
Using Switchable Pins to Increase Off-Chip
Bandwidth in Chip-Multiprocessors

Shaoming Chen, Samuel Irving, Lu Peng, Yue Hu, Ying Zhang,

and Ashok Srivastava, Senior Member, IEEE

Abstract—Off-chip memory bandwidth has been considered as one of the major limiting factors of processor performance, especially

for multi-cores and many-cores. Conventional processor design allocates a large portion of off-chip pins to deliver power, leaving a

small number of pins for processor signal communication. We observe that a processor requires much less power during memory

intensive stages than is available. This is due to the fact that the frequencies of processor cores waiting for data to be fetched from off-

chip memories can be scaled down in order to save power without degrading performance. Motivated by this observation, we propose a

dynamic pin switching technique to alleviate this bandwidth limitation. This technique is introduced to dynamically exploit surplus power

delivery pins to provide extra bandwidth during memory intensive program phases, thereby significantly boosting performance. This

work is extended to compare two approaches for increasing off chip bandwidths using switchable pins. Additionally, it shows significant

performance improvements for memory intensive workloads on a memory subsystem using Phase Change Memory.

Index Terms—Multiprocessors, reconfigurable hardware
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1 INTRODUCTION

AS memory-intensive applications such as web servers,
database software, and tools for data analysis prevail,

the focus of computer architects shifts from Instruction
Level Parallelism (ILP) to Memory Level Parallelism (MLP).
The term “MemoryWall” was coined to describe the dispar-
ity between the rate of core performance improvement and
the relatively stagnant rate of off-chip memory bandwidth
increase. Additional cores, when integrated on the same
die, and supplemental applications serve to widen this gap
since each individual core may generate substantial mem-
ory requests that need to be queued and served by the mem-
ory subsystem. Obviously, the capability of the off-chip
memory system largely determines the per-core or even the
overall performance of the entire system. In scenarios where
the off-chip memory is insufficiently fast to handle all mem-
ory transactions in a timely manner, the system’s perfor-
mance is highly likely to be bottlenecked by slow memory
accesses. An intuitive solution to this problem is to increase
off-chip memory bandwidth by enabling more memory
channels. Fig. 1 illustrates the variation of normalized
throughput with the number of memory channels increased
from 1 to 4 when four lbm programs are running on an X86
platform. As can be seen from the figure, enabling more
memory channels significantly increases the off-chip

bandwidth, which in turn translates to an impressive boost
of the system performance. Furthermore, compared to com-
pute-intensive stages, processors consume much less power
during memory-intensive phases when cores wait for data
to be fetched from main memory.

Motivated by this observation, we propose an innovative
technique to mitigate the shortage of off-chip bandwidth
during the memory-intensive phases of program execu-
tions, in order to enhance the overall performance. Our
scheme is built on top of a novel switchable pin design and
an accurate memory-intensive phase identifier. Pins can be
dynamically purposed for power delivery or signal trans-
mission via accessory circuits. These circuits enable pins to
deliver either quality power or signal and require relatively
low area overhead. The total number of pins is growing
slowly and becoming a performance bottleneck for both off-
chip I/O and the power delivery network (PDN) [42].
Switchable pins can be used to increase off-chip bandwidth
without extra package costs, and are more cost-effective
than simply increasing the total number of pins.

We identify memory-intensive phases by measuring key
performance metrics at runtime. Extra off-chip bandwidth is
demanded during phases with high memory intensity.
Therefore, by configuring switchable pins to provide addi-
tional bandwidth for off-chip memory transactions, the
performance of memory-intensive stages can be boosted. The
novelty of our design lies in thatwe improve the performance
of memory intensive workloads with enormous off-chip traf-
ficwithout adding extra processor pins or additional package
costs. This design is orthogonal to most existing works listed
in Section 2 that improve the performance of memory inten-
sive workloads and thus can yield performance improve-
ment when used in conjunctionwith them.

Furthermore, we also investigate the performance bene-
fits of our design [13] with a memory subsystem using
Phase Change Memory (PCM).
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In general, the main contributions of this paper are as
follows:

1. We devise a memory controller that can dynamically
increase the off-chip bandwidth at the cost of a lower
core frequency. Results show a significant increase
in throughput for memory-intensive workloads with
only a slight hardware overhead.

2. We propose a switchable pin design which can con-
vert a power pin to a signal pin or the other way
around. Detailed examinations at both the circuit
and architectural level are conducted to validate the
feasibility of the proposed design.

3. We examine the performance improvement of our
design in various memory configurations. A sensitiv-
ity study is conducted to compare the benefits of our
design using a different number of channels, buses,
banks and ranks.

4. We investigate two approaches for increasing off-
chip bandwidth using switchable pins denoted as
“multi-bus mode” and “wide-bus mode”. We detail
the off-chip bus connections of the two modes and
compare their performances.

5. We design Dynamic Switching to alleviate the
negative side-effects of pin switching by actively
identifying memory-intensive phases and only
switchingwhen certain conditions are satisfied.With-
out prior knowledge of program characteristics, this
policy switches the system to prioritize memory
bandwidth or core performance according to the
identified phase. Our experiments show that signifi-
cant performance improvement can be achieved for
memory intensive workloads while maintaining the
same performance for compute-intensive workloads
as the systemwithout Pin Switching.

6. We integrate a PCM model into our simulations to
evaluate the benefits of Pin Switching in the era of
PCM. Pin Switching significantly improves the per-
formance of the PCM memory subsystem in our
evaluation.

2 RELATED WORK

DRAM-based memory system. Several papers propose to
physically alter the main memory in a DRAM-based mem-
ory system to improve performance and energy efficiency.
Zheng et al. propose setting the bus frequency higher than
the DRAM module to improve channel bandwidth where
the induced bandwidth mismatch is resolved by a synchro-
nization buffer inside the DIMM for data and command
[44]. Papers also explore using low power DDR2 (LPDDR2)

memory, in place of conventional DDR3, due to its higher
energy efficiency [24], [41].

To reduce the delay of bank access, thereby increasing
memory bandwidth, architects optimize the memory sys-
tem at the rank and bank level. Zhang et al. subdivides con-
ventional ranks into mini-ranks with a shorter data width.
These mini-ranks can be operated individually via a small
chip on each DIMM for higher DRAM energy efficiency
[45]. Rank sub-setting is also proposed to improve the reli-
ability and performance of a memory system [9].

Inside a DRAM bank, increasing the row buffer hit ratio
is key to improving energy efficiency and performance. Kim
et al. partition a row buffer into multiple sub-arrays inside a
bank to reduce the row buffer miss rate [20]. An asymmetric
DRAM bank organization can be used to reduce the bank
access latency and improve the system performance [39].
Unlike preceding work, we focus on increasing off-chip
bandwidth to boost the performance of the memory system
as it is the major bottleneck in memory systems of the multi-
core era.

