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Abstract —Multimedia data has become a major data type in the Big Data era. The explosive volume of such data and the increasing
real-time requirement to retrieve useful information from it have put significant pressure in processing such data in a timely fashion.
However, while prior efforts have done in-depth analysis on architectural characteristics of traditional multimedia processing and
text-based retrieval algorithms, there has been no systematic study towards the emerging multimedia retrieval applications. This may
impede the architecture design and system evaluation of these applications.

In this paper, we make the first attempt to construct a multimedia retrieval benchmark suite (MMRBench for short) that can be used to
evaluate architectures and system designs for multimedia retrieval applications. MMRBench covers modern multimedia retrieval
algorithms with different versions (sequential, parallel and distributed). MMRBench also provides a series of flexible interfaces as well
as certain automation tools. With such a flexible design, the algorithms in MMRBench can be used both in individual kernel-level
evaluation and in integration to form a complete multimedia data retrieval infrastructure for full system evaluation.

Furthermore, we use performance counters to analyze a set of architecture characteristics of multimedia retrieval algorithms in
MMRBench, including the characteristics of core level, chip level and inter-chip level. The study shows that micro-architecture design in
current processor is inefficient (both in performance and power) for these multimedia retrieval workloads, especially in core resources
and memory systems. We then derive some insights into the architecture design and system evaluation for such multimedia retrieval
algorithms.

Index Terms —Multimedia Retrieval, Benchmarks, Architectural Characteristics
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1 INTRODUCTION

UR society has entered into thgig Data era, with data to significant pressure on real-time processing. For example,
Ovolume increasing at exponential rate. Among various daBURF [7] is one of the most widely-used image or video retrieval
types, multimedia data, such as images and videos, have becatgerithms [8]. It can only achieve the process speed of a handful
one of the major types. Video data occupies 64% of the custoni@ages or video frames per second on general-purpose processors.
Internet traffic in 2014 and was predicted to increase to an 8084though these applications are becoming more and more popular,
occupation by 2019 [1]. Among them, more than 400-hour worthere are currently no systematic benchmark suites to understand
new videos were uploaded ¥puTubesvery minute in 2015 [2]. their architectural characteristics, which are critical to design
In the meantimeFacebookhosts more than 240 billion of user-and implement optimizing architectures and systems for such
uploaded images [3]. workloads. Most related benchmarks are still text-based [9] [10]

To extract useful information from such data, multimediar target tradition multimedia processing [11] [12].
retrieval applications are emerging to process such multimedia As a first attempt, we design and implement a multimedia re-
data, including video recommendation [4], travel guidance [$lieval benchmark suite (MMRBench) for architecture design and
and content-based TV copyright identification [6]. To guarantesystem evaluation, by selecting representative algorithms in the
retrieval accuracy, typical applications usually extract and utilizaultimedia retrieval fields. We also implement multiple program-
hundreds of high-dimensional features to represent an imagenung versions for these algorithms, such as sequential, parallel and
a video frame. Thus, in contrast to traditional text-based retrie@iktributed versions. To satisfy varied evaluation requirements, we
applications, multimedia retrieval applications are not only mogovide automation tools for adjusting the parameters and gener-
data-intensive but also more computation-intensive, which leating input. Furthermore, we provide a basic framework including
all the major processing stages of multimedia retrieval applications
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In thecore level, the programs have the following characteristicse State-of-the-art techniques: Varied algorithms and tech-
(1) complex branch behavior and small instruction working set, niques may apply to the three aforementioned workload stages.
(2) lower instruction-level parallelism (ILP) and memory-level For example, feature extraction applications may include both
parallelism (MLP), (3) insensitive to floating-point operations; in  global and local feature based algorithms. However, since low
thechip level, they (1) require modestly sized L2 cache which acts precision in matching (more than 30% error rate [14]), global
efficiently in data fetch and relatively small data working set in last feature based algorithms have been rarely used in real appli-
level cache, (2) have abundant thread level parallelism and critical cations. As a result, state-of-the-art algorithms and techniques
imbalance problem; and imter-chip level, they have low off- should be used in system evaluation and characterization.
chip memory bandwidth utilization. Based on the analysis, some Applicable to cloud computing: As cloud and datacenter
insights into architecture design are derived for these algorithms. computing are gaining increasing momentum, the proposed
In summary, this paper makes the following contributions: multimedia retrieval workloads should be able to extend
e Design and implementation of a multimedia retrieval bench- to cloud and datacenter level in computation, storage and
mark suite, including state-of-the-art algorithms, different im- Communication intensity. In addition, varied input sets are
plementation versions, automation tools and a flexible system desirable to show an application’s characteristics at different
framework. Such a design enables the algorithms to be used System scales.
|nd|V|dua||y or combined togetherto form an integrated system Flexible infrastructure: We envision an integrated evaluation
for evaluation. framework with flexible computation kernel modules. As such,
e Detailed analysis on the architectural characteristics of mul- the framework can be applicable to various system designs
timedia retrieval algorithms compared to conventional bench- and experimental environments, e.g., from multi-threading in
mark suites and predominant processor architecture. a multi-core processor design to distributed implementation at
e Architecture design insights. Based on the above performance the datacenter level.
evaluation, we provided architecture design insights on the
application level, the core level, the chip level, and the inter-
chip level. These can be used to design efficient architectufe RELATED WORK

for multimedia retrieval programs in the future. In this section, we discuss several existing benchmark suites

The paper is organized as follows. Section 2 explains thgd prior research on the evaluation of performance and power
motivation of this paper and Section 3 discusses the related wogkiciency of modern processors.

Then Section 4 gives an overview of MMRBench and Section 5
presents the design of the basic framework. Section 6 analyzes
the architectural characteristics of MMRBench. Finally, Section¥.1 Benchmark Suites

concludes the paper. In order to compare the multimedia retrieval algorithms with other
applications, we choose representative benchmark suites designed
for different targets for comparison.

e Traditional benchmarks: SPEC [15] has designed several
Currently, the transistor threshold and voltage scale problems benchmark suites, such as SPEC CPU, to satisfy different
limit the further improvements on single-core processor perfor- evaluation scenarios. Splash2 [16] and PARSEC [17] are
mance, both in compute density and power efficiency. As more two most popular benchmarks for parallel system evaluation.
and more emerging workloads dominate in cloud environments, Parboil [18] is another parallel benchmark suite focusing
researchers now begin to optimize server systems to meet theon GPGPU-like architecture. However, emerging multimedia
performance requirement and power constraints by removing retrieval algorithms are not considered in such suites.
unnecessary components such as graphic chips and using meréMultimedia benchmarks: Traditional multimedia benchmark
green power supply. However, modern processor architectures aresuites include ALPBench [11], MiBench [12], SD-VBS [19]
still inefficient in space and power for cloud workloads such and MEVBench [20]. Still, they mainly focus on traditional
as web search [13]. Considering multimedia retrieval workloads multimedia decodeand encodeprocessing Although both
are more data-intensive and computation-intensive than traditional of traditional multimedia algorithms and information retrieval
text-based retrieval workloads, we aim to investigate whether there ones process multimedia data, the major processing steps are
is a mismatch between the characteristics of these workloads andlargely different. Multimedia retrieval algorithms focus on how
the predominant commodity processors. Further, we intend to to extract and analyze these multimedia data.
analyze the system and architecture characteristics for emergimgCloud benchmarks: Benchmark suites aiming to cloud en-
multimedia retrieval applications, with the goal of gaining insight vironment are also becoming popular. Intel researchers pub-
into designing efficient processor architecture and systems in this lished MapReduce based HiBench [10]. CloudSuite [9] is
area. To achieve such goals, our workload characterization shoulddesigned to cover the emerging scale-out workloads in cloud
meet the following targets.

* Representative system behaviorA multimedia retrieval o G O e e indlided in i design. whie modt
workflow typlcglly consists .Of thre.? stgges: featwe exltracnogrg)(;rithms in it are traditional r?lultimedia algorithms. Ferret [Zl?ié a toolkit to
feature matching and spatial verification. Algorithms in thes@nstruct content-based similarity search systems. Therefore, it is not designed
stages handle different computation hence have varied chfar-performance evaluation. No state-of-the-art algorithms are included in it

ot ; ; d no architectural characteristics are analyzed in it. Moreover, it is global
acteristics. Therefore, one should include popular algorlthrﬁag ture-based, which has been shown to have low retrieval precision [14].

from' all .these. stages to understand the characteristics 1@krefore, as we described in Section 4.1, local feature-based algorithms are
multimedia retrieval systems. widely used in current real-world applications.

