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Abstract —Multimedia data has become a major data type in the Big Data era. The explosive volume of such data and the increasing
real-time requirement to retrieve useful information from it have put significant pressure in processing such data in a timely fashion.
However, while prior efforts have done in-depth analysis on architectural characteristics of traditional multimedia processing and
text-based retrieval algorithms, there has been no systematic study towards the emerging multimedia retrieval applications. This may
impede the architecture design and system evaluation of these applications.
In this paper, we make the first attempt to construct a multimedia retrieval benchmark suite (MMRBench for short) that can be used to
evaluate architectures and system designs for multimedia retrieval applications. MMRBench covers modern multimedia retrieval
algorithms with different versions (sequential, parallel and distributed). MMRBench also provides a series of flexible interfaces as well
as certain automation tools. With such a flexible design, the algorithms in MMRBench can be used both in individual kernel-level
evaluation and in integration to form a complete multimedia data retrieval infrastructure for full system evaluation.
Furthermore, we use performance counters to analyze a set of architecture characteristics of multimedia retrieval algorithms in
MMRBench, including the characteristics of core level, chip level and inter-chip level. The study shows that micro-architecture design in
current processor is inefficient (both in performance and power) for these multimedia retrieval workloads, especially in core resources
and memory systems. We then derive some insights into the architecture design and system evaluation for such multimedia retrieval
algorithms.

Index Terms —Multimedia Retrieval, Benchmarks, Architectural Characteristics

✦

1 INTRODUCTION

OUR society has entered into theBig Data era, with data
volume increasing at exponential rate. Among various data

types, multimedia data, such as images and videos, have become
one of the major types. Video data occupies 64% of the customer
Internet traffic in 2014 and was predicted to increase to an 80%
occupation by 2019 [1]. Among them, more than 400-hour worth
new videos were uploaded toYouTubeevery minute in 2015 [2].
In the meantime,Facebookhosts more than 240 billion of user-
uploaded images [3].

To extract useful information from such data, multimedia
retrieval applications are emerging to process such multimedia
data, including video recommendation [4], travel guidance [5]
and content-based TV copyright identification [6]. To guarantee
retrieval accuracy, typical applications usually extract and utilize
hundreds of high-dimensional features to represent an image or
a video frame. Thus, in contrast to traditional text-based retrieval
applications, multimedia retrieval applications are not only more
data-intensive but also more computation-intensive, which lead
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to significant pressure on real-time processing. For example,
SURF [7] is one of the most widely-used image or video retrieval
algorithms [8]. It can only achieve the process speed of a handful
images or video frames per second on general-purpose processors.
Although these applications are becoming more and more popular,
there are currently no systematic benchmark suites to understand
their architectural characteristics, which are critical to design
and implement optimizing architectures and systems for such
workloads. Most related benchmarks are still text-based [9] [10]
or target tradition multimedia processing [11] [12].

As a first attempt, we design and implement a multimedia re-
trieval benchmark suite (MMRBench) for architecture design and
system evaluation, by selecting representative algorithms in the
multimedia retrieval fields. We also implement multiple program-
ming versions for these algorithms, such as sequential, parallel and
distributed versions. To satisfy varied evaluation requirements, we
provide automation tools for adjusting the parameters and gener-
ating input. Furthermore, we provide a basic framework including
all the major processing stages of multimedia retrieval applications
as well as the data transfer interfaces between different processing
stages. In this framework, the algorithms in different stages can
be easily replaced with different versions or other algorithms. The
parameters and inputs can also be adjusted based on the provided
tools. Therefore, users can flexibly evaluate their designs by using
different algorithms in MMRBench individually or in integration
for a full workflow system evaluation.

Furthermore, we use performance counters to study a set of ar-
chitectural characteristics of these algorithms, including the char-
acteristics of core level, chip level and inter-chip level. We observe
obvious mismatch between the requirement in multimedia retrieval
workloads and current predominant processor architecture. We
conclude the characteristics of these workloads in three levels.
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In thecore level, the programs have the following characteristics:
(1) complex branch behavior and small instruction working set,
(2) lower instruction-level parallelism (ILP) and memory-level
parallelism (MLP), (3) insensitive to floating-point operations; in
thechip level, they (1) require modestly sized L2 cache which acts
efficiently in data fetch and relatively small data working set in last
level cache, (2) have abundant thread level parallelism and critical
imbalance problem; and ininter-chip level, they have low off-
chip memory bandwidth utilization. Based on the analysis, some
insights into architecture design are derived for these algorithms.

In summary, this paper makes the following contributions:
• Design and implementation of a multimedia retrieval bench-

mark suite, including state-of-the-art algorithms, different im-
plementation versions, automation tools and a flexible system
framework. Such a design enables the algorithms to be used
individually or combined together to form an integrated system
for evaluation.

• Detailed analysis on the architectural characteristics of mul-
timedia retrieval algorithms compared to conventional bench-
mark suites and predominant processor architecture.

• Architecture design insights. Based on the above performance
evaluation, we provided architecture design insights on the
application level, the core level, the chip level, and the inter-
chip level. These can be used to design efficient architecture
for multimedia retrieval programs in the future.
The paper is organized as follows. Section 2 explains the

motivation of this paper and Section 3 discusses the related work.
Then Section 4 gives an overview of MMRBench and Section 5
presents the design of the basic framework. Section 6 analyzes
the architectural characteristics of MMRBench. Finally, Section 7
concludes the paper.

2 MOTIVATION

Currently, the transistor threshold and voltage scale problems
limit the further improvements on single-core processor perfor-
mance, both in compute density and power efficiency. As more
and more emerging workloads dominate in cloud environments,
researchers now begin to optimize server systems to meet the
performance requirement and power constraints by removing
unnecessary components such as graphic chips and using more
green power supply. However, modern processor architectures are
still inefficient in space and power for cloud workloads such
as web search [13]. Considering multimedia retrieval workloads
are more data-intensive and computation-intensive than traditional
text-based retrieval workloads, we aim to investigate whether there
is a mismatch between the characteristics of these workloads and
the predominant commodity processors. Further, we intend to
analyze the system and architecture characteristics for emerging
multimedia retrieval applications, with the goal of gaining insight
into designing efficient processor architecture and systems in this
area. To achieve such goals, our workload characterization should
meet the following targets.
• Representative system behavior:A multimedia retrieval

workflow typically consists of three stages: feature extraction,
feature matching and spatial verification. Algorithms in these
stages handle different computation hence have varied char-
acteristics. Therefore, one should include popular algorithms
from all these stages to understand the characteristics of
multimedia retrieval systems.

• State-of-the-art techniques: Varied algorithms and tech-
niques may apply to the three aforementioned workload stages.
For example, feature extraction applications may include both
global and local feature based algorithms. However, since low
precision in matching (more than 30% error rate [14]), global
feature based algorithms have been rarely used in real appli-
cations. As a result, state-of-the-art algorithms and techniques
should be used in system evaluation and characterization.

• Applicable to cloud computing: As cloud and datacenter
computing are gaining increasing momentum, the proposed
multimedia retrieval workloads should be able to extend
to cloud and datacenter level in computation, storage and
communication intensity. In addition, varied input sets are
desirable to show an application’s characteristics at different
system scales.

• Flexible infrastructure: We envision an integrated evaluation
framework with flexible computation kernel modules. As such,
the framework can be applicable to various system designs
and experimental environments, e.g., from multi-threading in
a multi-core processor design to distributed implementation at
the datacenter level.

3 RELATED WORK

In this section, we discuss several existing benchmark suites
and prior research on the evaluation of performance and power
efficiency of modern processors.

3.1 Benchmark Suites

In order to compare the multimedia retrieval algorithms with other
applications, we choose representative benchmark suites designed
for different targets for comparison.
• Traditional benchmarks: SPEC [15] has designed several

benchmark suites, such as SPEC CPU, to satisfy different
evaluation scenarios. Splash2 [16] and PARSEC [17] are
two most popular benchmarks for parallel system evaluation.
Parboil [18] is another parallel benchmark suite focusing
on GPGPU-like architecture. However, emerging multimedia
retrieval algorithms are not considered in such suites.