Off-chip bandwidth. Rogersy et al. have already stressed
the significance of off-chip bandwidth [33]. To increase the
overall energy efficiency of a memory system, Udipi et al.
split a 64 bit data bus into eight 8 bit data buses reducing
the queue delay at the expense of data transfer delay [40].
Ipek et al. designs a memory scheduler using principles of
reinforcement learning to understand program behaviors
and boost performance [10]. Mutlu and Moscibroda focus
on boosting multi-threaded performance by providing fair
DRAM access for each thread in their memory scheduler
[30], [31]. Our method of adding additional buses to multi-
ply the off-chip bandwidth is orthogonal to the aforemen-
tioned methods, which focus on the memory scheduler and
bus control.

Tradeoff between core performance and off-chip bandwidth.
Architects employ several sophisticated methods to balance
core and memory performance [10], [14], [16]. However,
few of them are able to increase the off-chip bandwidth
beyond the constraint of static pin allocation.

Compared to previous works, our work proposes to
dynamically increase off-chip bandwidth to boost the per-
formance of memory intensive workloads. This work is
orthogonal to others’ and can be used in conjunction with
them to provide additional performance gains. The main
challenges of this work are modifying the system architec-
ture and identifying memory-intensive phases. The archi-
tecture modifications involve additional circuits attached to
switchable pines and modifying memory controllers to use
the extra memory bandwidth. This design requires an effort
to integrate multiple pieces together, and an algorithm to
exploit the benefits and offset the drawbacks.

3 DESIGN OVERVIEW

Our design aims to boost computer system performance
especially for memory-intensive programs. In conventional
designs, the performances of these workloads are degraded
by a shortage of memory buses which limits off-chip band-
width. We provide increased memory bandwidth, thereby
reducing the average latency of off-chip memory access, at
the expense of a lower core frequency. Rather than retaining
a fixed number of buses connected to the DRAM (typically

Fig. 1. Normalized weighted speedup and off-chip bandwidth of 4 lbm
benchmarks co-running on a processor with 1, 2, 3, 4 memory channels.
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one bus per channel), our design dynamically switches
buses between signal and power pins (VDD or GND) to
reduce the latency for these workloads. This is referred to as
multi-bus mode henceforth, as opposed to single-bus mode
similar to conventional processor operation. Switchable
pins facilitate changing between these two modes as dis-
cussed below. This paper focuses on how to fully exploit
the benefits of substituting power pins for I/O pins during
memory-intensive programs without interfering with com-
pute-intensive programs.

3.1 Pin Switch

Fig. 2 depicts the schematic of two switches and a signal
buffer which serve as the basic units for exchanging power
pins for signal pins. The signal-to-power switch shown in
Fig. 2a is key to alternate a regular pin between the two
modes. As illustrated in this figure, we utilize a dedicated
power switch [27] which sits on the power delivery path to
minimize the corresponding IR drop and power consump-
tion with its ultra-low switch-on resistance, measuring as
low as 1.8 mV. While in the single-bus mode, the power
switch is turned on while two 5 stage tri-state buffers on the
signal line are off. Otherwise, the power switch is turned off
to block noisy interference from the power line, and the tri-
state buffers are turned on in one direction according to
whether data is read from the memory or written by the

memory controller. To compensate for the parasitic capaci-
tances of the power switch, we place the 5 stage tri-state buf-
fers in signal lines to amplify I/O signals. Between each
stage, the buffer size is increased by four times to amplify
the signal with small delay. In total, the 5 stage tri-state
buffer incurs a 0.9 ns delay. On the other hand, the die area
of the aforementioned power switch is commensurate to
that of 3,000 traditional transistors [27]. The number of sig-
nal pins for a DRAM bus could slightly vary depending on
different processors (e.g., with or without ECC). We pick up
125 power switches per bus which consists of 64 data pins
and 61 address and command pins from the pin allocation
of an i5-4670 Intel Processor [5]. The total die area consumes
375,000 (3,000 � 125) traditional transistors. Considering a
billion-transistor chip, the area overhead for the three buses
which will be used in our work is less than 0.12 percent of
the total chip area.

The signal switch shown in Fig. 2b is employed to guaran-
tee that data in the DRAM can be accessed in two modes.
The signal switch uses two pairs of 5 stage tri-state buffers to
enable memory devices that can be accessed via two buses.
The buffers identical to that in the signal-to-power switch
can resist noise from a channel when the other channel is
selected. On the other hand, the signal buffers shown in
Fig. 2c also have strong peak-drive current and sink capabili-
ties. They are utilized to amplify the signal in order to offset
the effect of the parasitic capacitance. As the area of a signal
switch is less than 62.3 um2 based on 45 nm technology with
Cadence tools, the area overhead of the switches is
negligible.

Processors possess specific pin allocations depending on
the package, power consumption, and hardware interface
(the number of memory channels). For our experiment, we
use the pin allocation of an i5-4670 Intel Processor [5] shown
in Table 1. While this processor includes 4 cores and 2 mem-
ory channels, 54.6 percent of the pins are used for power
delivery. Out of the 628 power pins, 125 of these can be
replaced with switchable pins for a single bus. To maintain
the same ratio of VDD to GND pins, we allocate 30 of the
125 switchable pins as VDD pins and the remaining 95 as
GND pins. After a sensitivity study in Section 4.1, in our
experiment we will allocate at most three additional buses
via pin switching because adding more leads to a consider-
able drop in performance.

3.2 Off-Chip Bus Connection

Designing a memory interface which could take the advan-
tage of the switchable pins to dynamically increase off-chip
bandwidth is non-trivial. In this section, we propose an off-
chip bus connection and instructions to configure the
switchable pins for power delivery or for signal transmis-
sion. The two modes of the off-chip bus connection could be
described as the single-bus mode shown in Fig. 3a and the
multi-bus mode shown in Fig. 3b or the wide-bus mode

Fig. 2. a. The circuit of a signal-to-power switch. b. The circuit of a signal
switch. c. The circuit of a signal buffer.

TABLE 1
Pin allocation of an Intel Processor i5-4670

VDD GND DDR3 Others Total

153 475 250 272 1,150
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shown in Fig. 3c. Single-bus mode is the default mode in
which the system stays when turned on, while multi-bus
and wide-bus modes are used to increase the off-chip band-
width and boost the performance of memory intensive
workloads using switchable pins.

Multi-bus mode uses switchable pins to add more mem-
ory buses which consist of data buses and buses of com-
mand and address. The single-bus mode can only access
DRAM by a single bus, while the multi-bus mode can access
them via the individual buses. Two signal-to-power
switches and a signal switch for each signal wire of N-1
buses are needed. These signal-to-power switches configure
the switchable pins for signal transmission where the signal
switches connect the bus to DRAM devices in the multi-bus
mode, otherwise the switchable pin is configured for power
delivery where the DRAM devices are connected to the
shared bus.

Wide-bus mode uses switchable pins to widen the data
bus to increase off-chip bandwidth. In wide-bus mode,
DIMMs share the command and address bus but have dedi-
cated data buses. Wide-bus mode only needs to alter the
states of the signal-to-power switches and signal switches
on the data buses. Thus, it increases the off-chip bandwidth
at a low cost of switchable pins, since it can double the off-
chip bandwidth of a 64 bit memory bus by using 64 switch-
able pins instead of 125 ones for a whole memory bus. Addi-
tionally, it incurs less overhead in the memory controller
since it only needs a modified DRAM interface for moving
data over the wider bus instead of extra DRAM interfaces.
The challenge of implementing the wide-bus mode comes
from keeping equal delays between all DIMMs and proces-
sor pins. It is solvable although it requires considerable
efforts to route the traces connecting the DIMMs and the
pins of processor.

