delay
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for a switched system, the difference with respect to the
Ideal tracking performance corresponds to a combination

of free responses from faulted and un-faulted systems and
IS essentially independent of the controller.