• Multimedia benchmarks: Traditional multimedia benchmark
suites include ALPBench [11], MiBench [12], SD-VBS [19]
and MEVBench [20]. Still, they mainly focus on traditional
multimedia decodeand encodeprocessing1. Although both
of traditional multimedia algorithms and information retrieval
ones process multimedia data, the major processing steps are
largely different. Multimedia retrieval algorithms focus on how
to extract and analyze these multimedia data.

• Cloud benchmarks: Benchmark suites aiming to cloud en-
vironment are also becoming popular. Intel researchers pub-
lished MapReduce based HiBench [10]. CloudSuite [9] is
designed to cover the emerging scale-out workloads in cloud

1. Although multimedia retrieval algorithms are considered in SD-VBS [19],
only two feature extraction algorithms are included in its design, while most
algorithms in it are traditional multimedia algorithms. Ferret [21] is a toolkit to
construct content-based similarity search systems. Therefore, it is not designed
for performance evaluation. No state-of-the-art algorithms are included in it
and no architectural characteristics are analyzed in it. Moreover, it is global
feature-based, which has been shown to have low retrieval precision [14].
Therefore, as we described in Section 4.1, local feature-based algorithms are
widely used in current real-world applications.
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(a) Feature extraction. (b) Feature matching. (c) Spatial verification.
Fig. 1: Example of three-stage (a, b and c) multimedia retrieval.

environments. However, most of these benchmarks target text-
based workloads. The characteristics of multimedia-based in-
formation retrieval applications are not reflected.

3.2 Architecture Evaluation

In this section we review prior work on performance evaluation
and architecture design.
• Performance Evaluation: Most of performance evaluations

on efficiency of modern processors are based on traditional
commercial applications. For scientific applications, Tuck et
al. indicates that the SMT mechanism can notably improve
performance [22]. Nikos et al. characterize a commercial
database server running on emerging chip multiprocessor tech-
nologies and find the major bottleneck is data cache stalls [23].
Nan et al. propose a model to evaluate the earth system
simulation framework [24]. Xu et al. discuss the performance
modeling of Sparse Matrix-Vector Multiplication (SpMV) on
GPUs [25]. Xue et al. simulate the performance of atmo-
spheric dynamics on supercomputers [26]. To catch up with
specific infrastructure trends such as datacenters, Ranganathan
et al. discuss the implications for architecture research and
suggesting some high-level challenges for the community to
address [27].

• Architecture design: As multi-core and many-core systems
becoming a mainstream, many researches advocate new pro-
cessor structure design for them. In [28], Hardvellas et al.
show that server chips will not scale beyond a few tens of
cores such that we cannot afford to power. They then propose
use simpler cores and reduce on-die caches to overcome the
initial power barrier. Other efforts such as [29] and [30] study
optimal cache and DRAM structure for given applications.
For emerging cloud workloads, Kozyrakis et al. [31] provide
a characterization on large-scale online services workloads
and give some insights into such cloud server designs. In
CloudSuite [9] [32], Ferdman et al. identify the key micro-
architecture needs for scale-out workloads and design efficient
scale-out processors. Although there are many architecture
optimizations for different workloads, none of them consider
the characteristics of multimedia retrieval applications in their
designs.

4 MMRBENCH OVERVIEW

In this section, we first describe the generic workflow of multi-
media retrieval applications. We then describe our methodology to
select multimedia retrieval algorithms for this work, followed by
a brief overview of such algorithms.

4.1 Multimedia Retrieval Workflow

Multimedia retrieval applications generally consist of three stages:
feature extraction, feature matching and spatial verification.

• Feature Extraction: In this stage, feature points are extracted
to represent an image or a video frame. Feature extraction
algorithms can be divided into two classes: Global Feature
Based Algorithms (GFBAs) and Local Feature Based Algo-
rithms (LFBAs). GFBAs use one unique feature to represent
an image, while LFBAs adopt hundreds of points to guarantee
the results are insensitive to various transformations, such
as scaling, rotation and illumination. Due to GFBAs’ low
retrieval precision [14], LFBAs are widely used in real-world
applications. Therefore, we focus on LFBAs in this work.

• Feature Matching: The way to judge whether two images are
similar is to check whether they have enough similar feature
points. The similarity metric applies the Euclidean distance.
Due to the huge amount of image processing data, most mul-
timedia retrieval applications apply approximate algorithms in
their matching stages to avoid excessive computation. When
the matched points between two images exceed a threshold,
these two images will be considered as matched. Therefore,
floating-point precision in feature matching is important. We
apply this insight in our analysis in Section 6.

• Spatial Verification: The matching results are usually pollut-
ed by false matching. To filter out these mismatched feature
points, spatial verification algorithms are adopted to refine the
matching results by checking the spatial relationship of the
matched feature pairs from the above stage.
Figure 1 illustrates the aforementioned workflow with two

images ofMona Lisaas an example. In this example, we assume
the feature points of the image on the left are trained in a backend
database and the image on the right will be used to query the
database. Many more images will be processed in a real world
scenario. In the feature extraction stage, the feature points in
images are extracted. The red points in the images represent the
positions of extracted feature points. In the feature matching stage,
each feature point is compared with those in the database. If the
number of matching points exceeds a certain threshold, e.g., 20,
they will be considered as similar. Note that, multimedia retrieval
applications typically do not achieve a total match among all
points between two images due to varied image transformations.
As a result, a threshold is generally set. More matching points over
the threshold would not affect the result. Lastly, spatial verification
algorithms are adopted to filter out false matches, e.g., the points
on the frame in the right image of Mona Lisa in Figure 1. Based
on the final results of this stage, the matching images are ranked
based on their numbers of matching points.

4.2 Workloads

Each processing stage of multimedia retrieval applications con-
tains various algorithms. To choose the most representative ones,
we conduct a survey on the top conferences related to multimedia
retrieval applications, such asIJCV, CVPRandACM Multimedia,
over the last five years. If an algorithm has been cited more than
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certain threshold (we set the threshold to 10 in this work), it is
considered the state of the art and is selected in this work. As a
result, we select eight multimedia retrieval algorithms. The chosen
algorithms are shown in Table 1 (T:train/Q:query). Here we also
find that SIFT and SURF are the most popular algorithms in
feature extraction stage and VOC-Tree is applied with the most
frequently in feature matching stage.

TABLE 1: Overview of the MMRBench.
Application Function Input

SIFT Feature Extraction Image/Video Frame

SURF Feature Extraction Image/Video Frame

MSER Feature Extraction Image/Video Frame

HOG Feature Extraction Image/Video Frame

KD-Tree(T/Q) Feature Matching Feature Points

VOC-Tree(T/Q) Feature Matching Feature Points

LSH(T/Q) Feature Matching Feature Points

RANSAC Spatial Verification Feature Points

• SIFT (Scale Invariant Feature Transform) [33] is an al-
gorithm to detect local features in images. SIFT detects fea-
tures (or points) which are invariant to scaling, rotation, illu-
mination and viewpoint. It consists of a detection stage and a
description stage. In the detection stage, scale invariant points
are detected. In the description stage, each point is assigned
with one or more orientations to achieve rotation invariance.
Then, a 128-dimension descriptor vector is computed for each
point.

• SURF (Speeded-Up Robust Features)[7] is another scale,
illumination and rotation-invariant algorithm. The workflow
of SURF also contains detection stage and description stage.
However, SURF has slightly different ways of detecting fea-
ture points. It uses a special structure “integral image” instead
of Gaussian pyramid in SIFT, which enables it to process faster
while keeping similar distinctiveness of feature points.

• MSER (Maximally Stable Extremal Regions)[34] is a fea-
ture detection algorithm. Instead of extracting feature points,
MSER extracts co-variant regions from an image, called M-
SERs. MSER has the advantage that features can be reliably
matched regardless of the appearance of the surroundings of
the actual region.