In order to implement the mechanism, we control the sig-
nal-to-power switch detailed in Fig. 2a and the signal switch
detailed in Fig. 2b to route signal and power in the two
modes. The signal to the DRAM interface could be divided
into two groups: command signals and data signals. The
command signals running in one direction could be routed
via the two switches which only need one direction buffer
instead of a pair. On the other hand, the data signals (DQ)
are bi-directional and the switches shown in Fig. 3 could
receive and send signals in both directions.

For the placements of the switches on the printed circuit
board (PCB), one signal-to-power switch for each signal line
should be placed close to the processor package in order to

shorten the signal wire which has to bear high current for
power delivery. To avoid signal reflections caused by an
impedance mismatch, we keep the width of the signal wires
and conduct an experiment to test the feasibility of high cur-
rent via these signal wires. Based on a specification from the
PCB manufacturer [7] and the DDR3 PCB layout guidelines
[6], our simulation with COMSOL shows the MTTF of the
6mil signal wire could be more than 2.5 x 105 hours with a
1A current. On the other hand, the signal switch should be
placed near the corresponding DRAM device to reduce sig-
nal reflections.

3.3 Memory Controller

The data availability of the memory controller is our pri-
mary concern. All the available memory buses in the multi-
bus mode must be fully utilized to achieve maximum band-
width while still allowing all the data in single-bus mode to
be accessed. Due to the complicated synchronization of
memory requests between memory controllers, the switch
between the two bus modes is only implemented inside the
memory controller. Within a memory controller, a memory
interface is designed for each bus to fully exploit the benefit
of the multi-bus mode without the interference of traffic
from other buses compared to the design of multiple buses
sharing a single memory interface.

The memory controller in our design includes dedicated
request queues which buffer the incoming requests to the
buses shown in Fig. 4. Queues individually receive the
requests from the front arbiter which employs its address

Fig. 3. Overview of the hardware design of the off-chip bus connection for switching between single-bus mode and multi-bus mode or wide-bus mode.

Fig. 4. Overview of the hardware design of memory controller for switch-
ing between multi-bus mode and single-bus mode.
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mapping policy when dispatching requests. Once the
requests are residing in the queues, they are fetched by the
back arbiter. While in multi-bus mode, the requests are fed
into their corresponding buses via the corresponding
DRAM interfaces. Because memory interfaces can operate
independently and in parallel, the memory bandwidth can
be amplified by a factor of the number of memory buses. In
the single-bus mode, the memory controller works similar
to a conventional processor and communicates with the
attached DIMMs as appended ranks.

3.4 Area Overhead

The circuit overhead of our design consists of the front arbi-
ter, the end arbiter, and extra DRAM interfaces. As a result
of both arbiters, the cost of dispatching requests without
buffering them should be negligible. Furthermore, the cost
of the additional DRAM interface is inexpensive. The esti-
mated net area of a typical DRAM interface from Opencore
[2] is 5,134 mm2 in 45 nm technology. This estimation is con-
ducted by the Encounter RTL Compiler [3] with the Nan-
Gate Open Cell Library [4]. No more than three additional
buses in total are used in our experiment thus creating a
maximum hardware overhead less than 0.00015 cm2 which
is significantly less than the typical 1 cm2 die area.

3.5 Address Mapping

Data accesses interleave at the page level via different buses
exploiting the benefit of memory-level parallelism while
maintaining a high row buffer hit ratio. Interleaving at the
block level considerably decreases the row buffer hit ratio
resulting in longer off-chip latency per request and
extended queue delay. To reduce row-buffer conflicts, we
employ XOR bank indexing which could effectively reduce
bank conflicts resulting from resource-contention-induced
traffic and write-backs. This permutation distributes the
blocks stored in the last level cache (LLC) into different
banks as opposed to possibly including tags of physical
addresses containing the same bank index. We imple-
mented XOR bank indexing which is a common way to
reduce the number of row-buffer conflicts. XOR bank index-
ing is used in all cases including the baseline; reduces the
bank access latency and the queuing delay; and helps us to
show the actual benefit of our design since the queuing
delay would be much larger without XOR bank indexing.

3.6 Signal Integrity

Signal integrity is analyzed to demonstrate feasibility in the
single-bus and the multi-bus modes. We simulate SPICE
models of our accessory circuit as well as PCB transmission
lines, bond wire inductance, and driver capacitance associ-
ated with the device package in the AMS packages of Men-
tor Graphic as shown in Fig. 5. The parameters are derived
from previous works [24], [28]. Signal integrity challenges
are alleviated since the DDR3 command signal is unidirec-
tional and its speed is no more than that of the data signals
[24]. In this study, we only analyze the effect of our acces-
sory circuit on the data signals which could be viewed as
the worst case for all the signals.

In Figs. 6a, 6b, 6c, 6d, the eye patterns of writing data
(controller to de vice) and reading data (device to controller)

in the two modes are derived from the corresponding SPICE
models in Figs. 5a, 5b, 5c, 5d respectively. They have clear
eyes since the signal-to-power switch alleviates the effect of
the parasitic capacitance of the power switches. Further-
more, the signal switches as well as signal buffers alleviate
the signal reflections caused by discontinuities. Thus, the
results indicate our accessory circuit could maintain the sig-
nal quality in the two modes.

3.7 Power Delivery Simulation

In this section, we assess the repercussions experienced by
the PDN when the switchable pins are shifted from single-
busmode to multi-busmode. The PDN is depicted in Fig. 7a.
The power delivery path is modeled with RL components
(i.e., resistors and inductors) connected in series across the
PCB, the package, and the silicon die. Decoupling capacitors
are introduced between each individual PDN to control any
voltage fluctuations. The on-chip power grids and processor
circuits on the silicon die are modeled separately as RL com-
ponents with an ideal current source. Fig. 7b illustrates the
RL model of the Controlled Collapse Chip Connection (C4)
pads [15] in which the resistance of the on-state power

Fig. 5. Spice models for signal integrity simulation.
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switches is taken into consideration. Table 2 lists the parame-
ter values obtained from prior work [19].

Power Delivery Network simulations are used to calcu-
late the maximal power consumptions and resultant fre-
quencies as follows. Simulations are performed in PSPICE
to evaluate the impact of Pin Switching. Due to resistance
along the power delivery path, an IR drop exists between
the supply voltage and load voltage as current flows
through the PDN. We assume a normalized IR drop should
be upper-bounded by 5 percent as prior work dictates [21],
[22]. This implies that the maximum currents are 125, 104,
80, and 56 A for the baseline and then for Pin Switching
mechanisms with one, two, and four borrowed buses
respectively. In other words, the three Pin Switching dia-
grams switch 125, 250, and 375 power pins to signal pins
providing 16.8, 36.0, and 55.2 percent less current with 19.9,
39.8 and 59.7 percent less power pins respectively. The per-
centage of current decrease is less than that of proportional
power pin quantity decrease because the IR drop depends
on the resistance in the PCB and power grids.