2 MOTIVATION
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(a) Feature extraction. (b) Feature matching. (c) Spatial verification.
Fig. 1: Example of three-stage (a, b and ¢) multimedia retrieval.

environments. However, most of these benchmarks target tex¢- Feature Extraction: In this stage, feature points are extracted
based workloads. The characteristics of multimedia-based in- to represent an image or a video frame. Feature extraction

formation retrieval applications are not reflected. algorithms can be divided into two classes: Global Feature
Based Algorithms (GFBAs) and Local Feature Based Algo-
3.2 Architecture Evaluation rithms (LFBAs). GFBAs use one unique feature to represent

an image, while LFBAs adopt hundreds of points to guarantee
the results are insensitive to various transformations, such
as scaling, rotation and illumination. Due to GFBAS’ low
retrieval precision [14], LFBAs are widely used in real-world
applications. Therefore, we focus on LFBASs in this work.
Feature Matching: The way to judge whether two images are
similar is to check whether they have enough similar feature
points. The similarity metric applies the Euclidean distance.
Due to the huge amount of image processing data, most mul-
timedia retrieval applications apply approximate algorithms in
their matching stages to avoid excessive computation. When
the matched points between two images exceed a threshold,
these two images will be considered as matched. Therefore,
floating-point precision in feature matching is important. We
apply this insight in our analysis in Section 6.

répatial Verification: The matching results are usually pollut-
ed by false matching. To filter out these mismatched feature
points, spatial verification algorithms are adopted to refine the

In this section we review prior work on performance evaluation
and architecture design.

e Performance Evaluation: Most of performance evaluations
on efficiency of modern processors are based on traditional
commercial applications. For scientific applications, Tuck et,
al. indicates that the SMT mechanism can notably improve
performance [22]. Nikos et al. characterize a commercial
database server running on emerging chip multiprocessor tech-
nologies and find the major bottleneck is data cache stalls [23].
Nan et al. propose a model to evaluate the earth system
simulation framework [24]. Xu et al. discuss the performance
modeling of Sparse Matrix-Vector Multiplication (SpMV) on
GPUs [25]. Xue et al. simulate the performance of atmo-
spheric dynamics on supercomputers [26]. To catch up with
specific infrastructure trends such as datacenters, Ranganath.a
et al. discuss the implications for architecture research and
suggesting some high-level challenges for the community to

. Zcrjgk:ﬁzzthzrz].design' As multi-core and many-core systems matching results by checking the spatial relationship of the

) matched feature pairs from the above stage.

becoming a mainstream, many researches advocate new IDrO_Fi ure 1 illustrates the aforementioned workflow with two
cessor structure design for them. In [28], Hardvellas et al. 9

. . ages ofMona Lisaas an example. In this example, we assume
show that server chips will not scale beyond a few tens 9 P pie,

cores such that we cannot afford to power. They then propa g feature points of the image on the left are trained in a backend

use simpler cores and reduce on-die caches to overcome ﬁéabase and the image on the right will be used to query the

initial power barrier. Other efforts such as [29] and [30] stud atabase. Many more images will be processed in a real world

optimal cache and DRAM structure for given applications.cenar'o' In the feature extractlo_n st_age, the feature points in
mages are extracted. The red points in the images represent the

For emerging cloud workloads, Kozyrakis et al. [31] providé 2. ) .
a characterization on large-scale online services workloa@gs't'ons of extracted feature points. In the feature matching stage,
and give some insights into such cloud server designs ?ﬁch feature point is compared with those in the database. If the

CloudSuite [9] [32], Ferdman et al. identify the key miCro_number of matching points exceeds a certain threshold, e.g., 20,

architecture needs for scale-out workloads and design eﬁiciélﬂ?%.zv;:.:s C?ns."ciﬁlrec:jisn%;ngi;.:O;e;htitt’arlnLrﬂ':r:;ﬁd:‘n:i:'e\/;:
scale-out processors. Although there are many architect ications typically eV 9

optimizations for different workloads, none of them consid OIgtfebelt:NZetgr;Wﬁolr;agezndeugnt 0 ﬁ”ﬁ%?ﬁ%ﬁcﬁﬁnsmgm ta tfnesr'
the characteristics of multimedia retrieval applications in the] s sult, S IS generally set. vior INg poInts ov
designs. the threshold would not affect the result. Lastly, spatial verification

algorithms are adopted to filter out false matches, e.g., the points
on the frame in the right image of Mona Lisa in Figure 1. Based
4 MMRBENCH OVERVIEW on the final results of this stage, the matching images are ranked
In this section, we first describe the generic workflow of multibased on their numbers of matching points.

media retrieval applications. We then describe our methodology to

select multimedia retrieval algorithms for this work, followed by, 2  \Workloads

a brief overview of such algorithms. Each processing stage of multimedia retrieval applications con-

tains various algorithms. To choose the most representative ones,
4.1 Multimedia Retrieval Workflow we conduct a survey on the top conferences related to multimedia
Multimedia retrieval applications generally consist of three stagastrieval applications, such &CV, CVPRandACM Multimedia
feature extraction, feature matching and spatial verification.  over the last five years. If an algorithm has been cited more than
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certain threshold (we set the threshold to 10 in this work), it iss LSH (Locality Sensitive Hashing)[37], [38] is a method of
considered the state of the art and is selected in this work. As a performing probabilistic dimension reduction of high dimen-
result, we select eight multimedia retrieval algorithms. The chosen sional data. When training data, it hashes the items so that
algorithms are shown in Table 1 (T:train/Q:query). Here we also similar items can be more probable to be mapped to the same
find that SIFT and SURF are the most popular algorithms in buckets than dissimilar data. It has two parameters: the width
feature extraction stage and VOC-Tree is applied with the most parametek and the number of hash tablesin the querying

frequently in feature matching stage.

TABLE 1: Overview of the MMRBench.

Application Function Input
SIFT Feature Extraction| Image/Video Frame|
SURF Feature Extraction| Image/Video Frame|
MSER Feature Extraction| Image/Video Frame|
HOG Feature Extraction| Image/Video Frame|

KD-Tree(T/Q) Feature Matching

Feature Points

VOC-Tree(T/Q) | Feature Matching

Feature Points

step, it hashes the query pompinto each of thd hash tables.

In each hash table, it iterates owkehash functions. It retrieves
the points hashed into the same bucketg.as

RANSAC (RANdom SAmple Consensus)33], [39] aims

to filter “outliers” out of “inliers” in a data set.Inliers

are consistent with the estimated (spatial) model and can be
explained by some set of model parameters whilgliers

do not fit the model. The retrieval precision under the spatial
consistency can be improved with RANSAC.

Feature Points
Feature Points

LSH(T/Q)
RANSAC

Feature Matching
Spatial Verification

5 METHODOLOGY

SIFT (Scale Invariant Feature Transform) [33] is an al- Thijs section present our analysis methodology in infrastructure,
gorithm to detect local features in images. SIFT detects fegetrics, tools and experimental setup.

tures (or points) which are invariant to scaling, rotation, illu-
mination and viewpoint. It consists of a detection stage and a
description stage. In the detection stage, scale invariant poiftd Infrastructure

are detected. In the description stage, each point is assiggé goal is to build an evaluation infrastructure that is convenient
with one or more orientations to achieve rotation invariancgsr users to construct test suites for their varied evaluation needs,
Then, a 128-dimension descriptor vector is computed for eagly., architecture designs for datacenters or system evaluation-
point. s on multi-core architectures. To achieve this goal, we have
SURF (Speeded-Up Robust Featured)] is another scale, provided multiple versions for the selected algorithms, which
illumination and rotation-invariant algorithm. The workflowincludes sequential version, multi-threaded version for multi-core
of SURF also contains detection stage and description staggshitecture and Hadoop (map-reduce) version for large-scale
However, SURF has slightly different ways of detecting feagistributed environment. Most of these algorithms have multiple
ture points. It uses a special structure “integral image” insteg@rsions of open-source implementation. We select the sequential
of Gaussian pyramid in SIFT, which enables it to process fasigiplementation whose paper has most citations to ensure that the
while keeping similar distinctiveness of feature points. algorithms in our benchmark suite are popular and represent state-

MSER (Maximally Stable Extremal Regions)[34] is a fea-  of-the-art. The parallel and map-reduce version of these workloads
ture detection algorithm. Instead of extracting feature pointgse all implemented from scratch by ourselves.