• HOG (Histogram of Oriented Gradients) [35] is an algorith-
m used for object detection. The technique counts occurrences
of gradient orientation in localized parts of an image. It is
computed on a dense grid of uniformly spaced cells and uses
overlapping local contrast normalization to improve accuracy.
Generally, HOG is used for pedestrian detection.

• KD-Tree [34] is originally designed for exacting nearest
neighbor search in multi-dimensional data. In its training stage,
multiple randomized trees are created by selecting the topN
dimensions with the greatest variance. In the querying stage, it
uses best bin to find a set of approximate solutions.

• VOC-Tree (Vocabulary Tree) [36] defines a hierarchical
quantization built by recursively doing k-means clustering.
In its training stage, the training data are processed through
definingk cluster centers and recursively defining quantization
cells by splitting each quantization cell intok new parts.
The tree is constructed level by level, up to some maximum
number. In the querying stage, each feature point traverses
through the tree by comparing itself to each ofk cluster centers
and choosing the closest one until it reaches the leaf node.

• LSH (Locality Sensitive Hashing)[37], [38] is a method of
performing probabilistic dimension reduction of high dimen-
sional data. When training data, it hashes the items so that
similar items can be more probable to be mapped to the same
buckets than dissimilar data. It has two parameters: the width
parameterk and the number of hash tablesL. In the querying
step, it hashes the query pointq into each of theL hash tables.
In each hash table, it iterates overk hash functions. It retrieves
the points hashed into the same buckets asq.

• RANSAC (RANdom SAmple Consensus)[33], [39] aims
to filter “outliers” out of “inliers” in a data set.Inliers
are consistent with the estimated (spatial) model and can be
explained by some set of model parameters whileoutliers
do not fit the model. The retrieval precision under the spatial
consistency can be improved with RANSAC.

5 METHODOLOGY

This section present our analysis methodology in infrastructure,
metrics, tools and experimental setup.

5.1 Infrastructure

Our goal is to build an evaluation infrastructure that is convenient
for users to construct test suites for their varied evaluation needs,
e.g., architecture designs for datacenters or system evaluation-
s on multi-core architectures. To achieve this goal, we have
provided multiple versions for the selected algorithms, which
includes sequential version, multi-threaded version for multi-core
architecture and Hadoop (map-reduce) version for large-scale
distributed environment. Most of these algorithms have multiple
versions of open-source implementation. We select the sequential
implementation whose paper has most citations to ensure that the
algorithms in our benchmark suite are popular and represent state-
of-the-art. The parallel and map-reduce version of these workloads
are all implemented from scratch by ourselves.
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Fig. 2: Infrastructure for multimedia retrieval workloads.

In addition, we provide both multiple input sets and automa-
tion tools that facilitate input data generation and control parame-
ter adjustment. To make it convenient for users to construct a real
multimedia retrieval system, we also provide a framework with
an interface API between retrieval stages. Figure 2 illustrates our
multimedia retrieval evaluation framework, of which we describe
the features in the following.
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• Framework: The framework includes the computation mod-
ules for all the stages in the workflow and the data transfer
interfaces between the stages. Each algorithm module can be
replaced with another one in the same stage. The intermediate
result of an algorithm can be transformed into a format that
can be processed by the next stage through the API interface.

• Input Sets: In our current design, we assemble three input
sets: small, medium (standard) and large. The small input set is
provided by Mikolajczyk [40] that contains 48 images and has
been widely used in various multimedia retrieval applications.
The medium data size is the Oxford Building dataset [41]
with thousands of images. For large size input, we collect
twenty thousands of images of various categories from the
Internet. Furthermore, users can generate new input set with
the provided automation tool.

• Multiple Versions: We provide three versions for each chosen
algorithm: sequential version, multi-threaded version and map-
reduce version. All versions are implemented in C/C++ under
Linux environment. The multi-threaded version is implement-
ed based on Linux POSIX API and map-reduce version is
based on Apache Hadoop MapReduce framework. The paral-
lelism granularity is at image-level in this implementation.

• Automation Tools: While evaluating their systems, users may
want to generate their own input data for the algorithms and
prefer adjusting the parameters or thresholds in the algorithms.
To ease the burden on the users, we provide corresponding
automation tools for generating input data and adjusting pa-
rameters for the algorithms.
Putting it together, it is fairly flexible for the users to construct

an evaluation framework and satisfy their varied needs in inputs,
control parameters or execution environments. For example, the
users can select different versions of an algorithm for their
preferred evaluations, such as the parallel version for multi-core
design or the Hadoop version for large-scale datacenter envi-
ronment. They can also adjust parameters or generate their own
input. Furthermore, with the provided framework and interface,
it is fairly easy for the users to construct a real multimedia
retrieval system to evaluate the overall performance or a special-
purpose multimedia retrieval applications running in a different
environment. Even after the system is constructed, it is also easier
for the users to adjust parameters in the system with the interface
and the automation tools provided in our framework. They can also
choose to use these algorithms with either higher performance or
more accurate to replace the one in the existing system.

Based on this framework, we have implemented an image
retrieval system, which is mainly based on SURF feature. The
database scale has reached tens of millions images and our image
retrieval system can achieve a throughput of about five-thousand
image queries per second in the feature matching stage on a multi-
core server.

5.2 Experimental Methodology

In this section, we explain the methodologies used for our
architectural analysis including measurement metrics, tools and
experimental setup.

5.2.1 Measurement Metrics and Tools

For architectural characteristic analysis, we use Intel VTune [42]
which enables hardware-based sampling by utilizing processor
performance counters. We collect the following metrics through

VTune: execution time breakdown, L1 I-cache/L2 instruction
misses, IPC (Instruction per Cycle), MPC (Memory Access per
Cycle), L2 cache hit rate (data access) and off-chip bandwidth.
For the execution time breakdown, we classify the execution time
into commit cycle and stall cycle, which indicate whether at least
one instruction is committed or not during one cycle. We also
profile the memory cycles in order to expose the impact of memory
access in a program. Here the memory cycles are computed as
the sum of off-core requests outstanding cycles and DTLB miss
duration. We note that memory cycles computed in this way is an
approximate value because stalls caused by memory accesses will
be overlapped in the pipeline execution. This is also the reason that
why we do not take L1/L2 cache access time into consideration
since we assume that they are already entirely overlapped.

To gain more architectural insights at the chip level, we further
evaluate several factors, which will influence transistor resource
allocation among different hardware components, such as proces-
sor core and last level cache (LLC). In our current evaluation, the
factors include computation intensity, LLC cache misses and load
balance. To measure computation intensity, we deploy a metric
that indicates how many instructions are committed over a byte
of input data, called Instructions per Byte (IPB)2. It measures
the computational resources needed when processing unit size
input. To collect the cache misses of LLC, Cachegrind in Valgrind
Tool Suite [43] is used to do cache profiling for cache sensitivity
analysis. It performs detailed simulation of caches and identifies
cache misses. We use Cachegrind to get the number of last-level
cache (LLC) misses per 1000 instructions in different LLC size
configurations. For load balance, the Coefficient of Variations
(CoV) of the execution time among different threads is used to
indicate the level of load imbalance in the system.

5.2.2 Statistical Methods

We employ Principle Component Analysis(PCA) to calculate
the data variance through reducing high-dimensional data into a
low-dimensional form. Raw data are normalized before PCA is
applied to generate a low-dimensional format. To compare the
similarity among the programs,Cluster Analysisis employed to
group the programs based on the PCA data. The intuition is
to cluster programs with similar characteristics into the same
category. In our current implementation, we use Matlab to perform
PCA transformation and SimPoint [44] to do K-means clustering.