We assume the processor employs a dynamic voltage
and frequency scaling (DVFS) mechanism supporting 4
voltage and frequency operating points. The frequency can
be scaled down from 4.0 to 1.2 GHz. Correspondingly, the
voltage will be decreased from 1.0 to 0.64 V. According to
McPAT [22], the baseline design can work at a frequency
of 4.0 GHz given the power delivery information. How-
ever, the processor frequency must be decreased individu-
ally to 3.2, 2.4, and 1.2 GHz when the power pins for one,
two, and three sets of memory channel pins are borrowed
as I/O pins respectively. The results shown in Table 3 are
used in the following evaluation. For the mixed workloads,
comprised of two compute-intensive programs and two
memory-intensive programs, we use two buses and per-
core DVFS [38], which is the configuration used in this
experiment after we explored the configuration space for
these workloads.

Wide-bus mode, introduced in Section 3.2, is used for
comparing the performance of multi-bus mode. Wide
bus mode uses pins to widen the data path of memory
buses instead of increasing the number of buses. Wide
bus mode has two configurations: (1) the width of every
memory bus is 128 bits and all cores are running at 3.6
GHz; (2) the width of memory buses is 256 bits and all
cores are running at 2.8 GHz. These configurations are
calculated using the same method used for multi-bus
mode.

Fig. 6. a. DQ Read in multi-bus mode (device to controller). b. DQ Write in multi-bus mode (controller to device). c. DQ Read in single-bus mode
(device to controller). d. DQ write in single bus mode (controller to device).

Fig. 7. RLC power delivery model.

TABLE 2
Power Network Model Parameters

Resistance Value Inductance Value

RPCB 0.015 mV LPCB 0.1 nH
RPKG, C 0.2 mV LPKG,C 1 pH
RLOAD,C 0.4 mV LLOAD,C 1 fH
RGRID 0.01 mV LGRID 0.8 fH
RC4, SINGLE 40 mV LC4, SINGLE 72 pH
RSWITCH,ON 1.8 mV

Capacitance
CPKG,C 250 mF CLOAD,C 500 nF
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3.8 Runtime Switch Conditions

Designing a predictor to choose the most beneficial mode
for the next interval is non-trivial for multi-programmed
workloads. Simply switching based on the amount of con-
sumed off-chip bandwidth is not sophisticated enough to
improve the overall performance of a system in which only
some of the programs that suffer from long off-chip access
latency are likely to benefit from multi-bus mode. To iden-
tify intervals that will benefit from Pin Switching it is neces-
sary to estimate both the performance change of each
program and the overall benefit of switching for the follow-
ing interval based on the current performance before a
switching occurs. We introduce a metric called the switch-
ing benefit BijðTcÞ to help identify the most beneficial mode
for each 1 millisecond interval, where BijðTcÞ represents the
estimated reward for running the interval following time Tc

in mode j instead of mode i. Based on the history of the

switching benefit, we predict ~BijðTcÞ as the switching

benefit for the following interval using ~BijðTcÞ ¼
PN

k¼1 BijðTc � k�TintervalÞ, where BijðTc � k�TintervalÞ repre-
sents the switching benefits detailed in equation (1) and N
is the length of the history to consider. The value of N
should be determined based on the length of memory-inten-
sive or computational-intensive phases in the workloads. If
N is close to the length of phases, Dynamic Switching will
incur a considerable overhead since it holds the system in
the wrong mode for N-1 intervals. If N is chosen to be much
smaller than the length of phases, Dynamic Switching
become sensitive to noises and incurs some extra switching
overhead. To find the optimal value of N, we tested the per-
formance of Dynamic Switching on the selected workloads
while sweeping the value of N from 1 to 4. We compared
the performances of Dynamic Switching and picked up the
optimal value of N, which was found to be 2 for our
experiments.

If the predicted switching benefit is negative, the system
will stay in mode i, otherwise, it will switch to mode j.

The switching benefit is calculated using the following
equation:

BijðTcÞ ¼
Xp

k¼1

ðWSj;k Tcð Þ �WSi;kðTcÞÞ; (1)

where WSi;kðTcÞ and WSj;kðTcÞ stand for the estimated
weighted speedups for program k at time Tc in mode i and
mode j respectively, while p represents the number of
simultaneously executing programs which is equal to 4 in
our experiment. The weighted speedup of each program in
mode i during the interval can be estimated based on the
information derived from hardware counters and off-line

profiling, since the system is running in mode i during the
current interval. The weighted speedup is calculated as fol-
lows:

WSi;k Tcð Þ ¼ Talone;i;kðTcÞ=Tshared;i;kðTcÞ
Talone;i;k Tcð Þ ¼ Committed Instalone;kðTcÞ=ðaverage IPSalone;kÞ;
where Talone;i;kðTcÞ stands for the execution time of the same
instructions running without interference from co-runners
and Tshared;i;kðTcÞ denotes the execution time of a fraction of
program k running with others during the current interval
which is equal to the length of an interval (1 millisecond).

Furthermore, Committed Instalone;i;kðTcÞ stands for the
number of committed instructions during the interval fol-
lowing Tc of program k, directly derived from a hardware
counter since it should be identical to the number when pro-
gram k shares the main memory system with others. Aver-
age IPS obtained from off-line profiling denotes the average
number of executed Instructions Per Second (IPS) when
program k running alone. These values are used to approxi-
mate Talone;i;kðTcÞ based on the assumption that the IPS of
each program is relatively steady when it runs alone, since
an accurate estimation of Talone;i;kðTcÞ is challenging [30].

The estimation of the weighted speedup of each program
in currently unused mode j is more difficult compared to
that in current mode i, since we can only estimate the per-
formance of mode j according to the information collected
in mode i. The weighted speedup is calculated as follows:

WSj;k Tcð Þ ¼ Talone;j;kðTcÞ=Tshared;j;kðTcÞ
Tshared;j;k Tcð Þ ¼ Ton�core;j;kðTcÞ þ Toff�core;j;kðTcÞ;

where Talone;j;kðTcÞ is identical to Talone;i;kðTc) and
Tshared;j;kðTcÞ represents the execution time of program k
running with others in mode j. It can be divided into two
parts based on whether the execution times vary with core
frequency: Ton�core;j;kðTcÞ denotes the portion of the execu-
tion time spent inside the core which is inversely propor-
tional to core frequency, while Toff�core;j;kðTcÞ expresses the
portion of execution time incurred by activity outside the
core. We estimate Ton�core;j;kðTcÞ based on the corresponding
time Ton�core;i;kðTcÞ in mode i using:

Ton�core;j;k Tcð Þ ¼ Ton�core;i;k Tcð Þ�freqi;k=freqj;k;
where freqi;k and freqj;k are the frequencies in mode i and
mode j respectively. We estimate Ton�core;i;kðTcÞ with the
same breakdown using

Ton�core;i;kðTcÞ ¼ Tinterval � Toff�core;i;kðTcÞ
Toff�core;i;k Tcð Þ ¼ TLLC;i;k Tcð Þ þ TDRAM;i;kðTcÞ;

where TLLC;i;kðTcÞ is the execution time incurred in the
shared last level cache in mode i, which is estimated using
the number of the accesses to LLC, and TDRAM;i;kðTcÞ
denotes the execution time incurred by activity in the
DRAM controller in mode i. TDRAM;i;kðTcÞ is the cumulative
time spent when there is at least one in-flight read requests
in the DRAM controller, since it can avoid the overestima-
tion due to the overlap of multiple in-flight read requests
for single thread [32].