MSER extracts co-variant regions from an image, called M-

SERs. MSER has the advantage that features can be reliably O (ST Jp
matched regardless of the appearance of the surroundings of =, d> S, Csome T
the actual region. &” Extra;tion "
HOG (Histogram of Oriented Gradients) [35] is an algorith- Hoc

m used for object detection. The technigue counts occurrences | st )

of gradient orientation in localized parts of an image. It is E::’:zj; Ql

computed on a dense grid of uniformly spaced cells and uses g odute il (koTree)))
overlapping local contrast normalization to improve accuracy. | g:gi};uce R (Vootzes]])
Generally, HOG is used for pedestrian detection. ;ﬁgéiut Matching Ton I
KD-Tree [34] is originally designed for exacting nearest = Toor

neighbor search in multi-dimensional data. In its training stage, T pestire El

multiple randomized trees are created by selecting theNtop Ereine 0

dimensions with the greatest variance. In the querying stage, it Spatial

uses best bin to find a set of approximate solutions. Dm <): Verffication {

VOC-Tree (Mocabulary Tree) [36] defines a hierarchical
quantization built by recursively doing k-means clustering.

Fig. 2: Infrastructure for multimedia retrieval workloads.

In its training stage, the training data are processed through
definingk cluster centers and recursively defining quantization In addition, we provide both multiple input sets and automa-
cells by spliting each quantization cell info new parts. tion tools that facilitate input data generation and control parame-
The tree is constructed level by level, up to some maximufr adjustment. To make it convenient for users to construct a real
number. In the querying stage, each feature point traverdggltimedia retrieval system, we also provide a framework with

through the tree by comparing itself to eactkafuster centers an interface API between retrieval stages. Figure 2 illustrates our
and choosing the closest one until it reaches the leaf node. Multimedia retrieval evaluation framework, of which we describe

the features in the following.
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e Framework: The framework includes the computation modVTune: execution time breakdown, L1 I-cache/L2 instruction
ules for all the stages in the workflow and the data transferisses, IPC (Instruction per Cycle), MPC (Memory Access per
interfaces between the stages. Each algorithm module can@ele), L2 cache hit rate (data access) and off-chip bandwidth.
replaced with another one in the same stage. The intermedibte the execution time breakdown, we classify the execution time
result of an algorithm can be transformed into a format thaito commit cycle and stall cycle, which indicate whether at least
can be processed by the next stage through the API interfaame instruction is committed or not during one cycle. We also

e Input Sets: In our current design, we assemble three inpuydrofile the memory cycles in order to expose the impact of memory
sets: small, medium (standard) and large. The small input setiscess in a program. Here the memory cycles are computed as
provided by Mikolajczyk [40] that contains 48 images and hate sum of off-core requests outstanding cycles and DTLB miss
been widely used in various multimedia retrieval applicationguration. We note that memory cycles computed in this way is an
The medium data size is the Oxford Building dataset [4Hpproximate value because stalls caused by memory accesses will
with thousands of images. For large size input, we collebe overlapped in the pipeline execution. This is also the reason that
twenty thousands of images of various categories from thehy we do not take L1/L2 cache access time into consideration
Internet. Furthermore, users can generate new input set wsihce we assume that they are already entirely overlapped.
the provided automation tool. To gain more architectural insights at the chip level, we further

e Multiple Versions: We provide three versions for each choservaluate several factors, which will influence transistor resource
algorithm: sequential version, multi-threaded version and maghocation among different hardware components, such as proces-
reduce version. All versions are implemented in C/C++ undsor core and last level cache (LLC). In our current evaluation, the
Linux environment. The multi-threaded version is implemenfactors include computation intensity, LLC cache misses and load
ed based on Linux POSIX API and map-reduce version @alance. To measure computation intensity, we deploy a metric
based on Apache Hadoop MapReduce framework. The pardlat indicates how many instructions are committed over a byte
lelism granularity is at image-level in this implementation. of input data, called Instructions per Byte (IPB)It measures

e Automation Tools: While evaluating their systems, users mayhe computational resources needed when processing unit size
want to generate their own input data for the algorithms andput. To collect the cache misses of LLC, Cachegrind in Valgrind
prefer adjusting the parameters or thresholds in the algorithriieol Suite [43] is used to do cache profiling for cache sensitivity
To ease the burden on the users, we provide correspondamglysis. It performs detailed simulation of caches and identifies
automation tools for generating input data and adjusting peache misses. We use Cachegrind to get the number of last-level
rameters for the algorithms. cache (LLC) misses per 1000 instructions in different LLC size
Putting it together, it is fairly flexible for the users to construcgonfigurations. For load balance, the Coefficient of Variations

an evaluation framework and satisfy their varied needs in input§oV) of the execution time among different threads is used to
control parameters or execution environments. For example, ihdicate the level of load imbalance in the system.

users can select different versions of an algorithm for their

preferred evaluations, such as the parallel version for multi-cdpe2.2 ~ Statistical Methods

design or the Hadoop version for large-scale datacenter enwe employ Principle Component Analysi@PCA) to calculate

ronment. They can also adjust parameters or generate their aiw data variance through reducing high-dimensional data into a

input. Furthermore, with the provided framework and interfacéw-dimensional form. Raw data are normalized before PCA is

it is fairly easy for the users to construct a real multimediapplied to generate a low-dimensional format. To compare the
retrieval system to evaluate the overall performance or a speciimilarity among the programsluster Analysiss employed to
purpose multimedia retrieval applications running in a differeqjroup the programs based on the PCA data. The intuition is
environment. Even after the system is constructed, it is also easircluster programs with similar characteristics into the same
for the users to adjust parameters in the system with the interfaggegory. In our current implementation, we use Matlab to perform
and the automation tools provided in our framework. They can alBCA transformation and SimPoint [44] to do K-means clustering.
choose to use these algorithms with either higher performance or

more accurate to replace the one in the existing system. 5.2.3 Experimental Setup

Based on this framework, we have implemented an imagsyr experimental environment includes a 3.4 GHz 4-core Intel i7
retrieval system, which is mainly based on SURF feature. Tlg%tem with 8GB main memory. Each core employs 4-wide out-
database scale has reached tens of millions images and our imgg§rder execution with a three-level cache hierarchy. L1 and L2
retrieval system can achieve a throughput of about five-thousasithe are private to each core and their size are 32KB (split L1
image queries per second in the feature matching stage on a mylfiy and 256KB respectively. LLC (L3) reaches 8MB which is

core server. shared among all cores. The system runs Linux 2.6.32 kernel with
GCC compiler (GNU C/C++ Compiler) 4.3.2 with -O2 option. For
5.2 Experimental Methodology the load balance analysis, we use a 1.87 GHz 16-core Intel Xeon

. . . . system with 24GB 1333MHz main memory to run the parallel
In this section, we explain the methodologies used for our ™ . . L
version. The input set for feature extraction applications, except

architectural analysis including measurement metrics, tools aﬂ G. is provided by Mikolajczyk [40], which have been widely

experimental setup. ) .
P P used as a standard dataset to evaluate different feature extraction

5.2.1 Measurement Metrics and Tools 2. The notion of Instructions per Byte relates to the traditional Bytes per

For architectural characteristic analysis, we use Intel VTune [4PPP O Bytes/FLOP ratio in the High Performance Computing (HPC) field.
; generalize FLOPs to Instructions so that the less contribution of floating-

which enables hardware-based sampling b}’ Uti”ZinQ Procesfint operations in multimedia retrieval applications (Section 4 and 6) is taken
performance counters. We collect the following metrics througito account.
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algorithms. We use the INRIA Person Dataset [45] for HOG sincés

it specializes in human detection. For feature matching and spatig@l °°[ ¢S

verification algorithms, we use feature points extracted from thg osf . Héé:m

Oxford Building dataset [41], which is often adopted to evaluatef | | E"ei%%eeccgn)

retrieval systems. & ot N * Sonma
o~ 04F v 4 Raytrace
8 -08 - - - . .