5.2.3 Experimental Setup

Our experimental environment includes a 3.4 GHz 4-core Intel i7
system with 8GB main memory. Each core employs 4-wide out-
of-order execution with a three-level cache hierarchy. L1 and L2
cache are private to each core and their size are 32KB (split L1
I/D) and 256KB respectively. LLC (L3) reaches 8MB which is
shared among all cores. The system runs Linux 2.6.32 kernel with
GCC compiler (GNU C/C++ Compiler) 4.3.2 with -O2 option. For
the load balance analysis, we use a 1.87 GHz 16-core Intel Xeon
system with 24GB 1333MHz main memory to run the parallel
version. The input set for feature extraction applications, except
HOG, is provided by Mikolajczyk [40], which have been widely
used as a standard dataset to evaluate different feature extraction

2. The notion of Instructions per Byte relates to the traditional Bytes per
Flop or Bytes/FLOP ratio in the High Performance Computing (HPC) field.
We generalize FLOPs to Instructions so that the less contribution of floating-
point operations in multimedia retrieval applications (Section 4 and 6) is taken
into account.
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algorithms. We use the INRIA Person Dataset [45] for HOG since
it specializes in human detection. For feature matching and spatial
verification algorithms, we use feature points extracted from the
Oxford Building dataset [41], which is often adopted to evaluate
retrieval systems.

6 CHARACTERISTIC ANALYSIS

In this section, we first compare the multimedia retrieval al-
gorithms with traditional multimedia benchmarks and study the
sensitivity to input size of these algorithms. Then we analyze the
architectural characteristics of multimedia retrieval algorithms at
core level, chip level and out-of-chip level. Furthermore, we give
some insights into architecture design and system evaluation for
these multimedia retrieval algorithms.

6.1 Application Level Characteristics

In this section, we compare the architectural characteristics of mul-
timedia retrieval algorithms with traditional multimedia bench-
marks and study the sensitivity to input size. The following
evaluations are based on sequential version of algorithms if not
mentioned specifically.

6.1.1 Comparison to Traditional MM Benchmarks
First, we compare the similarity between the algorithms in MMR-
Bench and traditional multimedia applications. Since only feature
extraction algorithms use images or frames as the input, we only
compare them with traditional ones. For traditional multimedia al-
gorithms, we adopt programs in ALPBench [11], which covers the
traditional multimedia algorithms, such as video and image pro-
cessing applications. We use 29 architecture-independent metrics
used in [46], which include instruction mix, branch information,
dependence distance, locality metrics, and generate the PCA data.
Based on the PCA data, we group the programs with clustering
analysis. The clustering results are shown in Table 2.

TABLE 2: Clustering results.

Cluster NO. Program

Cluster 0 MPGdec, Sphinx, FaceRec (Train)

FaceRec (Recognize), RayTrace, MSER

Cluster 1 MPGenc

Cluster 2 SIFT, HOG

Cluster 3 SURF

As the data shows, the characteristics of feature extraction
algorithms are different from those of traditional multimedia
ones. SIFT, SURF, and HOG are clustered into different groups
from traditional multimedia programs. Furthermore, almost all
the programs in ALPBench are clustered into the same group,
which means that they have similar behavior based on the overall
architectural characteristics. To see which characteristics lead to
the difference, we further study the characteristics of their branch,
ILP and data locality.

Note that PCA results have decreasing variance, with the first
principle component (PC) containing the most information and
the last one containing the least information. Here we retain top
two PCs containing more than 90% information. In Figure 3, PC1
measures taken branch information, i.e., a more positive value
along PC1 indicates higher branch taken rate and PC2 reflects
forward branch information, i.e., a more positive value along PC2
means higher forward branch rate. For ILP data shown in Figure 4,
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higher PC1 indicates higher percentage of dependence distance
between 2 to 8 while higher PC2 indicates higher percentage
of dependence distance equal to 1. Higher percentage of short
dependence distance may imply lower potential ILP in a program.
For locality data shown in Figure 5, higher PC1 indicates lower
temporal locality. Lower PC2 indicates more benefit from larger
cache line size. We observe that SURF has notably different
characteristics in branch and ILP when compared to others. As the
locality data shows, both SIFT and HOG are positioned in higher
PC1 far from than others, which means they have much worse
temporal data locality. Above three characteristics are the major
factors that lead to the difference between the characteristics of
feature extraction algorithms and those of traditional multimedia
programs.

Insights: From the analysis above, we can conclude that the
feature extraction algorithms have different characteristics from
traditional multimedia benchmarks in many significant architec-
tural aspects.

6.1.2 Input Sensitivity Analysis
The input size has great influence on the execution time of
an application. When the application is used as the input of
a simulation, especial full-system multi-core simulation, a large
input may lead to too long simulation time to complete. However,
if architecture characteristics of an application do not depend on
the input size, a small input size would be enough, which can save
a lot of evaluation time. To provide some advices on MMRBench-
based evaluation, we measure the input sensitivity in this section.

To evaluate the input sensitivity, we collect the 29-dimensional
architecture-independent metrics for all algorithms in MMRBench
under the input size from 1MB to 20MB. We then analyze them
through PCA and clustering. The results are shown in Figure 6
and Table 3. An application is assigned as an invariant type if
its metrics gathered under different input sizes are clustered into
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the same group. A sensitive type means these metrics are totally
clustered into different groups along with input changes. If the
metrics of several neighboring input sizes are grouped into the
same cluster, the application exhibits moderate change.
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TABLE 3: Input sensitivity.

Type Application

Invariant SURF, SIFT, MSER, HOG

Moderate KD-Tree(T), LSH(T), VOC-Tree(T)

VOC-Tree(Q), RANSAC

Sensitive KD-Tree(Q), LSH(Q)

As the data shows, feature extraction algorithms exhibit in-
variant behavior with different input size. This is because they
are image-based and process image one by one. Thus, their char-
acteristics will change little when input size scales up. Besides,
the other algorithms are sensitive to the input size. Through
checking the data, we find data locality contribute the most of the
changes. Especially for KD-Tree (Query) and LSH (Query), they
are most sensitive because their irregular data access pattern will
be greatly influenced when the input size changes. For example,
KD-Tree (Query) searches each point through a large tree and
then randomly accesses a logged index array whose size is equal
to the number of points trained to build the tree. When the input
size increases, more part of the tree and the index array will be
accessed in a data-dependent way, which leads to worse locality.

Insights: Based on our analysis, a small input size is sufficient
for feature extraction algorithms for evaluation. In contrast, the
factors of input size should not be ignored when using the other
algorithms for evaluation.

6.2 Core Level Analysis

As the basic component, the complexity of a processor core
has a great influence on performance, power and chip size. In
this section, we analyze the core level characteristics including
pipeline execution efficiency, instruction fetch efficiency, ILP and
MLP, and the sensitivity of floating pointing units.

6.2.1 Pipeline Execution Efficiency

The execution cycles of a pipeline can be classified into com-
mit cycles and stall ones. To check the pipeline efficiency, we
collect the data of the percentage of stall cycles out of total
execution cycles and the stall cycles caused by long latency
memory accesses3. To make a comparison with traditional and

3. As mentioned in section 5.2.1, these memory cycles are the results of
an approximate measurement and may be overlapped by pipeline execution.
Therefore, the memory cycles may be higher than the stalled ones.
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cloud workloads, we also test PARSEC [17], ALPBench [11] and
Scale-Out workloads [9].

As the results in Figure 7 show, multimedia retrieval workloads
suffer from high stalls (near 40%). It is similar to PARSEC
and scale-out workloads but higher than traditional multimedia
workloads (ALPBench). We find that the stall cycles occupy
a higher percentage in MMRBench than traditional multimedia
benchmarks, and memory stalls are not as severe as other bench-
mark suites. Although some multimedia retrieval workloads (e.g.,
MSER) have even higher memory cycles, most of them (e.g., SIFT
and RANSAC) are mainly stalled due to computation process
instead of memory operations.

Since branch misprediction can cause costly pipeline flush, we
analyze the branch behavior of these multimedia retrieval work-
loads with three prediction strategies. The strategies include one-
bit, two-bit saturating counter, and two-level adaptive predictor.
The two-level adaptive predictor records the history of the last
8 occurrences of a branch (local history table) and has a global
history table of 256 entries.