On the other hand, Toff�core;j;kðTcÞ is mainly affected by
the number of buses between different modes since the

TABLE 3
Processor Power and Frequency Parameters

for Different Number of Buses

BUS 1 2 3 4

Current (A) 125 104 80 56
Voltage (V) 1 0.88 0.76 0.64
Power (W) 125 92 61 36
Frequency (GHz) 4 3.2 2.4 1.2
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queue delay inside the DRAM controller is typically
decreased as more off-chip buses are added. We calculate
the time using:

Toff�core;j;k Tcð Þ ¼ Toff�core;i;kðTcÞ þ Tqueue delay;j;kðTcÞ
� Tqueue delay;i;kðTcÞ
Tqueue delay;j;k Tcð Þ ¼ Tqueue delay;i;k Tcð Þ�
Nrequest;j;kðTcÞ=Nrequest;i;kðTcÞ;

where Tqueue delay;i;kðTcÞ and Tqueue delay;j;kðTcÞ denote the exe-
cution time incurred inside the queue of the DRAM control-
ler in modes i and j respectively, while Nrequest;i;kðTcÞand
Nrequest;j;kðTcÞ stand for the average number of waiting
requests per incoming read requests which have to wait
until they have been completed in modes i and j.
Tqueue delay;i;kðTcÞ can be estimated by the time when there is
at least one read request in the queue of DRAM controller.
Tqueue delay;j;kðTcÞ can be estimated by sampling the number
of waiting requests in different modes.

3.9 Switching Overhead

Any runtime overhead incurred by switching comes from
the DVFS and IR drop fluctuations caused by the pin switch.
The overhead for DVFS is 20 ms [23] and the time for the IR
drop to re-stabilize is also bounded by 20 ms according to
our power delivery simulation. Because both of these delays
overlap each other, the estimated total overhead is 20 ms
and is taken into consideration. Therefore, the penalty is 40
ms when a phase is incorrectly identified. However, the
overall switching overhead is still negligible since the aver-
age length of the identified phases shown is much longer
than the overhead in our workloads. Since most programs
switch less than five times during execution, nearly all the
program phase transitions have been identified by the
predictor.

4 MEMORY SUBSYSTEMS OF PCM

Pin Switching provides a great opportunity for increasing
the off-chip bandwidth of CPUs using conventional mem-
ory technology. As DRAM is experiencing difficulties with
memory technology scaling, architects are intensively
studying potential alternative memory technologies such as
Phase-Change Memory (PCM). Although PCM exhibits dif-
ferent features from DRAM, Pin Switching is expected to
improve the performance of PCM subsystems.

The scaling of memory technology has improved memory
subsystems with increasing density, growing capacity and
decreasing cost over the past decade. However, this scaling
faces challenges since the shrinking size of cell leads to a
smaller capacity for storing charges. This trend increases leak-
age power and refresh-rate frequency, and thus reduces
energy efficiency and bandwidth of memory devices. Given
these challenges, scaling DRAM beyond 40 nanometers will
be increasingly difficult [1]. Phase-change memory is a prom-
ising candidate to replace conventional memory technology
to enable the continuous scaling ofmemory technology [26].

There are several memory subsystems proposed by archi-
tect to replace conventionalmemory devices using PCMdevi-
ces [25], [29], [43]. We evaluate the benefits of switchable pins
based on the performance of a PCM subsystem [26]. Though
PCM has recently seen continuously decreasing access
latency, it is still several times larger than that of DRAM. Pin
Switching increases off-chip bandwidth, and also reduces this
memory subsystem access latency. Thus, it may alleviate the
drawbacks of PCMby reducing the queuing delay ofmemory
requests. Furthermore, PCM has a relatively longer write
latency and thus reduces the utilization of off-chip bandwidth
since a write will hold the entire bus until it is completed. Pin
Switching mitigates this problem by allowing more simulta-
neous in-flightmemory requests.

5 EXPERIMENTAL SETUP

To evaluate the benefit of our design, we simulate the x86
system documented in Table 4 using the Gem5 simulator
[11]. We modify the DRAM model integrated in Gem5 to
accurately simulate the proposed method. Throughout the
experiments, multi-bus mode will utilize all available buses
with the corresponding core frequency shown in Table 3.
The buses are partially unutilized with a high core fre-
quency between multi-bus and single-bus modes. We
employ off-chip DVFS to maintain the same frequency on
all 4 cores at any given time. We also setup a timing model
of PCM based on [26] shown in Table 4.

5.1 Performance and Energy Efficiency Metrics

Weuseweighted speedup [37] lists as follows to represent the
throughput of our system shown in the following equation:

Weighted Speedup ¼
XN�1

i¼ 0

1=TShared
i

1=TAlone
i

:

Here, TShared
i and TAlone

i denote the execution time of a
single program running alone and the execution time run-
ning with other programs respectively. Because the IPC is
distorted by the frequency change from the employed
DVFS, the execution time is used in place of it.

We utilize Energy per Instruction (EPI) for the evaluation
of energy efficiency. This metric can be obtained from divid-
ing consumed energy by the number total number of
instructions committed.

5.2 Workloads

Various multi-programmed workloads consisting of SPEC
2006 benchmarks [34] are used for our evaluation. As listed
in Table 5, the benchmarks are categorized into two separate

TABLE 4
Configuration of the Simulated System

Processor 4 X86 OoO cores with issue width 4
L1 I cache Private 32 KB, 8 way, 64B cache line, 2 cycles
L1 D cache Private 32 KB, 8 way, 64B cache line, 2 cycles
L2 Cache Shared 8 MB, 8 way, 64B cache line, 20 cycles
Memory controller FR-FCFS scheduling, open row policy
Channel 1
Bus per channel 2 /3/4 (additional buses 1/2/3)
Rank per bus 2
Bank per rank 8
Bank 8�8 DDR3-1600 chips Parameters of

DDR3-1600 fromMicron datasheet [28]
PCM tRCD ¼ 55ns, tCL ¼ 12.75ns, tRP ¼ 150ns

CHEN ET AL.: USING SWITCHABLE PINS TO INCREASE OFF-CHIP BANDWIDTH IN CHIP-MULTIPROCESSORS 281



groups based on their relative memory intensities: memory-
intensive programs and compute-intensive programs. Each
workload consists of four programs from one of these
groups to represent a memory-intensive workload or com-
pute-intensive workload accordingly. Memory-intensive
workloads are used to demonstrate the benefit of multi-bus
mode while the compute-intensive workloads demonstrate
that there are negligible side-effects.

