
Architectural Support for NVRAM
Persistence in GPUs

Sui Chen , Lei Liu , Weihua Zhang , and Lu Peng , Senior Member, IEEE

Abstract—Non-volatile Random Access Memories (NVRAM) have emerged in recent years to bridge the performance gap between

the main memory and external storage devices, such as Solid State Drives (SSD). In addition to higher storage density, NVRAM

provides byte-addressability, higher bandwidth, near-DRAM latency, and easier access compared to block devices such as traditional

SSDs. This enables new programming paradigms taking advantage of durability and larger memory footprint. With the range and size

of GPU workloads expanding, NVRAM will present itself as a promising addition to GPU’s memory hierarchy. To utilize the non-

volatility of NVRAMs, programs should allow durable stores, maintaining consistency through a power loss event. This is usually done

through a logging mechanism that works in tandem with a transaction execution layer which can consist of a transactional memory or a

locking mechanism. Together, this results in a transaction processing system that preserves the ACID properties. GPUs are designed

with high throughput in mind, leveraging high degrees of parallelism. Transactional memory proposals enable fine-grained transactions

at the GPU thread-level. However, with lower write bandwidths compared to that of DRAMs, using NVRAM as-is may yield sub-optimal

overall system performance when threads experience long latency. To address this problem, we propose using Helper Warps to move

persistence out of the critical path of transaction execution, alleviating the impact of latencies. Our mechanism achieves a speedup of

4.4 and 1.5 under bandwidth limits of 1.6 GB/s and 12 GB/s and is projected to maintain speed advantage even when NVRAM

bandwidth gets as high as hundreds of GB/s in certain cases. Due to the speedup, our proposed method also results in reduction in

overall energy consumption.

Index Terms—NVRAM, persistence, GPUs, helper warps

Ç

1 INTRODUCTION

NON-VOLATILE Random Access Memory (NVRAM) has
emerged as promising storage for computer systems,

providing larger storage density and space compared with
conventional DRAM; more importantly, its durability prop-
erty can bring a new life to existing parallel programming
techniques such as lock-free data structures, as well as trans-
action processing and storage applications.

As a byte-addressable, durable storage, the NVRAMmay
be used in a few different ways. The simplest way is to use
an NVRAM as a large-capacity, drop-in replacement for the
DRAM or the cache, resulting in hybrid main memory [1].
Hybrid refers to the mixture of volatility and non-volatility,
and does not necessarily leverage the durability property of
NVRAM.

More sophisticated approaches utilize the NVRAM as a
persistent data store of a transaction processing system (TPS).
A TPS usually involves two parts: a concurrency protocol
layer that is responsible for detecting and resolving conflicts

between transactions andmay be embodied as a transactional
memory or locking mechanism; and a logging layer that per-
sists write sets of committed transactions in a certain order to
ensure durable writes are consistent and can be restored dur-
ing a power loss event. Although it is intriguing for computer
systems, supporting persistence requires additional hardware
and bandwidth costs [2], [3].

With the appearance of NVRAM, the boundary between
storage and memory has been blurred. Memory operations
can now persist individual bytes; disk-sized swap space,
whichwas previously slow, can now enjoy almost DRAM-like
read latency. NVRAM leads to a change in the existing
memory and storage hierarchy, so that techniques originally
considering volatile and non-volatile memory separately may
now need to consider persistence across the stack. Persistence
means any operation, including incorrect ones, will be saved
on the device for its entire life time. Therefore, for persistence
to be useful, consistencymust be ensured so the system state is
always valid. Various applications and algorithms that already
address consistency, such as databases that rely on lock-free
data structures including skip lists, B-trees and hash tables,
may require software or hardware techniques to fully take
advantage of NVRAM. Such techniques include multi-word
compare-and-swap [4] and transactional memory, which
enable sophisticated operations and provide consistent dura-
bility beyond the reach of single-word compare-and-swap.
Most NVRAM persistence designs ensure consistency by
enforcing an order in which write sets are persisted to the
NVRAM. The mechanisms used to maintain the order are
referred to as “epoch barriers” or “persistence barriers” [5].

� S. Chen and L. Peng are with the Division of Electrical and Computer
Engineering, Louisiana State University, Baton Rouge, LA 70803.
E-mail: {csui1, lpeng}@lsu.edu.

� L. Liu is with SKLCA, Institute of Computing Technology, Chinese Acad-
emy of Sciences, Beijing 100864, China. E-mail: liulei2010@ict.ac.cn.