6 CHARACTERISTIC ANALYSIS 04 08 . (taken branéﬁ) 14 16

In this section, we first compare the multimedia retrieval al- Fig. 3: PCA space built from branch characteristics.

gorithms with traditional multimedia benchmarks and study the |

sensitivity to input size of these algorithms. Then we analyze thee |  * T guRF

architectural characteristics of multimedia retrieval algorithms aﬂ, o a o MSER

core level, chip level and out-of-chip level. Furthermore, we gives *“| Lo QESEQET

some insights into architecture design and system evaluation f& °[ < x g%%?gx%@ire%

these multimedia retrieval algorithms. O oer ° ., “  Raywace

-0.8 |

6.1 Application Level Characteristics R _ "pC1 (2 < depdis <= gljs R

In this section, we compare the architectural characteristics of mul- Fig. 4: PCA space built from ILP.

timedia retrieval algorithms with traditional multimedia bench-Z

marks and study the sensitivity to input size. The followingg **[ ° %IL;FE;

evaluations are based on sequential version of algorithms if ngf; 12} TOHSE, .

mentioned specifically. T ol : %chg%ccsn)
o O X x  FaceRec(R

| it < of 8 g

6.1.1 Comparison to Traditional MM Benchmarks N : : v

First, we compare the similarity between the algorithms in MMR-™ o o o8 ) I 2

Bench and traditional multimedia applications. Since only feature PC1 (Temporal locality)

extraction algorithms use images or frames as the input, we only Fig. 5: PCA space built from data locality.

compare them with traditional ones. For traditional multimedia ahigher PC1 indicates higher percentage of dependence distance
gorithms, we adopt programs in ALPBench [11], which covers tHeetween 2 to 8 while higher PC2 indicates higher percentage
traditional multimedia algorithms, such as video and image prof dependence distance equal to 1. Higher percentage of short
cessing applications. We use 29 architecture-independent metdependence distance may imply lower potential ILP in a program.
used in [46], which include instruction mix, branch informationfor locality data shown in Figure 5, higher PC1 indicates lower
dependence distance, locality metrics, and generate the PCA demaporal locality. Lower PC2 indicates more benefit from larger
Based on the PCA data, we group the programs with clusteringche line size. We observe that SURF has notably different

analysis. The clustering results are shown in Table 2. characteristics in branch and ILP when compared to others. As the
TABLE 2: Clustering results. locality data shows, both SIFT and HOG are positioned in higher
PC1 far from than others, which means they have much worse
Cluster NO. Program temporal data locality. Above three characteristics are the major
Cluster 0 MPGdec, Sphinx, FaceRec (Train) factors that lead to the difference between the characteristics of
FaceRec (Recognize), RayTrace, MSER feature extraction algorithms and those of traditional multimedia
Cluster 1 MPGenc programs.
Cluster 2 SIFT, HOG Insights: From the analysis above, we can conclude that the
Cluster 3 SURF feature extraction algorithms have different characteristics from

traditional multimedia benchmarks in many significant architec-
As the data shows, the characteristics of feature extractiural aspects.
algorithms are different from those of traditional multimedia
ones. SIFT, SURF, and HOG are clustered into different groupsl-2 Input Sensitivity Analysis
from traditional multimedia programs. Furthermore, almost allhe input size has great influence on the execution time of
the programs in ALPBench are clustered into the same grogm application. When the application is used as the input of
which means that they have similar behavior based on the overlsimulation, especial full-system multi-core simulation, a large
architectural characteristics. To see which characteristics leadiriput may lead to too long simulation time to complete. However,
the difference, we further study the characteristics of their branéharchitecture characteristics of an application do not depend on
ILP and data locality. the input size, a small input size would be enough, which can save
Note that PCA results have decreasing variance, with the figstot of evaluation time. To provide some advices on MMRBench-
principle component (PC) containing the most information arshsed evaluation, we measure the input sensitivity in this section.
the last one containing the least information. Here we retain top To evaluate the input sensitivity, we collect the 29-dimensional
two PCs containing more than 90% information. In Figure 3, PCirchitecture-independent metrics for all algorithms in MMRBench
measures taken branch information, i.e., a more positive valueder the input size from 1MB to 20MB. We then analyze them
along PC1 indicates higher branch taken rate and PC2 refletttoough PCA and clustering. The results are shown in Figure 6
forward branch information, i.e., a more positive value along PGihd Table 3. An application is assigned as an invariant type if
means higher forward branch rate. For ILP data shown in Figurei, metrics gathered under different input sizes are clustered into
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Fig. 7: Execution time breakdown and memory stall cycles.

cloud workloads, we also test PARSEC [17], ALPBench [11] and
Scale-Out workloads [9].

As the results in Figure 7 show, multimedia retrieval workloads
suffer from high stalls (near 40%). It is similar to PARSEC

TABLE 3: Input sensitivity.

Type Application and scale-out workloads but higher than traditional multimedia
Invariant SURF, SIFT, MSER, HOG workloads (ALPBench). We find that the stall cycles occupy
Moderate | KD-Tree(T), LSH(T), VOC-Tree(T) a higher percentage in MMRBench than traditional multimedia

VOC-Tree(Q), RANSAC benchmarks, and memory stalls are not as severe as other bench-
Sensitive KD-Tree(Q), LSH(Q) mark suites. Although some multimedia retrieval workloads (e.g.,

MSER) have even higher memory cycles, most of them (e.g., SIFT
As the data shows, feature extraction algorithms exhibit i@nd RANSAC) are mainly stalled due to computation process
variant behavior with different input size. This is because thégstead of memory operations.

are 'ma.ge'b?‘sed and Process image one by one. Thus, the|_r Char'Since branch misprediction can cause costly pipeline flush, we
acteristics will c_hange litle whe_q input 3|ze_scales_up. Besid alyze the branch behavior of these multimedia retrieval work-
the ot_her algorithms are sensitive _to the !nput size. Throu ds with three prediction strategies. The strategies include one-
checking the dat_a, we find data locality contribute the most of tlg)?t, two-bit saturating counter, and two-level adaptive predictor.
changes. Espe_glally for KD-Tre(_a (Query) and LSH (Query), thth two-level adaptive predictor records the history of the last
are most s_ensmve because thelr |rregu_lar data access pattern 'ﬁccurrences of a branch (local history table) and has a global
be greatly influenced when the input size changes. For exam %’torytable of 256 entries.
KD-Tree (Query) searches each point through a large tree and
then randomly accesses a logged index array whose size is equallhe results are shown in Figure 8. As the data shows, most of
to the number of points trained to build the tree. When the inpotultimedia retrieval algorithms have higher branch misprediction
size increases, more part of the tree and the index array will e (more than 20%) under simple prediction strategy, such
accessed in a data-dependent way, which leads to worse localigg one-bit and two-bit saturating counters, due to their special
Insights: Based on our analysis, a small input size is sufficientorkflow. A high misprediction rate also exists in computation-
for feature extraction algorithms for evaluation. In contrast, thigtensive benchmarks like PARSEC and traditional multimedia
factors of input size should not be ignored when using the othaprkloads like ALPBench. In SURF, SIFT and HOG, a majority
algorithms for evaluation. of computation happens in generating descriptors, which consists
of many multi-level yet short loops (loop boundaries relate to the
6.2 Core Level Analysis boundaries of sub-blocks in an image). For MSER, KD-Tree,

: VOC-Tree and RANSAC algorithms, there are a lot of data-
As the basic component, the complexity of a processor cagépendent conditional branches, such as path selection in tree
has a great influence on performance, power and chip size.tlaiversal or condition check of neighbor node status. These data-
this section, we analyze the core level characteristics includiggpendent branches make it challenging to achieve a better branch
pipeline execution efficiency, instruction fetch efficiency, ILP angrediction. The only exception is LSH with low misprediction

MLP, and the sensitivity of floating pointing units. rate in both training and query stage. This is because its main
loop traverses points sequentially and few conditional branches
6.2.1 Pipeline Execution Efficiency take place. In contrast, the prediction accuracy improves greatly

with a two-level predictor. Yet, a further improvement would be
The execution cycles of a pipeline can be classified into coriecessary, since many of them still have over 10% misprediction
mit cycles and stall ones. To check the pipeline efficiency, wate.
collect the data of the percentage of stall cycles out of total |,qjants: High branch misprediction rate indicates that high
execution cycles and the stall cycles caused by long latengyis found in multimedia retrieval workloads are caused by
memory accessésTo make a comparison with traditional andnisprediction penalty besides long-latency memory access. To

3. As mentioned in section 5.2.1, these memory cycles are the resultsn?)\‘tlgate this issue, a core design should embed sophisticated

an approximate measurement and may be overlapped by pipeline executitnch prediction mechanism, WhiCh_ can predict complex branch
Therefore, the memory cycles may be higher than the stalled ones. patterns in these workloads more efficiently.
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one-bit KxXx=x two-bit Ex==== two-level m— . .