We select a simulated region of 200 million instructions
for each benchmark based on their memory characteristics
collected from Pin [7]. The regions are independently exe-
cuted to gather instructions per cycle (IPC), last-level-cache
misses per 1,000 instructions (LLC MPKI), row buffer hit
ratio, and the bandwidth displayed in Table 6. The

bandwidth and LLCMPKI numerically portray the memory
access intensity, making them indicators of our design’s
potential benefit. Row buffer hit ratio reveals the memory
access locality and latency. Programs with low row buffer
hit ratios suffer from longer bank access latency due to the
row buffer miss penalty. Longer memory accesses increase
the queue delay which impedes the following incoming
requests in the buffer.

The simulation for a mixed workload does not end until
the slowest program finishes its 200 million instructions.
Faster programs continue running after committing the first
200 million instructions. Execution time of each program is
collected after the program finishes its instructions.

We also add four multi-threaded workloads including
art [35], lbm [36], srad [12] and backprop [12] to evaluate
the performance of Dynamic Switching. We manually select
memory-intensive regions from the workloads and run 100
million instructions per thread in each workload.

6 RESULTS

The execution latency of a program is composed of the on-
chip and off-chip latency. The percentage of latency in the
total execution time reveals which factor tends to be more
influential to the overall performance of a workload. In
Fig. 8 we demonstrate the off-chip latency for memory-
intensive workloads and on-chip latency for the compute-
intensive workloads, since they are the main contributors to
the execution latency of the two categories of workloads,
respectively. Specifically, more than 80 percent of the
latency of memory-intensive workloads comes from off-
chip latency, while more than 60 percent of the latency of
compute-intensive workloads are from on-chip latency.
This implies that the memory-intensive workloads could be
sped up by our Pin Switching, while the others are unlikely.

6.1 Memory-Intensive Multi-programmed
Workloads

We show the performance benefits for memory–intensive
workloads by switching the system into multi-bus mode.
We test the system in various memory configurations and
compare performance with that of wide-bus mode. Finally,
we demonstrate that the benefits of multi-bus mode can be
retained using Dynamic Switching and further increased by
prefetching.

Fig. 9 shows the performance improvements of mixed
memory-intensive workloads enhanced by two, three, and
four buses in multi-bus mode. The weighted speedup of each
case normalized against its own baseline and the geometric

TABLE 5
Selected Multi-Programmed Workloads

workload

Memory-intensive programs
M1 lbm milc soplex libquantum
M2 lbm milc leslie3d libquantum
M3 lbm milc soplex leslie3d
M4 lbm soplex libquantum leslie3d
M5 milc soplex libquantum leslie3d
M6 mcf mcf mcf mcf
M7 mcf mcf astar astar
M8 astar astar astar astar

Mixed programs

MIX1 lbm milc bzip2 bzip2
MIX2 lbm milc omnetpp omnetpp
MIX3 lbm soplex omnetpp omnetpp
MIX4 milc soplex omnetpp omnetpp
MIX5 lbm milc omnetpp bzip2
MIX6 milc soplex omnetpp bzip2

Compute-intensive programs
C1 bzip2 bzip2 bzip2 bzip2
C2 hmmer hmmer hmmer hmmer
C3 gromacs bzip2 omnetpp h264ref
C4 gromacs bzip2 sjeng h264ref
C5 gromacs omnetpp sjeng h264ref
C6 bzip2 omnetpp sjeng h264ref

TABLE 6
Benchmark Memory Statistics

Benchmark IPC
LLC
MPKI

Row buffer
hit ratio

Bandwidth
(MByte/s)

libquantum 0.30 58.14 96% 4441.57
milc 0.16 41.86 81% 3641.48
leslie3d 0.62 20.72 85% 3311.84
soplex 0.31 31.34 80% 2501.53
lbm 0.36 23.12 87% 2151.90
mcf 0.15 57.54 19% 2138.81
astar 0.25 29.12 51% 1871.53
omnetpp 1.38 0.49 83% 172.09
gromacs 1.34 0.38 82% 129.60
h264 1.13 0.13 32% 38.03
bzip2 1.13 0.12 94% 35.54
hmmer 1.95 0.00 38% 0.28
art (OMP) 1.4 17.56 88% 6390.85
lbm (OMP) 2.72 8.24 57% 4862.41
srad (OMP) 2.16 12.04 62% 6838.84
backprop (OMP) 0.4 69.61 94% 7203.58

Fig. 8. Normalized off-chip and on-chip latencies of workloads against
total execution time.
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mean (GM) speedup are reported here. The baseline is the
simulated system fixed in the single-bus modewith the corre-
sponding number of buses and DRAMdevices when the pro-
cessor runs at 4.0 GHz. Remarkably, the improvements
experienced with three buses consistently surpass two and
four buses in all workloads. These results stem from the bal-
ance between core performance and off-chip bandwidth that
the three buses experience to maximize the throughput of the
simulated system. Based on our specific hardware configura-
tion and selected workloads, the multi-bus mode with three
buses is the optimal choice and therefore referred to as the
default configuration for the discussion of Static andDynamic
Switching that will be presented in later sections. Fig. 10 illus-
trates the performance improvement for multi-bus mode
tested using various DRAM configurations. The weighted
speedup for each configuration is normalized against the
same configuration in single-bus mode. As can be seen from
the figure, all banks and ranks have weighted speedups
greater than 32 percent. As the number of ranks per channel
or the number of banks per rank increases, improvement is
slightly diminished due to the resulting lower row buffer hit
ratio causing shorter bank access latency.

Wide-bus mode is also tested in the simulated system
with a memory bus and the three bus width configurations

(64, 128, 256 bits). The three corresponding core frequencies
for the bus widths are 4, 3.6, 2.8 GHz derived based on the
pin configuration. The baseline uses a bus width of 64 bits
and a core frequency of 4 GHz.

Fig. 11 shows the performance improvement of wide-bus
mode in two separate configurations: 128bit_3.6 GHz in
which the processor runs at 3.6 GHz with a 128-bit memory
bus; and 256bit_2.8 GHz in which the processor runs at 2.8
GHz with a 256-bit memory bus. 128bit_3.6 GHz and
256bit_2.8 GHz have a normalizedweighted speedup in geo-
metric mean of 1.1 and 1.15 respectively for memory inten-
sive workloads. These moderate performance benefits are
less than that of multi-bus mode especially for the M6 work-
load which consists of four instances of mcf. The M6 work-
load suffers from a high row buffer miss ratio and the
resultant longer bank access latencies compared to the laten-
cies of moving the data over the bus. Since wide-bus mode
only reduces bus latencies and cannot hide bank latencies, it
delivers less performances benefits for this kind of applica-
tions. The increasing off-chip bandwidth in wide-bus mode
presents a similar trend for the memory intensive workloads
shown in Fig. 12. In conclusion, wide-bus mode delivers less
performance benefits compared to multi-bus mode. It only
shortens the time of transferring data over the bus for amem-
ory request while multi-bus mode hides the latencies of
accessing banks and moving data over the bus by allowing
multiple in flight memory requests. Thus, we prefer multi-
bus mode over wide-bus mode for increasing off-chip band-
width of processors in the following experiments.

For multi-bus mode, we presents the benefits of Static
Switching and Dynamic Switching with three buses versus
the baseline of a simulated system that does not use the pin
switch mechanism on memory-intensive workloads in
Fig. 13. Both schemes are able to speed up the execution of
all workloads by more than 1.3 times, while an

Fig. 9. The normalized weighted speedup of memory-intensive work-
loads with two, three, and four buses against the baseline.