The results are shown in Figure 8. As the data shows, most of
multimedia retrieval algorithms have higher branch misprediction
rate (more than 20%) under simple prediction strategy, such
as one-bit and two-bit saturating counters, due to their special
workflow. A high misprediction rate also exists in computation-
intensive benchmarks like PARSEC and traditional multimedia
workloads like ALPBench. In SURF, SIFT and HOG, a majority
of computation happens in generating descriptors, which consists
of many multi-level yet short loops (loop boundaries relate to the
boundaries of sub-blocks in an image). For MSER, KD-Tree,
VOC-Tree and RANSAC algorithms, there are a lot of data-
dependent conditional branches, such as path selection in tree
traversal or condition check of neighbor node status. These data-
dependent branches make it challenging to achieve a better branch
prediction. The only exception is LSH with low misprediction
rate in both training and query stage. This is because its main
loop traverses points sequentially and few conditional branches
take place. In contrast, the prediction accuracy improves greatly
with a two-level predictor. Yet, a further improvement would be
necessary, since many of them still have over 10% misprediction
rate.

Insights: High branch misprediction rate indicates that high
stalls found in multimedia retrieval workloads are caused by
misprediction penalty besides long-latency memory access. To
mitigate this issue, a core design should embed sophisticated
branch prediction mechanism, which can predict complex branch
patterns in these workloads more efficiently.



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533606, IEEE
Transactions on Parallel and Distributed Systems

8

0 %

10 %

20 %

30 %

40 %

50 %

60 %

SIFT
SURF

M
SER

HOG
KD-Tree(T)

KD-Tree(Q)

LSH(T)

LSH(Q)

Voc-Tree(T)

Voc-Tree(Q)

RANSAC

M
M

RBench
AVG

PARSEC
AVG

ALPBenchAVG

M
is

pr
ed

ic
tio

n 
R

at
e

one-bit two-bit two-level

0 %

10 %

20 %

30 %

40 %

50 %

60 %

SIFT
SURF

M
SER

HOG
KD-Tree(T)

KD-Tree(Q)

LSH(T)

LSH(Q)

Voc-Tree(T)

Voc-Tree(Q)

RANSAC

M
M

RBench
AVG

PARSEC
AVG

ALPBenchAVG

M
is

pr
ed

ic
tio

n 
R

at
e

one-bit two-bit two-level

Fig. 8: Branch misprediction rate with one-bit, two-bit saturating
counter, and two-level adaptive predictor.
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6.2.2 Instruction Fetch Efficiency

Instruction fetch misses can also influence the efficiency of
pipeline execution. To investigate instruction fetch efficiency, we
collect the data of misses when fetching instructions from L1-I
cache and L2 cache. As the results in Figure 9 show, most of
multimedia retrieval workloads have lower L1 instruction miss rate
than other three workloads. Even the highest one (VOC-Tree(Q))
is still lower than the max one in the PARSEC benchmark. All
multimedia retrieval workloads rarely suffered from L2 instruction
misses, which is very costly due to high latency when fetching in-
structions from it. In contrast, especially for scale-out workloads,
their instruction working sets considerably exceed the L1-I cache
capacity, even exceed the L2 cache capacity [9]. We note that
this is mainly because most of the execution logic in multimedia
retrieval workloads locates in several parts of core code sections,
which fit well in L1 instruction cache.

Insights: The instruction working set of multimedia retrieval
workloads fit well in current modern processor architecture, which
is unlike some scale-out workloads [9]. It means we do not need
to further increase the cache size to capture the whole instruction
working set, which can save the on-chip real-estate and make the
architecture design more power efficient.

6.2.3 ILP and MLP

In order to perform more operations simultaneously per cycle,
modern processor architectures generally employ out-of-order
technique to execute independent instructions in parallel. More
than one instruction can be fetched, decoded and committed in one
cycle. This strategy can speedup program’s execution theoretically
as long as less instruction dependency exists. In Figure 10, we
present the IPC values of multimedia retrieval workloads as well
as those of PARSEC and ALPBench.

To evaluate the impact of memory stalls, we also provide
the IPC without memory stall cycles. We observe that almost all
multimedia retrieval workloads behave low IPC value (near 1.0).
Even the highest one (VOC-Tree(T)) is still relatively low, with
an IPC value 2.0 out of max value 4.0 (a popular configuration
in modern processors). Furthermore, to exclude the memory stall
cycles in the pipeline, we deduct the memory stalls from the
execution pipeline, and then calculate IPC without memory stalls.
The results show that the IPC without memory stalls (2.7) is higher
than the IPC of the whole application; yet the average value is still
lower than PARSEC, ALPBench, and scale-out workloads. This
indicates that the instruction-level parallelism of multimedia re-
trieval applications is lower than traditional benchmarks, therefore
the instruction issue window of pipeline could be scaled down.
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Fig. 10: Instruction committed per cycle in program. In orderto
evaluate the impact of memory stalls, we also provide the IPC
without memory stall cycles, as shown by the black column in the
figure.

Similar to exploiting ILP, out-of-order execution also enables
memory-level parallelism (MLP) by performing multiple indepen-
dent memory accesses in a time. This level of parallelism is also
important to many programs because it can effectively hide long-
latency memory accesses by overlapping them. To measure the
potential MLP that a program can reach, we count the total number
of last-level cache access and off-chip memory access (MPC) in
these workloads. This is because LLC and off-chip memory access
have much longer latency which should be hidden by MLP. The
higher the MPC, the more beneficial the MLP can gain. The results
are shown in Figure 11. As such data shows, most of the multime-
dia retrieval workloads have lower MPC than parallel, scale-out
and traditional multimedia workloads. This implies that they have
lower potential MLP. On the other hand, we note that MSER and
KD-Tree(Q/T) have very high MPC, which indicates they are more
likely to achieve high MLP. There are two reasons for the high
MPC in KD-Tree training and query. First, both the training and
query phase of KD-Tree consist of large portions of frequent and
irregular tree traversal and node accesses. Both of those operations
would incur irregular and intensive memory accesses. Second, in
training phase, multiple randomized trees are created by selecting
the top N dimensions with the greatest variance to construct a KD-
Tree forest, which makes the memory accesses more scattered than
VocTree searching which only contains a single tree.

On the other hand, the cache misses typically come into
bursts thus the overall MPC cannot reflect the potential benefit
that could be achieved by overlapping the memory accesses. In
order to evaluate the impact of memory-level parallelism, we
calculate the memory stall cycles divided by the number of LLC
misses, as shown in Figure 12. The lower the ratio, the more
latency is hidden by memory-level parallelism. The average value
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Fig. 11: Memory access per cycle in program.

is comparatively high since the core frequency is nearly three
times as high as memory frequency. From the results we can
observe that the average value in MMRBench is lower than those
in PARSEC, ALPBench, and scale-out workloads, which implies
the LLC miss penalty of multimedia retrieval algorithms can be
effectively hidden by memory-level parallelism.
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Fig. 12: Memory stall cycles divided by the number of LLC
misses. The lower the value, the higher memory-level parallelism.

Insights: Both of ILP and MLP techniques need hardware
support including large instruction window, multiple decoders
and execution units, large load-store queue and reorder buffer.
The above results show that multimedia retrieval workloads have
comparatively lower instruction-level parallelism than traditional
benchmarks. Therefore, the instruction issue window of pipeline
could be scaled down to simplify the CPU core structure. The
overall MLP is lower than traditional benchmarks yet overlapping
memory access operations is still an effective technique to hide the
cache miss penalty. Here we do not consider much about MSER
and KD-Tree(T/Q) since they are not as popular as others in real
applications as mentioned in Section 4.2.