60 % To evaluate the impact of memory stalls, we also provide
00| * i the IPC without memory stall cycles. We observe that almost all
g i i i V).

0% multimedia retrieval workloads behave low IPC value (near 1.0
< 0 e = . . . . .
£ K Even the highest one (VOC-Tree(T)) is still relatively low, with

0, i - . .
5 30% i an IPC value 2.0 out of max value 4.0 (a popular configuration
o {
5 P i .
820% 5 in modern processors). Furthermore, to exclude the memory stall
210% 7 cycles in the pipeline, we deduct the memory stalls from the
’0
09 LK execution pipeline, and then calculate IPC without memory stalls.

L L 2 ) 2
4’6‘:'0@/@‘,;0\,;%;\5‘4,{ OO)OQ;%V4/® 474%‘7«9:%@ The results show that the IPC without memory stalls (2.7) is higher
%f,)@@@) o ’@ef/\""efgo &Y 6\9& %, than the IPC of the whole application; yet the average value is still
7 fi@ ¢ ™ lower than PARSEC, ALPBench, and scale-out workloads. This
Fig. 8: Branch misprediction rate with one-bit, two-bit gating indicates that the instruction-level parallelism of multimedia re-
counter, and two-level adaptive predictor. trieval applications is lower than traditional benchmarks, therefore
20 the instruction issue window of pipeline could be scaled down.
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Fig. 9: Misses per K-instructions in L1-I cache and L2 cache. _. . . .
g P Fig. 10: Instruction committed per cycle in program. In ortter

6.2.2 Instruction Fetch Efficiency evaluate the impact of memory stalls, we also provide the IPC
without memory stall cycles, as shown by the black column in the

Instruction fetch misses can also influence the efficiency &gure.

pipeline execution. To investigate instruction fetch efficiency, we - gimilar to exploiting ILP, out-of-order execution also enables
collect the data of misses when fetchllng instructions from Llphemory-level parallelism (MLP) by performing multiple indepen-
cache and L2 cache. As the results in Figure 9 show, most §fnt memory accesses in a time. This level of parallelism is also
multimedia retrieval workloads have lower L1 instruction miss ratg,nortant to many programs because it can effectively hide long-
is st!ll Iovyer thfs\n the max one in the PARSEC benc_hmark._AHotential MLP that a program can reach, we count the total number
multimedia retrieval workloads rarely suffered from L2 instructiogy |ast-level cache access and off-chip memory access (MPC) in
misses, which is very costly due to high latency when fetching ifyese workloads. This is because LLC and off-chip memory access
structions from it. In contrast, especially for scale-out workloadggye much longer latency which should be hidden by MLP. The
their instruction working sets considerably exceed the L1-1 cacRgyher the MPC, the more beneficial the MLP can gain. The results
capacity, even exceed the L2 cache capacity [9]. We note thak shown in Figure 11. As such data shows, most of the multime-
this is mainly because most of the execution logic in multimediga retrieval workloads have lower MPC than parallel, scale-out
retrieval workloads locates in several parts of core code sectioggd traditional multimedia workloads. This implies that they have
which fit well in L1 instruction cache. o ~ lower potential MLP. On the other hand, we note that MSER and
Insights: The instruction working set of multimedia retrlevaIKD_Tree(Q/T) have very high MPC, which indicates they are more
workloads fit well in current modern processor architecture, whiqme|y to achieve high MLP. There are two reasons for the high
is unlike some scale-out workloads [9]. It means we do not neggbcC in KD-Tree training and query. First, both the training and
to further increase the cache size to Capture the whole instructj rbry phase of KD-Tree consist of |arge portions of frequent and
working set, which can save the on-chip real-estate and make fggular tree traversal and node accesses. Both of those operations

architecture design more power efficient. would incur irregular and intensive memory accesses. Second, in
training phase, multiple randomized trees are created by selecting
6.2.3 ILP and MLP the top N dimensions with the greatest variance to construct a KD-

Tree forest, which makes the memory accesses more scattered than

In order to perform more operations simultaneously per cycl¥ocTree searching which only contains a single tree.

modern processor architectures generally employ out-of-order On the other hand, the cache misses typically come into
technique to execute independent instructions in parallel. Mdparsts thus the overall MPC cannot reflect the potential benefit
than one instruction can be fetched, decoded and committed in én& could be achieved by overlapping the memory accesses. In
cycle. This strategy can speedup program’s execution theoreticaltgler to evaluate the impact of memory-level parallelism, we
as long as less instruction dependency exists. In Figure 10, vadculate the memory stall cycles divided by the number of LLC
present the IPC values of multimedia retrieval workloads as wetlisses, as shown in Figure 12. The lower the ratio, the more
as those of PARSEC and ALPBench. latency is hidden by memory-level parallelism. The average value
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Fig. 13: Floating-point instruction ratio.

Fig. 11: Memory access per cycle in program. ) o . o
N bits are used to indicate the fraction part of the original float

is comparatively high since the core frequency is nearly thrggint number, and (32-N) bits are used to indicate the integral
times as high as memory frequency. From the results we Cafyt The differences between the results of fixed point version
observe that the average value in MMRBench is lower than thoggq those of float point versions are then used to evaluate the
in PARSEC, ALPBench, and scale-out workloads, which impligs, yact we apply two metrics in the evaluation. The first one

the LLC miss penalty of multimedia retrieval algorithms can bg error rate (ER), which is the deviation percentage between the
effectively hidden by memory-level parallelism. outputs of two implementations of an algorithm. The second one is

é 6000 error impact rate (EIR), which indicates the difference in the final
Q matching results between two implementations of an algorithm.
3 so00 | Note that matching points will have to be verified in the Spatial
g 4000 iy Verification stage for the final results (Section 4).
G 3000F i TABLE 4: Floating-point operation sensitivity.
% 2000 7 Application ER Best Fractional Bits | EIR
2 1000 1 SIFT 1.78% 22 0
£
g 0 SURF 2.28% 13 0
= o, Y 5h Ty T L L <, $s 1y 2 Y %
P %% Q/>®O~/>®°°~ ' ,f&,,)‘y&@;/bv 7 j@og%:%o MSER 0% 0 0
S O S, S, (o L2 %y %
270 %2 7, % 7 gboﬁo HOG 0% 15 0
. o KD-Tree 3.44% 0 0
Fig. 12: Memory stall cycles divided by the number of LLC VOC-Tree 0% 0 0
misses. The lower the value, the higher memory-level parallelism. SH 0.01% 19 0
Insights: Both of ILP and MLP techniques need hardware RANSAC | 1.64% 7 0

support including large instruction window, multiple decoders
and execution units, large load-store queue and reorder buffer. we test different Ns and evaluate their impact. We only
The above results show that multimedia retrieval workloads hageesent the best results (lowest error rate) with certain N as
comparatively lower instruction-level parallelism than traditionahown in Table 4 for brevity. We observe that the deviation of
benchmarks. Therefore, the instruction issue window of pipelisgich a transformation is very small for these multimedia retrieval
could be scaled down to simplify the CPU core structure. Theégorithms and the largest error rate is less than 4%. Indeed, it is
overall MLP is lower than traditional benchmarks yet overlappingiore important to obtain acceptable final results than intermediate
memory access operations is still an effective technique to hide thees for multimedia retrieval applications. Interestingly, there
cache miss penalty. Here we do not consider much about MSERSsts virtually no difference (zeros in Table 4) between these
and KD-Tree(T/Q) since they are not as popular as others in re@b implementations in the EIR results. Therefore, the deviation
applications as mentioned in Section 4.2. from fixed-point transformation can be mostly ignored for these
applications.