Fig. 10. The average normalized weighted speedup of memory work-
loads in geometric mean using multi-bus mode. Each normalized against
the same configuration in single-bus mode.

Fig. 11. The performance of memory intensive workloads for the baseline
(core frequency of 4 GHz and amemory bus of 64 bits) and two configura-
tions of wide bus mode (core frequency of 3.6 GHz and a memory bus of
128 bits; core frequency of 2.8 GHz and amemory bus of 256 bits).

Fig. 12. The off-chip bandwidth of memory intensive workloads for the
baseline (core frequency of 4 GHz and a memory bus of 64 bits) and two
configurations of wide busmode (core frequency of 3.6 GHz and amemory
bus of 128 bits, core frequency of 2.8 GHz and amemory bus of 256 bits).

Fig. 13. The normalized weighted speedup of memory intensive work-
loads boosted by static switching and dynamic switching with three
buses against the baseline
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approximately 42 percent performance improvement is
observed for M2. The geometric means of Static Switching
and Dynamic Switching are respectively 1.34 and 1.33 due
to more than 99 percent of the running time being identified
as typical memory-intensive phases by Dynamic Switching.

The benefit of the multi-bus mode is mainly attributed to
the increase of consumed bandwidth as shown in Fig. 14.
The increase is similar to this of the weighted speedup in
Fig. 13. For example, M2 and M7 gain 47 and 39 percent off-
chip bandwidth when switching from the single-bus mode
to the multi-bus mode for static switching, while their per-
formances are improved by 44 and 36 percent respectively.
This similarity results from the fact that their execution
latencies are largely dominated by off-chip latency. On the
other hand, Dynamic Switching achieves a slightly smaller
increase in bandwidth, which results in its performance
being close to that of Static switching.

The throughput improvement of Dynamic Switching
could be strengthened by using prefetchers which can uti-
lize extra bandwidth brought by additional buses in our
design. In our experiment, we use a stride prefetcher in the
last level cache to demonstrate the benefit. More sophisti-
cated prefetchers could be employed to further improve the
system performance. The stride prefetcher used here has a
prefetch degree of 1, 2, or 4, which denotes the number of
prefetches issued on every memory reference. As illustrated
in Fig. 15, the geometric mean of the performance improve-
ments of Dynamic Switching for all memory-intensive
workloads with a prefetching degree of 1, 2, and 4 are 1.51,
1.64, and 1.79 respectively, compared with those of the base-
line which are 1.10, 1.17, and 1.27. The gap of the

improvements between Dynamic Switching and the base-
line increases as the prefetch degree increases, which imply
an aggressive stride prefetch could benefit more from
Dynamic Switching. This observation could be demon-
strated in all workloads except M6 which only gains a slight
performance improvement from increasing the prefetch
degree, since the stride prefetcher has a low coverage on
mcf [17]. This performance improvement could be verified
by the higher consumed off-chip bandwidth of Dynamic
Switching shown in Fig. 16. It implies that Dynamic Switch-
ing could boost the performance of the prefetcher by pro-
viding more off-chip bandwidth.

Dynamic Switching reduces the latencies of off-chip
accesses by slashing the queuing delay as shown in the com-
parisons in Figs. 17 and 18. Fig. 17 shows the breakdown of
the access latencies for the baseline which are normalized
against the total latency for each workload, while Fig. 18
shows the same breakdown using Dynamic Switching
which is also normalized against the total latencies of the

Fig. 14. The normalized bandwidth of the baseline, static pin switching,
and dynamic pin switching for memory-intensive workloads.

Fig. 15. The improved throughput of dynamic switching boosted by a stride prefetcher (degree ¼ 1, 2, 4) for memory-intensive workloads.

Fig. 16. The off-chip bandwidth of dynamic switching improved by a stride prefetcher (degree ¼ 1, 2, 4) for memory-intensive workloads.

Fig. 17. Breakdown of the access latency of off-chip read requests for
memory-intensive workloads for the baseline.

Fig. 18. Breakdown of access latency of off-chip read requests for mem-
ory-intensive workloads using dynamic switching.
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baseline. The queueing delay in Fig. 17 incurs more than 60
percent the total latency which is larger than the latencies of
transferring data over buses and accessing banks. The
approximate 40 percent reduction of the total latency in
Fig. 18 comes from the decreased queuing delay caused by
Dynamic Switching. For instance, the queuing delay of the
M2 workload drops from 0.76 to 0.38 while the total latency
is reduced from 1.0 to 0.62.

The energy efficiency of the system could be also
improved by Dynamic Switching. Fig. 19 details the energy
efficiency improvement of the simulated system. In theory,
the energy savings come from two sources: (1) low voltage
and frequency scaling; and (2) the execution reduction time
stemming from multiple buses brought by pin switching.
We quantify the first part by setting the core frequency of
the simulated system to 2.4 GHz (relating to the frequency
of our multi-bus mode scheme) with the corresponding
voltage for single bus. The results depicted as gray bars in
Fig. 19 demonstrate 40 percent improvement in the geomet-
ric mean of the EPI for all the work loads over the baseline.
Note that the overall execution time of this setting is only
slightly longer than that of the baseline system because all
workloads are memory-intensive. Furthermore, the multi-
bus mode offers an average of 66 percent improvement in
the geometric mean of the EPI for all the workloads over the
baseline resulting from execution time reduction.

6.2 Memory-Intensive Multi-threaded Workloads

Figs. 20 and 21 show that Dynamic Switching with classic
stride prefetching improves performance and increases

consumed off-chip bandwidth of multi-threaded pro-
grams. All results are normalized against the baseline.
Dynamic Switching and the stride prefetching with the
degree 4 improve performance by an extra 102 percent in
geometric mean providing the best performance com-
pared to the baseline. Prefetching can exploit the benefits
of multi-bus mode for multi-threaded programs, increas-
ing the consumed off-chip bandwidth shown in Fig. 21.
For instance, Dynamic Switching and the prefetching
with degree 4 yields an extra 29 percent performance
improvements compared to the baseline with the same
prefetching degree for the art workload, while Dynamic
Switching delivers a mere 5 percent performance
improvement compared to the baseline without prefetch-
ing. We conclude that this benchmark cannot generate
am adequate number of memory requests to saturate the
off-chip bandwidth, and thus benefits from the prefetch-
ing which can increase memory level parallelism.

6.3 Memory-Intensive Multi-Programmed
Workloads on the Memory Subsystem
Using PCM

Fig. 22 shows the performance improvement of Dynamic
Switching combined with a stride prefetcher (degree ¼
1,2,4) for memory-intensive workloads running on the
PCM subsystem. The results are normalized against the
weighted speedup of Dynamic Switching without a pre-
fetcher. Dynamic Switching consistently delivers perfor-
mance benefits for all workloads and achieves an average
weighted speedup of 1.97 in geometric mean without pre-
fetching. Dynamic Switching and the stride prefetcher
(degree 4) achieve the largest performance improvement
with an average weighted speedup of 2.27. The prefetcher
yields an extra 0.54 weighted speedup compared to
Dynamic Switching and the baseline using a stride pre-
fetcher (degree ¼ 4). The performance improvement
stems from increasing off-chip bandwidth as shown in
Fig. 23. Dynamic switching without a prefetcher increases
the off-chip bandwidth by 58 percent compared to the
baseline, while the prefetcher (degree 4) increases off-
chip bandwidth by 22 percent in comparison to Dynamic
Switching and the baseline. Dynamic Switching and the

Fig. 19. The normalized EPI of dynamic switching for memory intensive
workloads with three buses, and the EPI from DVFS (running on 2.4
GHz in single-bus mode).