6.2.4 Sensitivity of Floating Point Operation

Floating point operations (FLOPs) exist in various algorithms.
However, Floating Point Unit (FPU) is not only complex but also
power-hungry compared to fixed-point units. Therefore, if FLOPs
can be replaced by fixed-point operations, a hardware design can
be simplified and more power-efficient. To analyze FLOP sensitiv-
ity, we first collect the percentage of FLOPs in each algorithm. As
the data in Figure 13 shows, KD-Tree (Q) and VOC-Tree (Q)
virtually do not have any FLOPs, while others do. The result
demonstrates that MMRBench has lower FLOP percentage than
other benchmark suites like PARSEC and ALPBench, indicating
that the FLOP intensity of MMRBench is lower.

To evaluate the FLOPs sensitivity of these algorithms, we
convert all the FLOPs in each algorithm to fixed point operations:
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Fig. 13: Floating-point instruction ratio.

N bits are used to indicate the fraction part of the original float
point number, and (32-N) bits are used to indicate the integral
part. The differences between the results of fixed point version
and those of float point versions are then used to evaluate the
impact. We apply two metrics in the evaluation. The first one
is error rate (ER), which is the deviation percentage between the
outputs of two implementations of an algorithm. The second one is
error impact rate (EIR), which indicates the difference in the final
matching results between two implementations of an algorithm.
Note that matching points will have to be verified in the Spatial
Verification stage for the final results (Section 4).

TABLE 4: Floating-point operation sensitivity.
Application ER Best Fractional Bits EIR

SIFT 1.78% 22 0

SURF 2.28% 13 0

MSER 0% 0 0

HOG 0% 15 0

KD-Tree 3.44% 0 0

VOC-Tree 0% 0 0

LSH 0.01% 19 0

RANSAC 1.64% 7 0

We test differentNs and evaluate their impact. We only
present the best results (lowest error rate) with certain N as
shown in Table 4 for brevity. We observe that the deviation of
such a transformation is very small for these multimedia retrieval
algorithms and the largest error rate is less than 4%. Indeed, it is
more important to obtain acceptable final results than intermediate
ones for multimedia retrieval applications. Interestingly, there
exists virtually no difference (zeros in Table 4) between these
two implementations in the EIR results. Therefore, the deviation
from fixed-point transformation can be mostly ignored for these
applications.

The reason for the low FLOP sensitivity is that the calculation
result of floating-point number of multimedia retrieval algorithms
is mostly used for approximate comparison. For example, in
VocTree training and query, each extracted feature is represented
by a high-dimensional vector. A large portion of floating point
operations are included in the calculation of Euclidean distance
between the feature vector and descendent nodes of the current
node. However, the program only needs to find the descendent
node with the smallest distance, thus most floating-point results
are only intermediate and their precision has little impact on
the final result. Other algorithms in feature matching stage also
have similar characteristics. Therefore, the precision of FLOPs
in MMRBench has limited impact on the final matching result.
However, such characteristics do not exist in applications where
FLOP precision influences the validity of final results to a large
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degree, such as the MPEG encoding and decoding algorithms in
ALPBench.

Insights: FPU is more complex than fixed-point ALU when
considering area requirement and power consumption. In many
scientific-related applications, FPU is very important since the
precision of FLOPs is vital to their final results. In multimedia
retrieval workloads, the average percentage of FLOPs is lower
than other benchmarks, and more than half of the algorithms have
extremely low (<5%) percentage of FLOPs. Besides, the precision
of FLOP has little impact on the final result. Therefore, when
designing hardware for multimedia retrieval applications, FPUs
can be partially replaced by fixed-point units to achieve more cost
efficiency and make the core structures even simpler.

6.3 Chip Level Analysis

To understand the characteristics of chip level, we analyze dif-
ferent factors which will influence the resource allocation among
different hardware components, such as core and LLC. We first
analyze computation intensity of these multimedia retrieval work-
loads. Moreover, we also analyze the cache behavior and the CoV
of execution time among different threads when the multi-threaded
versions are executed. Such analysis will provide some insights
into what should be paid more attention to when designing a chip
for those multimedia retrieval algorithms. Note that, we do not
show the results of computation intensity and load balance for
scale-out workloads here. The major reason is most of scale-out
applications are service-oriented programs. It is difficult to define
input size and compare the CoV of execution time of different
threads for them when they process client requests.

6.3.1 Computation Intensity
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Fig. 14: Computation intensity over input size. IPB stands for
Instructions per Byte.

To evaluate the computation intensity, We use IPB as the metric
as discussed in Section 5. The higher IPB, the more computation
resource an algorithm may need to process the input. We collect
the IPB results of each algorithm in MMRBench and those in
PARSEC and ALPBench. The data in Figure 14 shows that the
average IPB of MMRBench is higher, i.e., more computational
intensive, than those of PARSEC and ALPBench.

The reason behind such results is because these multimedia
retrieval algorithms are designed to guarantee certain retrieval
accuracy. To achieve such a goal, some complex transformations,
such as resizing or cropping of the input images or frames, are
included in these algorithms. Moreover, they generally extract
hundreds of feature points to represent an image or a video frame.
Each feature point will be described as a multi-dimensional vector,
e.g., 64 or 128. In the feature matching stage, each point needs to

traverse to the backend database. The algorithms then determine
whether there are matching pints through computing the distance
(usually Euclidean distance).

Insights: These multimedia retrieval algorithms are facing a
great challenge in real-time analysis especially with the explosion
of image and video data in Cloud or Internet computing envi-
ronment. For example, only about three images can be processed
through the sequential version of SIFT or SURF on an Intel i7
processor according to our experiment. Thus, special accelerating
scheme, such as more computational cores, should be explored for
these multimedia retrieval algorithms.

6.3.2 Cache Sensitivity
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Figure 15 shows the L2 hit rate in these workloads. We observe
that most of multimedia retrieval workloads have similar behavior
in L2 cache data accesses (hit rate>= 50%) when compared to
PARSEC and higher L2 hit rate than ALPBench and scale-out
workloads. This means modestly-sized L2 cache mitigates most
of the L1 cache miss. Figure 16 shows the LLC misses per 1000
instruction for these algorithms in different LLC sizes (from 1/32
MB to 32 MB). For most of these algorithms, while the LLC size
is increasing, the number of LLC misses will start to decrease
rapidly, and finally reach a relative stable level. Such a trend
suggests the existence of working set. When the LLC changes
from a size smaller than working set to a size larger than working
set, the number of LLC misses will decrease a lot suddenly and
will not decrease significantly with a even larger LLC, since the
LLC has been already enough to accommodate the working set.
We can see most of these algorithms have relative small working
sets. When we shrink the LLC size to 1/8 MB, most of these
workloads still have low LLC misses.

On the other hand, the LLC miss rate of KD-Tree(T/Q) and
MSER keeps decreasing with the expansion of LLC for their dense
and irregular memory accesses (as shown in Figure 11). Therefore,
for such algorithms, larger cache size will be beneficial. On the
other hand, if the chip area is the major consideration and KD-
tree matching is not an essential part, we can use the design with
modest LLC cache size.

Insights: Modern processor architecture employs deep cache
hierarchy to bring required data closer to core. Higher L2 hit
rate in multimedia retrieval workloads indicates modestly-sized
L2 cache (256KB) plays a good role in enhancing overall per-
formance. On the other hand, a larger LLC consumes more area
(LLC is the largest structure on chip) and power, but gives little
improvement to most multimedia retrieval workloads due to their
small working set. Considering LLC is shared among cores, small
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Fig. 16: Cache sensitivity

LLC size requirement means more cores can share one LLC on a
chip without side effect of high LLC miss. A small LLC size also
brings the benefit of short data access latency.

6.3.3 Load Balance

Load balance is a very important issue for the performance of
parallel applications executed on a multi-core architecture. To
obtain insights into parallel optimization and system design of
these multimedia retrieval algorithms, we evaluate their load
balance characteristics based on the parallel version, which exploit
the image-level parallelism in these algorithms. Input images are
evenly distributed among threads during execution.