The reason for the low FLOP sensitivity is that the calculation
result of floating-point number of multimedia retrieval algorithms
Floating point operations (FLOPs) exist in various algorithms mostly used for approximate comparison. For example, in
However, Floating Point Unit (FPU) is not only complex but als&/ocTree training and query, each extracted feature is represented
power-hungry compared to fixed-point units. Therefore, if FLORsy a high-dimensional vector. A large portion of floating point
can be replaced by fixed-point operations, a hardware design cgerations are included in the calculation of Euclidean distance
be simplified and more power-efficient. To analyze FLOP sensitigetween the feature vector and descendent nodes of the current
ity, we first collect the percentage of FLOPs in each algorithm. A®de. However, the program only needs to find the descendent
the data in Figure 13 shows, KD-Tree (Q) and VOC-Tree (Q@)ode with the smallest distance, thus most floating-point results
virtually do not have any FLOPs, while others do. The resudire only intermediate and their precision has little impact on
demonstrates that MMRBench has lower FLOP percentage thae final result. Other algorithms in feature matching stage also
other benchmark suites like PARSEC and ALPBench, indicatitgve similar characteristics. Therefore, the precision of FLOPs
that the FLOP intensity of MMRBench is lower. in MMRBench has limited impact on the final matching result.

To evaluate the FLOPs sensitivity of these algorithms, wdowever, such characteristics do not exist in applications where
convert all the FLOPs in each algorithm to fixed point operationsLOP precision influences the validity of final results to a large

6.2.4 Sensitivity of Floating Point Operation

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533606, IEEE
Transactions on Parallel and Distributed Systems

10

degree, such as the MPEG encoding and decoding algorithmdrawverse to the backend database. The algorithms then determine

ALPBench. whether there are matching pints through computing the distance
Insights: FPU is more complex than fixed-point ALU when(usually Euclidean distance).

considering area requirement and power consumption. In many Insights: These multimedia retrieval algorithms are facing a

scientific-related applications, FPU is very important since ttgreat challenge in real-time analysis especially with the explosion

precision of FLOPs is vital to their final results. In multimediaf image and video data in Cloud or Internet computing envi-

retrieval workloads, the average percentage of FLOPs is lowenment. For example, only about three images can be processed

than other benchmarks, and more than half of the algorithms hakeough the sequential version of SIFT or SURF on an Intel i7

extremely low £5%) percentage of FLOPs. Besides, the precisiggrocessor according to our experiment. Thus, special accelerating

of FLOP has little impact on the final result. Therefore, whescheme, such as more computational cores, should be explored for

designing hardware for multimedia retrieval applications, FPUkese multimedia retrieval algorithms.

can be partially replaced by fixed-point units to achieve more cost

efficiency and make the core structures even simpler. 6.3.2 Cache Sensitivity

1

6.3 Chip Level Analysis

To understand the characteristics of chip level, we analyze dif- er
ferent factors which will influence the resource allocation amo sl A
different hardware components, such as core and LLC. We figst
analyze computation intensity of these multimedia retrieval works 4r 1
loads. Moreover, we also analyze the cache behavior and the CoV
of execution time among different threads when the multi-threaded 2T
versions are executed. Such analysis will provide some insights ,

into what should be paid more attention to when designing a chip ‘9042}&,\”’@(\\200*0\ Jo ,\f@%@/yﬁqf’o\fv% 4’47@74)\:%;%3&90%‘%@,@
for those multimedia retrieval algorithms. Note that, we do not RS o RS @of%@% 0”%@"020%02,:7
show the results of computation intensity and load balance for - Fo® U T o
scale-out workloads here. The major reason is most of scale-out Fig. 15: L2 cache hit rate in program.

applications are service-oriented programs. It is difficult to define
input size and compare the CoV of execution time of differemigure 15 shows the L2 hit rate in these workloads. We observe

threads for them when they process client requests. that most of multimedia retrieval workloads have similar behavior
in L2 cache data accesses (hit rate 50%) when compared to
6.3.1 Computation Intensity PARSEC and higher L2 hit rate than ALPBench and scale-out
workloads. This means modestly-sized L2 cache mitigates most
10000 E of the L1 cache miss. Figure 16 shows the LLC misses per 1000

instruction for these algorithms in different LLC sizes (from 1/32
MB to 32 MB). For most of these algorithms, while the LLC size
1000 E is increasing, the number of LLC misses will start to decrease
rapidly, and finally reach a relative stable level. Such a trend
suggests the existence of working set. When the LLC changes
-~ from a size smaller than working set to a size larger than working
%@% ‘“@Q set, the number of LLC misses will decrease a lot suddenly and
" %o, C @o% %o ”Ogb will not decrease significantly with a even larger LLC, since the
) o ) ) ] %" ® LLC has been already enough to accommodate the working set.
Fig. 14: Computation intensity over input size. IPB stands fQue can see most of these algorithms have relative small working
Instructions per Byte. sets. When we shrink the LLC size to 1/8 MB, most of these
workloads still have low LLC misses.
To evaluate the computation intensity, We use IPB as the metric On the other hand, the LLC miss rate of KD-Tree(T/Q) and
as discussed in Section 5. The higher IPB, the more computatMSER keeps decreasing with the expansion of LLC for their dense
resource an algorithm may need to process the input. We collaad irregular memory accesses (as shown in Figure 11). Therefore,
the IPB results of each algorithm in MMRBench and those ifor such algorithms, larger cache size will be beneficial. On the
PARSEC and ALPBench. The data in Figure 14 shows that tbéher hand, if the chip area is the major consideration and KD-
average IPB of MMRBench is higher, i.e., more computationtlee matching is not an essential part, we can use the design with
intensive, than those of PARSEC and ALPBench. modest LLC cache size.

The reason behind such results is because these multimedialnsights: Modern processor architecture employs deep cache
retrieval algorithms are designed to guarantee certain retrietdrarchy to bring required data closer to core. Higher L2 hit
accuracy. To achieve such a goal, some complex transformatiamge in multimedia retrieval workloads indicates modestly-sized
such as resizing or cropping of the input images or frames, dr2 cache (256KB) plays a good role in enhancing overall per-
included in these algorithms. Moreover, they generally extraftirmance. On the other hand, a larger LLC consumes more area
hundreds of feature points to represent an image or a video frarfid.C is the largest structure on chip) and power, but gives little
Each feature point will be described as a multi-dimensional vectimprovement to most multimedia retrieval workloads due to their
e.g., 64 or 128. In the feature matching stage, each point needsnuall working set. Considering LLC is shared among cores, small

IPB

S Sy, A
OWN % 6 % %
S
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Fig. 16: Cache sensitivity

LLC size requirement means more cores can share one LLC on

Q 9000 T T T T T T T T
chip without side effect of high LLC miss. A small LLC size also & gooo| SET © . ]
brings the benefit of short data access latency. S 7o00f T ‘ -
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Load balancg is a very important issue fpr the perf_ormance 05 1000fsiris, . ++++++S++ 900 P e
parallel applications executed on a multi-core architecture. To 0 | OFe, ! L 9 . . .
obtain insights into parallel optimization and system design of 0 6 12 18 24 30 36 42 48
these multimedia retrieval algorithms, we evaluate their load Image Number
balance characteristics based on the parallel version, which exploit Fig. 18: Imbalance at image level.