Fig. 20. Performance evaluation of multi-threaded workloads with dynamic switching and prefetching (degree ¼ 1, 4).

Fig. 21. Normalized consumption of off-chip bandwidth of multi-threaded workloads using dynamic switching and prefetching (degree ¼ 1, 4).
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prefetcher exhibit remarkable performance improvements
and increase off-chip bandwidth for all workloads except
M6. Dynamic Switching still deliveries considerable per-
formance benefits for M6 though the prefetcher delivers
little benefit as M6 suffers from the low latency of row
buffer misses and has irregular access patterns which are
hardly captured by the stride prefetcher.

6.4 Memory-Intensive Multi-Threaded Workloads
on the Memory Subsystem Using PCM

Figs. 24 and 25 show that Dynamic Switching with classic
stride prefetching improves performance and increases con-
sumed off-chip bandwidth of multi-threaded workloads on
a PCM subsystem. All results are normalized against the
baseline. Dynamic Switching and the stride prefetching
with degree 4 improve performance by an extra 130 percent
in geometric mean providing the best performance com-
pared to the baseline. Prefetching can exploit the benefits of
Pin Switching, increasing the consumed off-chip bandwidth
as shown in Fig. 25. Additionally, Dynamic Switching can
mitigate the performance loss caused by the longer latency

of row buffer misses in PCM. For instance, it achieves the
highest performance improvement in the lbm workload
which has the lowest row buffer hit rate of 57 percent.

6.5 Mixed Multi-Programmed Workloads

Fig. 26 shows the system performance improvement of
mixed compute-intensive and memory-intensive workloads
using Pin Switching. The geometric means of the normalized

Fig. 22. Improved throughput of dynamic switching boosted by stride prefetchers (degree ¼ 1, 2, 4) for memory-Intensive workloads using PCM.

Fig. 24. Performance evaluation of multi-threaded workloads using dynamic switching and prefetching (degree ¼ 1, 4) on the PCM subsystem.

Fig. 23. Normalized off-chip bandwidth of dynamic switching boosted by stride prefetchers (degree ¼ 1, 2, 4) for memory-Intensive workloads using
PCM.

Fig. 25. Normalized consumed off-chip bandwidth of multi-threaded workloads using dynamic switching and prefetching (degree ¼ 1, 4) on the PCM
subsystem.

Fig. 26. Normalized weighted speedup of mixed workloads boosted by
static switching and dynamic switching.
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weighted speedup from using Static Switching andDynamic
Switching are 1.10 and 1.09 respectively, implying that
Dynamic Switching captures the most benefit of Pin Switch-
ing for these mixed workloads. Fig. 27 shows the co-
improvement of Pin Switching and stride prefetching with
varying degrees (1, 2, 4) compared with the improvement of
the prefetching alone. The geometric means of the normal-
izedweighted speedup of Dynamic Switchingwith prefetch-
ing degree (1, 2, 4) are 1.15, 1.16, 1,15 respectively, while the
means with prefetching alone are all 1.04. The co-optimiza-
tion for all workloads saturates, or even slightly drops as the
degree increases, which implies aggressive prefetching
wastes off-chip bandwidth rather than exploiting the benefit
of MLP for workloads. This can be confirmed by observing
the performance of the baseline using prefetching alone as
the degree increases.

6.6 Mixed Multi-Programmed Workloads on the
Memory Subsystem Using PCM

Fig. 28 shows the performance improvement of Dynamic
Switching combined with a stride prefetcher (degree ¼ 1, 4)
for mixed workloads running on the PCM subsystem. The
results are normalized against the baseline. Dynamic Switch-
ing with prefetching yields considerable performance bene-
fits for all the mixed workloads and achieves an average
weighted speedup of 1.26 in geometric mean. The combina-
tion of Dynamic Switching and the prefetchingwith a degree
of 4 yields slightly more performance improvements than
Dynamic Switching without prefetching, and delivers an

average weighted speedup of 1.29, while the baseline using
the same prefetching decreases the average performance by
4 percent. Prefetchers might increase the latencies of off-chip
memory requests from the cores by generating additional
requests which compete for the already insufficient off-chip
bandwidth.

6.7 Compute-Intensive Multi-Programmed
Workloads

Fig. 29 depicts the Dynamic Switching efficiency of compute-
intensive workloads in comparison to Static Switching at the
cost of lower core frequency and the baseline. The geometric
mean of performance degradation for compute-intensive
workloads introduced by the Static Switching scheme is 29
percent. The worst case results in a 35 percent slowdown of
C5. In contrast, Dynamic Switching retains the same perfor-
mance as the baseline during compute-intensive workloads
because our metric successfully identifies non-memory
intensive phases when the rewards of the multi-bus mode
are limited. Furthermore, Dynamic Switching surpasses the
baseline for the C1 workload by identifying compute-inten-
sive and memory-intensive phases. Overall, Dynamic
Switching exhibits no performance penalty on compute-
intensive workloads, in contrast to Static Switching.

The energy consumption of the Dynamic Switching
mechanism is almost the same as the baseline since the pro-
cessor runs at single-bus mode most of the time for com-
pute-intensive programs. Therefore, we do not illustrate the
EPI comparison figure here.

7 CONCLUSION

Limited off-chip memory bandwidth has been widely
acknowledged as a major constraint preventing us from
obtaining commensurate performance benefits from the faster
processor cores. This is especially challenging in the current
multi-core era due to a high volume ofmemory requests com-
ing from an increasing number of processor cores. To alleviate
the shortage of off-chip bandwidth, we propose an innovative
pin switching technique which dynamically allocates pins for
power delivery or signal transmission with minimal changes
to the circuit. By accurately identifying memory-intensive

Fig. 29. The normalized weighted speedup of compute-intensive work-
loads with static switching and dynamic switching.

Fig. 27. The improved throughput of dynamic switching boosted by a stride prefetchers (degree ¼ 1, 2, 4) for mixed workloads.

Fig. 28. The improved throughput of dynamic switching boosted by stride prefetchers (degree ¼ 1, 4) for mixed workloads with PCM.
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phases at runtime, the proposed strategy converts a portion of
the pins used for power delivery to signal transmissionmode,
providing additional off-chip bandwidth and improving the
overall performance. As shown by the evaluation results,
along with other techniques including Dynamic Switching
and stride prefetching, our scheme is capable of significantly
accelerating the program execution for both multi-pro-
grammed and multi-threaded workloads. Our evaluation
also shows that Dynamic Switching can improve the perfor-
mance of PCM subsystems.
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