We collect the execution time of each thread with different
thread counts, e.g., 4, 8 and 16. Each thread is executed on a
separate processor core to minimize the impact from intra-core
resource contention. We use Coefficient of Variations (CoV) of
the execution time from individual threads to indicate the level of
load imbalance in the system. The results are shown in Figure 17.
It shows that, except MSER and HOG, all other algorithms show
obvious imbalance (CoV greater than 10%) among threads as
number of cores increases. As the data show, load imbalance
in multimedia retrieval algorithms is more severe than that of
PARSEC and ALPBench.
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Fig. 17: Variations of per-thread execution time as an indicator of
load imbalance.
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Fig. 18: Imbalance at image level.

The reason behind such a result is that fundamental multimedia
retrieval algorithms are all feature point based. In other words, the
required computation in each thread is proportional to the number
of feature points processed by it. Figure 18 shows the number of
feature points detected in each image in our small image set. It is
obvious that different images have different point numbers. Some
images have a larger number of feature points, while the others
have a smaller one, which intuitively depends on the information
in the image. It indicates that the various number of feature points
at image level leads to different workloads for the threads to
work on, hence different execution time. Moreover, the imbalance
workload also exists at block level. To illustrate this problem, we
evenly divide a 640*480 image into 4*4 blocks and collect the
number of feature points detected in each block. The results are
shown in Figure 19. It turns out the number of feature points
detected in each block is also different. Since the feature point
count varies at both image and block level, it is challenging to
achieve a statically balanced parallel design for these algorithms.
Therefore, when mapping these algorithms to parallel hardware, it
should pay more attention for dynamic load balance.

We expect approaches along the lines of Adaptive Mesh
Refinement (AMR) can help reduce load imbalance in this context.
System work and architectural support are also interesting to
investigate, when extending AMR or others alike to multimedia
retrieval applications. We sketch one preliminary approach in the
following.
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Fig. 19: Imbalance at block level.

As described above, the workloads are imbalanced at both
image and block level. Therefore, it is difficult to exploit coarse-
grained parallelism at these two levels to achieve better parallel
performance. Moreover, all the three stages in multimedia retrieval
applications are feature points based and the required computation
of each algorithm is proportional to the number of feature points
extracted from an input image. Therefore, we can exploit a fine-
grained feature point level parallelism and design a scheduling
scheme to allocate resource based on the number of feature points
in input images. Based on this insight, we design a dynamic
fine-grained pipeline parallelism for these multimedia retrieval
algorithms. We use SURF and SIFT as a case study to verify
the effectiveness of this approach.

We first partition the algorithms into two stages. The first stage
is used to detect how many feature points in an input image. The
second is to describe each point into a high-dimensional vector.
After partitioning these two algorithms into a two stage pipeline,
the description stage is further parallelized through exploiting
the feature point level parallelism. The computation resource is
then dynamically allocated to match the feature point counts
in the images and achieve better load balance. To illustrate the
effectiveness of such a design, we compare the results with those
with image- and block-level parallelism on a 16-core machine. As
the data in Figure 20 show, such a fine-grained dynamic scheduler
outperformance the other two ones.
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Fig. 20: Parallel performance on a 16-core machine with image-
level parallelism (Image-level), block-level parallelism (Block-
level) and our proposed fine-grained adaptive scheduling (FG-
scheduling).

Insights: These multimedia retrieval algorithms face a great
challenge on load balance. Fine-grained parallelism at feature
point level should be exploited in multimedia retrieval workloads.
In addition, a certain amount of dynamic control should be fused
to allocate the resource more efficiently when designing system
and architecture, such as hardware thread scheduling mechanism.
Considering such inherent thread-level parallelism in these work-

loads, they would be well-suited by architectures offering multiple
cores on one chip.

6.4 Inter-Chip Level Analysis
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Fig. 21: off-chip memory bandwidth.

Although the off-chip memory access latency has not been
improved a lot, the off-chip memory bandwidth has a great
progress. For example, the Intel core-i7 processor can achieve
peak bandwidth at 21GB/s with two independent memory chan-
nels. Architecture designers hope that such a large bandwidth can
help improve programs which have great pressure on memory
bus. We show the off-chip memory bandwidth of these workloads
in Figure 21. As the results show, most of multimedia retrieval
workloads have very low off-chip bandwidth utilization compared
to parallel, scale-out and traditional multimedia workloads. We
note the main reason is due to its high computation intensity as
mentioned in Section 6.3. Multimedia retrieval workloads require
more computation on each data unit and also cause complex data
dependencies.

Insights: Large memory bandwidth requires large area mem-
ory controllers and high power consumption by multiple memory
bus. But our experiment shows that multimedia retrieval workload-
s do not need such a large off-chip bandwidth. Thus we can reduce
the number of memory channel and make memory controllers
simpler to make processor more cost-effective.

6.5 Architectural Insights

We have analyzed the characteristics of these representative multi-
media retrieval workloads. Based on this analysis, we summarize
some insights to architecture design.
• Application Level Design: (1) Feature extraction algorithms

are different from traditional multimedia benchmarks in many
significant architectural aspects; (2) A small input size is
sufficient for feature extraction algorithms for evaluation while
the size of input is still an important factor when evaluating
other algorithms.

• Core Level Design:(1) A small instruction cache is sufficient
for catching entire instruction working set and sophisticat-
ed branch prediction mechanism is necessary to deal with
complex branch pattern in these workloads; (2) The ILP and
MLP is comparatively low than traditional benchmarks, thus
a simpler core design could save the area and energy; (3)
Floating-point units can be partially replaced with fixed-point
units to make more cores on a die without losing performance
and accuracy.

• Chip Level Design: (1) A modestly sized L2 cache acts
efficiently in data fetching and we can reduce last-level cache
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size to reduce area and power consumptions; (2) Due to the
abundant thread-level parallelism in these algorithms at image-
level, sub-block-level and feature-point-level, feature-point-
level parallelism is a critical optimization point for them; (3)
load imbalance is also a key issue to pay attention to and
fine-grained feature-point level parallelism can be exploited
for great performance improvement, together with dynamic
resource scheduling scheme or architectural support.

• Inter-Chip Level Design: Off-chip memory bandwidth can
be scaled down since low bandwidth utilization found in these
workloads. This can further improve the cost effectiveness of
processors designed for multimedia retrieval workloads.

7 CONCLUSIONS AND FUTURE WORK

We have assembled and designed a multimedia retrieval bench-
marking framework (MMRBench) for architecture design and
system evaluation. In MMRBench, we provide multiple algorithm
versions, supporting tools and a flexible framework. The design
makes it easier for an end user to generate customized benchmark
suites, or even a complete multimedia retrieval system, for various
system requirements.

Furthermore, we analyze the architectural characteristics of
these algorithms and offer insights to architecture design for
multimedia retrieval applications, including core level, chip level
and inter-chip level. We also sketch approaches to tackling some
of the challenges.

Currently, many related algorithms are emerging, such as deep
learning algorithms. We plan to survey and extend such algorithms
in MMRBench in our future work. Moreover, we will also extend
GPU version for these algorithms in MMRBench.

ACKNOWLEDGMENTS

We are grateful to supports from the National High Tech-
nology Research and Development Program of China (No.
2015AA015303), and the National Natural Science Foundation of
China (No. 61370081). We would like to thank all our anonymous
reviewers for valuable feedback on the paper. Weihua Zhang is the
corresponding author.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2014 -
2019,” 2015.

[2] “300+ hours of video uploaded to youtube every minute,” 2015.
[Online]. Available: http://www.reelseo.com/youtube-300-hours/

[3] “Facebook stores 240 billion photos and adds 350 million more
a day,” 2013. [Online]. Available: http://www.businessinsider.com/
facebook-stores-240-billion-photos-2013-1

[4] B. Yang, T. Mei, X.-S. Hua, L. Yang, S.-Q. Yang, and M. Li, “On-
line video recommendation based on multimodal fusion and relevance
feedback,”ACM International Conference on Image and Video Retrieval
(CIVR), pp. 73–80, 2007.