the image-lgvel parallelism in these a'lgorithms.. Input images are The reason behind such a result is that fundamental multimedia
evenly distributed among .threa_lds during execution. . ) retrieval algorithms are all feature point based. In other words, the
We collect the execution time of each threat_:l with d|ffererpe uired computation in each thread is proportional to the number
thread counts, e.g., 4, 8 and 16 _Each thread IS exec_uted OBf%eature points processed by it. Figure 18 shows the number of
separate processor core to minimize the |mpac_:t from INtra-Cqfe,rre points detected in each image in our small image set. It is
resource c_onte_ntlon. W‘? use Coefficient of Yaf_'a“°“s (Cov) %fbvious that different images have different point numbers. Some
the execution time from individual threads to indicate the level ages have a larger number of feature points, while the others
load imbalance in the system. The results are shown in Figure 4,6 5 smaller one, which intuitively depends on the information
It shows that, except MSER and HOG, all other algorithms shQy ¢ image. It indicates that the various number of feature points
obvious |mbalancg (CoV greater than 10%) among threads :ﬂsimage level leads to different workloads for the threads to
number of cores increases. As the data show, load imbalagee) o, hence different execution time. Moreover, the imbalance
in multimedia retrieval algorithms is more severe than that %orkload also exists at block level. To illustrate this problem, we
PARSEC and ALPBench. evenly divide a 640*480 image into 4*4 blocks and collect the
©xxa 4-core number of feature points detected in each block. The results are
= 16 cOre shown in Figure 19. It turns out the number of feature points
1 detected in each block is also different. Since the feature point
count varies at both image and block level, it is challenging to
i achieve a statically balanced parallel design for these algorithms.
Therefore, when mapping these algorithms to parallel hardware, it
should pay more attention for dynamic load balance.
We expect approaches along the lines of Adaptive Mesh
5, A & Y, Refinement (AMR) can help reduce load imbalance in this context.
(2(e) %, T 4, System work and architectural support are also interesting to
Q investigate, when extending AMR or others alike to multimedia
retrieval applications. We sketch one preliminary approach in the
following.
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Fig. 17: Variations of per-thread execution time as an irtdicaf
load imbalance.
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Fig. 19: Imbalance at block level.

As described above, the workloads are imbalanced at b&th °°[
image and block level. Therefore, it is difficult to exploit coarse- °
grained parallelism at these two levels to achieve better parallel
performance. Moreover, all the three stages in multimedia retrieval
applications are feature points based and the required computation Fig. 21: off-chip memory bandwidth.
of each algorithm is proportional to the number of feature points )
extracted from an input image. Therefore, we can exploit a fine- ~lthough the off-chip memory access latency has not been
grained feature point level parallelism and design a scheduli proved a lot, the off-chip memory bandwidth has a great

scheme to allocate resource based on the number of feature pd? PYress. qu example, the I_ntel co_re-|7 processor can achieve
in input images. Based on this insight, we design a dynanﬁ@ak bandwidth at 21GB/s with two independent memory chan-

fine-grained pipeline parallelism for these multimedia retriev&€!S- Architecture designers hope that such a large bandwidth can

algorithms. We use SURF and SIFT as a case study to ver Ip impr?]ve pr:ogr;ms_ which have grea_t ;:r)]re?srL‘Jre on nlllemory
the effectiveness of this approach. bus. We show the off-chip memory bandwidth of these workloads

in Figure 21. As the results show, most of multimedia retrieval
We first partition the algorithms into two stages. The first staggorkloads have very low off-chip bandwidth utilization compared
is used to detect how many feature points in an input image. TRe parallel, scale-out and traditional multimedia workloads. We
second is to describe each point into a high-dimensional vectgpte the main reason is due to its high computation intensity as
After partitioning these two algorithms into a two stage pipelingnentioned in Section 6.3. Multimedia retrieval workloads require
the description stage is further parallelized through exploitingore computation on each data unit and also cause complex data
the feature point level parallelism. The computation resource d%pendencies.
then dynamically allocated to match the feature point counts Insights: Large memory bandwidth requires large area mem-
in the images and achieve better load balance. To illustrate %}g, controllers and high power consumption by multiple memory
effectiveness of such a design, we compare the results with thgge Byt our experiment shows that multimedia retrieval workload-
with image- and block-level parallelism on a 16-core machine. ASqg not need such a large off-chip bandwidth. Thus we can reduce
the data in Figure 20 show, such a fine-grained dynamic schedylgs number of memory channel and make memory controllers

outperformance the other two ones. simpler to make processor more cost-effective.
16 1512 . .
ul SIFT ) SURF B 14,07 | 6.5 Architectural Insights
12k s o 12.22 4 We have analyzed the characteristics of these representative multi-
S ot i media retrieval workloads. Based on this analysis, we summarize
3 ol some insights to architecture design.
(‘!ni ol e Application Level Design: (1) Feature extraction algorithms
are different from traditional multimedia benchmarks in many
ar 258 significant architectural aspects; (2) A small input size is
2r 7 sufficient for feature extraction algorithms for evaluation while
0 the size of input is still an important factor when evaluating

Image-level Block-level FG-scheduling
Fig. 20: Parallel performance on a 16-core machine with image,
level parallelism (Image-level), block-level parallelism (Block-
level) and our proposed fine-grained adaptive scheduling (FG-
scheduling).

other algorithms.
Core Level Design:(1) A small instruction cache is sufficient
for catching entire instruction working set and sophisticat-
ed branch prediction mechanism is necessary to deal with
complex branch pattern in these workloads; (2) The ILP and
Insights: These multimedia retrieval algorithms face a great MLP is comparatively low than traditional benchmarks, thus
challenge on load balance. Fine-grained parallelism at feature a simpler core design could save the area and energy; (3)
point level should be exploited in multimedia retrieval workloads. Floating-point units can be partially replaced with fixed-point
In addition, a certain amount of dynamic control should be fused units to make more cores on a die without losing performance
to allocate the resource more efficiently when designing system and accuracy.
and architecture, such as hardware thread scheduling mechanismChip Level Design: (1) A modestly sized L2 cache acts
Considering such inherent thread-level parallelism in these work- efficiently in data fetching and we can reduce last-level cache
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. . : . [14]
We have assembled and designed a multimedia retrieval bench-

Transactions on Parallel and Distributed Systems

size to reduce area and power consumptions; (2) Due to tjog
abundant thread-level parallelism in these algorithms atimage-
level, sub-block-level and feature-point-level, feature-point-
level parallelism is a critical optimization point for them; (3)
load imbalance is also a key issue to pay attention to affd]
fine-grained feature-point level parallelism can be exploited
for great performance improvement, together with dynam[(fl]
resource scheduling scheme or architectural support.
Inter-Chip Level Design: Off-chip memory bandwidth can

be scaled down since low bandwidth utilization found in thed&?!
workloads. This can further improve the cost effectiveness of

processors designed for multimedia retrieval workloads.
(13]

CONCLUSIONS AND FUTURE WORK

marking framework (MMRBench) for architecture design and

system evaluation. In MMRBench, we provide multiple algorithrﬁl5]
versions, supporting tools and a flexible framework. The desigﬁ]
makes it easier for an end user to generate customized benchmark 2 programs: Characterization and methodological consideratitmisr*

suites, or even a complete multimedia retrieval system, for various
system requirements. [

Furthermore, we analyze the architectural characteristics of

these algorithms and offer insights to architecture design fj8]
multimedia retrieval applications, including core level, chip level

and inter-chip level. We also sketch approaches to tackling soff

of the challenges.

Currently, many related algorithms are emerging, such as deep

learning algorithms. We plan to survey and extend such algorith?¢!
in MMRBench in our future work. Moreover, we will also extend

GPU version for these algorithms in MMRBench.

[21]

[22]

ACKNOWLEDGMENTS

We are grateful to supports from the National High Techag)
nology Research and Development Program of China (No.

2015AA015303), and the National Natural Science Foundation of

China (No. 61370081). We would like to thank all our anonymoys,,
reviewers for valuable feedback on the paper. Weihua Zhang is the
corresponding author.

[25]

REFERENCES

(1]
[2]
(3]

(4]

(3]

“Cisco Visual Networking Index: Forecast and Methodology, 2014 [26]
2019,” 2015.

“300+ hours of video uploaded to youtube every minute,” 2015.
[Online]. Available: http://www.reelseo.com/youtube-300-hours/
“Facebook stores 240 billion photos and adds 350 million morE7]
a day,” 2013. [Online]. Available: http://www.businessinsider.com/
facebook-stores-240-billion-photos-2013-1

B. Yang, T. Mei, X.-S. Hua, L. Yang, S.-Q. Yang, and M. Li, “On- [28]
line video recommendation based on multimodal fusion and relevance
feedback,’ACM International Conference on Image and Video Retrieval
(CIVR), pp. 73-80, 2007. [29]
Y. Gao, J. Tang, R. Hong, Q. Dai, T.-S. Chua, and R. Jain, “W2GO: a
travel guidance system by automatic landmark rankidg;M Interna-

tional Conference on Multimedia (ACM MMp. 123-132, 2010.