[5] Y. Gao, J. Tang, R. Hong, Q. Dai, T.-S. Chua, and R. Jain, “W2GO: a
travel guidance system by automatic landmark ranking,”ACM Interna-
tional Conference on Multimedia (ACM MM), pp. 123–132, 2010.

[6] A. Joly, C. Frelicot, and O. Buisson, “Robust Content-Based Video
Copy Identification in a Large Reference Database ,”ACM International
Conference on Image and Video Retrieval (CIVR), pp. 511–516, 2003.

[7] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust
features,”European Conference on Computer Vision (ECCV), pp. 404–
417, 2006.

[8] J. Bauer, N. Sunderhauf, and P. Protzel, “Comparing Several Imple-
mentations of Two Recently Published Feature Detectors,”International
Conference on Intelligent and Autonomous Systems (IAS), 2007.

[9] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
Clouds: A Study of Emerging Scale-Out Workloads on Modern Hard-
ware,”Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2012.

[10] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench bench-
mark suite: Characterization of the MapReduce-based data analysis,”
IEEE International Conference on Data Engineering (ICDE), 2010.

[11] M. lap Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and E. Debes, “The
ALPBench benchmark suite for complex multimedia applications,”IEEE
International Symposium on Workload Characterization (IISWC), 2005.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,”IEEE International Workshop on Workload Charac-
terization (WWC), 2001.

[13] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search using
mobile cores: quantifying and mitigating the price of efficiency ,”
International Symposium on Computer Architecture (ISCA), 2010.

[14] Y. H. Wan, Q. L. Yuan, S. M. Ji, L. M. He, and Y. L. Wang, “A Survey
of the Image Copy Detection,”IEEE Conference on Cybernetics and
Intelligent Systems (CIS), pp. 738–743, 2008.

[15] “The Standard Performance Evaluation Corporation.” [Online].
Available: http://www.spec.org

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,”Inter-
national Symposium on Computer Architecture (ISCA), pp. 24–36, 1995.

[17] C. Bienia and K. Li, “PARSEC 2.0: A New Benchmark Suite for Chip-
Multiprocessors,”Annual Workshop on Modeling, Benchmarking and
Simulation (MoBS), June 2009.

[18] “Illinois Microarchitecture.” [Online]. Available: http://impact.crhc.
illinois.edu/parboil.php

[19] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-
longie, and M. B. Taylor, “SD-VBS: The San Diego Vision Benchmark
Suite,” IEEE International Symposium on Workload Characterization
(IISWC), 2009.

[20] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A Mobile
Computer Vision Benchmarking Suite,”IEEE International Symposium
on Workload Characterization (IISWC), 2011.

[21] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Ferret: a toolkit
for content-based similarity search of feature-rich data ,”EuroSys, 2006.

[22] N. Tuck and D. M. Tullsen, “Initial Observations of the Simultaneous
Multithreading Pentium 4 Processor ,”Parallel Architectures and Com-
pilation Techniques (PACT), 2003.

[23] N. Hardavellas, I. Pandis, R. Johnson, N. G. Mancheril, A. Ailamaki,
and B. Falsafi, “Database Servers on Chip Multiprocessors: Limitations
and Opportunities,”International Conference on Innovation Database
Research (CIDR), 2007.

[24] D. Nan, X. Wei, J. Xu, X. Haoyu, and S. Zhenya, “CESMTuner: An
auto-tuning framework for the community earth system model,”2014
IEEE Intl Conf on High Performance Computing and Communications
(HPCC), pp. 282–289, 2014.

[25] S. Xu, W. Xue, and H. X. Lin, “Performance modeling and optimization
of sparse matrix-vector multiplication on nvidia cuda platform,”The
Journal of Supercomputing, vol. 63, no. 3, pp. 710–721, 2013.

[26] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, L. Gan, Y. Lu, and X. Zhu, “En-
abling and scaling a global shallow-water atmospheric model on tianhe-
2,” 2014 IEEE 28th International Parallel and Distributed Processing
Symposium (IPDPS), pp. 745–754, 2014.

[27] P. Ranganathan and N. Jouppi, “Enterprise IT Trends and Implications
for Architecture Research ,”High-Performance Computer Architecture
(HPCA), 2005.

[28] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward
Dark Silicon in Servers,”International Symposium on Microarchitecture
(MICRO), 2011.

[29] T. Kgil, A. Saidi, N. Binkert, R. Dreslinski, S. Reinhardt, K. Flautner,
and T. Mudge, “PicoServer: Using 3D Stacking Technology To Enable A
Compact Energy Efficient Chip Multiprocessor,”Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2006.

[30] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and D. Newell,
“Performance, Area and Bandwidth Implications on Large-Scale CMP
Cache Design ,”Workshop on Chip Multiprocessor Memory Systems and
Interconnect (CMP-MSI), 2007.

[31] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server Engineering
Insights for Large-Scale Online Services ,”International Symposium on
Microarchitecture (MICRO), 2010.

[32] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-out



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533606, IEEE
Transactions on Parallel and Distributed Systems

14

processors ,”International Symposium on Computer Architecture (ISCA),
2012.

[33] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision (IJCV), vol. 60, no. 2,
pp. 91–110, 2004.

[34] A. Vedaldi and B. Fulkerson, “Vlfeat: an open and portable library of
computer vision algorithms,”ACM International Conference on Multi-
media (ACM MM), 2010.

[35] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,”IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2005.

[36] D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary
Tree,” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2006.

[37] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,”International Conference on Very Large Data
Bases (VLDB), 1999.

[38] M. Datar and P. Indyk, “Locality-sensitive hashing scheme based on
p-stable distributions,”ACM Symposium on Computational Geometry
(SoCG), 2004.

[39] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,”Communications of the ACM (CACM), 1981.

[40] K. Mikolajczyk, “Local Feature Evaluation Dataset.” [Online]. Available:
http://www.robots.ox.ac.uk/∼vgg/research/affine/

[41] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
Retrieval with Large Vocabularies and Fast Spatial Matching,”IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

[42] “Intel VTune Amplifier XE Performance Profiler.” [Online]. Available:
http://software.intel.com/en-us/intel-vtune-amplifier-xe

[43] “Valgrind.” [Online]. Available: http://valgrind.org/
[44] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically

characterizing large scale program behavior,”Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2002.

[45] “INRIA Person Dataset.” [Online]. Available: http://pascal.inrialpes.fr/
data/human/

[46] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the spec cpu2006 benchmark suite.” ACM, 2007,
pp. 412–423.

Yunping Lu Yunping Lu is now a Ph.D candidate
in the School of Computer Science at Fudan
University. Her research interests are in com-
pilers, computer architecture, parallelization and
systems software.

Xin Wang Xin Wang is now a graduate studen-
t in Software School of Fudan University and
working in the Architecture group of Parallel Pro-
cessing Institute. His work is related to comput-
er architecture, simulation, parallel optimization
and so on.

Weihua Zhang Weihua Zhang received the
Ph.D degree in computer science from Fudan
University in 2007. He is currently an associate
professor of Parallel Processing Institute, Fudan
University. His research interests are in com-
pilers, computer architecture, parallelization and
systems software.

Haibo Chen Haibo Chen received the BSc and
Ph.D degrees in computer science from Fudan
University in 2004 and 2009, respectively. He
is currently a Professor in School of Software,
Shanghai Jiao Tong University, doing research
that improves the performance and dependabili-
ty of computer systems. He is a senior member
of the IEEE and the IEEE Computer Society.
Lu Peng Lu Peng received the Ph.D degree
in Computer Engineering from the University of
Florida in Spring 2005. He is currently an asso-
ciate professor in the Electrical and Computer
Engineering department at Louisiana State Uni-
versity. His research focus on computer architec-
ture, memory hierarchy system, reliability, power
efficiency and other issues in processor design.

Wenyun Zhao Wenyun Zhao received the mas-
ters degree from Fudan University in 1989. He is
a full professor of the School of Computer Sci-
ence at Fudan University. His current research
interests include software reuse, software prod-
uct line, software component, and architecture.