A. Joly, C. Frelicot, and O. Buisson, “Robust Content-Based Vide[30]
Copy ldentification in a Large Reference DatabaskCM International
Conference on Image and Video Retrieval (CIMB). 511-516, 2003.

H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust
features,”"European Conference on Computer Vision (ECQy). 404— [31]
417, 2006.

J. Bauer, N. Sunderhauf, and P. Protzel, “Comparing Several Imple-
mentations of Two Recently Published Feature Detectmgtnational  [32]
Conference on Intelligent and Autonomous Systems ,(Z0B)/.

13

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
Clouds: A Study of Emerging Scale-Out Workloads on Modern Hard-
ware,” Architectural Support for Programming Languages and Operating
Systems (ASPLOS)012.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench bench-
mark suite: Characterization of the MapReduce-based data analysis,”
IEEE International Conference on Data Engineering (ICDE)10.

M. lap Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and E. Debes, “The
ALPBench benchmark suite for complex multimedia applicatiol<ZE
International Symposium on Workload Characterization (IISWADP5.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,JEEE International Workshop on Workload Charac-
terization (WWGC)2001.

V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search using
mobile cores: quantifying and mitigating the price of efficiency ,”
International Symposium on Computer Architecture (ISQANLO.

Y. H. Wan, Q. L. Yuan, S. M. Ji, L. M. He, and Y. L. Wang, “A Survey

of the Image Copy DetectionJEEE Conference on Cybernetics and
Intelligent Systems (CISpp. 738-743, 2008.

“The Standard Performance Evaluation Corporation.”
Available: http://www.spec.org

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-

[Online].

national Symposium on Computer Architecture (ISGQs) 24-36, 1995.

17] C. Bienia and K. Li, “PARSEC 2.0: A New Benchmark Suite for Chip-

Multiprocessors,”Annual Workshop on Modeling, Benchmarking and
Simulation (MoBS)June 2009.

“lllinois Microarchitecture.” [Online]. Available: http://impact.crhc.
illinois.edu/parboil.php

g S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-

longie, and M. B. Taylor, “SD-VBS: The San Diego Vision Benchmark
Suite,” IEEE International Symposium on Workload Characterization
(HsSwcC) 2009.

J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A Mobile
Computer Vision Benchmarking SuitdEEE International Symposium
on Workload Characterization (IISWC3011.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Ferret: a toolkit
for content-based similarity search of feature-rich dataufoSys 2006.

N. Tuck and D. M. Tullsen, “Initial Observations of the Simultaneous
Multithreading Pentium 4 ProcessorRarallel Architectures and Com-
pilation Technigues (PACTR003.

N. Hardavellas, I. Pandis, R. Johnson, N. G. Mancheril, A. Ailamaki,
and B. Falsafi, “Database Servers on Chip Multiprocessors: Limitations
and Opportunities,International Conference on Innovation Database
Research (CIDR)2007.

D. Nan, X. Wei, J. Xu, X. Haoyu, and S. Zhenya, “CESMTuner: An
auto-tuning framework for the community earth system mod2014
IEEE Intl Conf on High Performance Computing and Communications
(HPCC), pp. 282-289, 2014.

S. Xu, W. Xue, and H. X. Lin, “Performance modeling and optimization
of sparse matrix-vector multiplication on nvidia cuda platfornifie
Journal of Supercomputingol. 63, no. 3, pp. 710-721, 2013.

W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, L. Gan, Y. Lu, and X. Zhu, “En-
abling and scaling a global shallow-water atmospheric model on tianhe-
2, 2014 |EEE 28th International Parallel and Distributed Processing
Symposium (IPDPSpp. 745-754, 2014.

P. Ranganathan and N. Jouppi, “Enterprise IT Trends and Implications
for Architecture Research HMigh-Performance Computer Architecture
(HPCA), 2005.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward
Dark Silicon in Servers,International Symposium on Microarchitecture
(MICRO), 2011.

T. Kgil, A. Saidi, N. Binkert, R. Dreslinski, S. Reinhardt, K. Flautner,
and T. Mudge, “PicoServer: Using 3D Stacking Technology To Enable A
Compact Energy Efficient Chip MultiprocessoAtchitectural Support

for Programming Languages and Operating Systems (ASPL208.

L. Zhao, R. lyer, S. Makineni, J. Moses, R. lllikkal, and D. Newell,
“Performance, Area and Bandwidth Implications on Large-Scale CMP
Cache Design ,\Workshop on Chip Multiprocessor Memory Systems and
Interconnect (CMP-MS))2007.

C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server Engineering
Insights for Large-Scale Online Servicednternational Symposium on
Microarchitecture (MICRO)2010.

P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-out

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2533606, IEEE

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

1045-9219 (c) 2015 IEEE. Personal use is p%ﬁm@rk}y W]@m/rgéigééq‘qipprm@gg{ﬁﬁ@ég’@miom See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Parallel and Distributed Systems

processors ,International Symposium on Computer Architecture (ISCA)
2012.

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision (IJCWol. 60, no. 2,

pp. 91-110, 2004.

A. Vedaldi and B. Fulkerson, “Vifeat: an open and portable library of
computer vision algorithms, ACM International Conference on Multi-
media (ACM MM) 2010.

N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,”IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) 2005.

D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary
Tree,” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2006.

A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashingfhternational Conference on Very Large Data
Bases (VLDB)1999.

M. Datar and P. Indyk, “Locality-sensitive hashing scheme based on
p-stable distributions,ACM Symposium on Computational Geometry
(SoCG) 2004.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,’Communications of the ACM (CACM)981.

K. Mikolajczyk, “Local Feature Evaluation Dataset.” [Online]. Available:
http://www.robots.ox.ac.ukivgg/research/affine/

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
Retrieval with Large Vocabularies and Fast Spatial MatchilBEE
Conference on Computer Vision and Pattern Recognition (CYE®R)7.
“Intel VTune Amplifier XE Performance Profiler.” [Online]. Available:
http://software.intel.com/en-us/intel-vtune-amplifier-xe

“Valgrind.” [Online]. Available: http://valgrind.org/

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behaviérthitectural Support for
Programming Languages and Operating Systems (ASPLZD8?.

“INRIA Person Dataset.” [Online]. Available: http://pascal.inrialpes.fr/
data/human/

A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the spec cpu2006 benchmark suite.” ACM, 2007,
pp. 412-423.

Yunping Lu Yunping Lu is now a Ph.D candidate
in the School of Computer Science at Fudan
gl University. Her research interests are in com-
- pilers, computer architecture, parallelization and
systems software.

Xin Wang Xin Wang is now a graduate studen-
t in Software School of Fudan University and
working in the Architecture group of Parallel Pro-
cessing Institute. His work is related to comput-
er architecture, simulation, parallel optimization
and so on.

Weihua Zhang Weihua Zhang received the
Ph.D degree in computer science from Fudan
University in 2007. He is currently an associate
professor of Parallel Processing Institute, Fudan
University. His research interests are in com-
pilers, computer architecture, parallelization and
systems software.

Haibo Chen Haibo Chen received the BSc and
Ph.D degrees in computer science from Fudan
University in 2004 and 2009, respectively. He

4 is currently a Professor in School of Software,
= Shanghai Jiao Tong University, doing research

,’ that improves the performance and dependabili-

- . ty of computer systems. He is a senior member

of the IEEE and the IEEE Computer Society.

Lu Peng Lu Peng received the Ph.D degree
in Computer Engineering from the University of
Florida in Spring 2005. He is currently an asso-
ciate professor in the Electrical and Computer
Engineering department at Louisiana State Uni-
versity. His research focus on computer architec-
ture, memory hierarchy system, reliability, power

14

Wenyun Zhao Wenyun Zhao received the mas-
ters degree from Fudan University in 1989. He is
a full professor of the School of Computer Sci-
ence at Fudan University. His current research
interests include software reuse, software prod-
uct line, software component, and architecture.