� W. Zhang is with Software School, Fudan University, Shanghai 201203,
China. E-mail: zhangweihua@fudan.edu.cn.

Manuscript received 3 May 2019; revised 24 Oct. 2019; accepted 2 Dec. 2019.
Date of publication 17 Dec. 2019; date of current version 20 Jan. 2020.
(Corresponding authors: Lu Peng and Weihua Zhang.)
Recommended for acceptance by S. Chen.
Digital Object Identifier no. 10.1109/TPDS.2019.2960233

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020 1107

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7251-7760
https://orcid.org/0000-0001-7251-7760
https://orcid.org/0000-0001-7251-7760
https://orcid.org/0000-0001-7251-7760
https://orcid.org/0000-0001-7251-7760
https://orcid.org/0000-0003-4854-7382
https://orcid.org/0000-0003-4854-7382
https://orcid.org/0000-0003-4854-7382
https://orcid.org/0000-0003-4854-7382
https://orcid.org/0000-0003-4854-7382
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
mailto:csui1@lsu.edu
mailto:lpeng@lsu.edu
mailto:liulei2010@ict.ac.cn
mailto:zhangweihua@fudan.edu.cn

In the mean time, Graphics Processing Units (GPUs)
have been widely adopted as standard accelerators for high-
performance computing. GPUs are designed for throughput-
oriented computing using large numbers of light-weight
parallel threads [6]. For this purpose, they are constructed
with compute units that can house large numbers of resident
threads alongwith their register states and a deeply pipelined
memory subsystem that can handle a large number of para-
llel memory accesses. While the usage and persistence of
NVRAM on CPUs have been investigated intensively, how to
maintain persistence on GPUs are still in the early stage. In
this paper, we will investigate an efficient approach to utilize
theNVRAM’s persistence property onGPU systems.

In combining the three components of NVRAM, GPU, and
transaction processing, the NVRAM’s asymmetric and rela-
tively lower bandwidth need to be taken into account in the
design of a system to achieve good performance. Bandwidth-
induced latency needs to be managed well using software
and/or hardwaremethods to avoid performance degradation
and achieve full efficiency. It will be exacerbated on the GPU
due to a large number of concurrently running threads com-
peting for the limited NVRAM bandwidth. Our paper is tar-
geted exactly at this issue: to alleviate the impact of limited
NVRAM bandwidth on a GPU transaction processing system
utilizingNVRAM.

In this paper, we first prepare a GPU transaction process-
ing system that emulates NVRAM persistence behavior,
and use it to run several benchmarks. We then measure the
impact of bandwidth limits on those benchmarks. After
that, we focus on the performance bottleneck caused by per-
sistence operations, then propose the Helper Warps method
to mitigate the performance impact. With this, we discuss
the various tuneable knobs in the design of the Helper
Warps, as well as a bandwidth emulation method for get-
ting a more comprehensive understanding of the perfor-
mance characteristic of the Helper Warps. Finally, we show
the experimental results and make a comparison against the
baseline.

In summary, we make the following contributions in this
paper:

� To the best of our knowledge, we propose the first
efficient and easy-to-use transaction processing sys-
tem that uses NVRAM storage on GPUs;

� We propose the use of Helper Warps that utilize
spare compute power on the GPU to alleviate the
impact of limited write bandwidth;

� We establish a mechanism that can adaptively enable
the Helper Warps to achieve the best performance
under different program behaviors.

2 BACKGROUND

2.1 Transaction Processing Systems and Logging

Logging, or more specifically, Write-Ahead Logging (WAL),
characterized by ARIES [7], is a classic technique for achiev-
ing consistent durability in databases. In WAL, changes are
written to the log ahead of the actual operation. The logs
usually contain redo and undo operations so that when a
power loss event occurs, the system is still able to check the
log and then recover to a valid state by either discarding or

committing the operation. Logging is also implemented in
journaling file systems to maintain consistency for block-
based devices.

On multi-core and many-core systems, contention incur-
red by Compare-And-Swap (CAS) operations required may
greatly impact performance. Distributed logging algorithms
improve performance by reducing such contention and
adapting to the layout. Distributed logging mechanisms dif-
fer in hardware considerations (which cores contend over
which addresses) and access patterns (the physical layout of
the index) and many techniques have been proposed based
on different design choices.

CPUTransaction Processing Systems. Transaction processing
systems (TPS) [8] are best exemplified by database systems
[9], [10]. The physical layout of the data stored in a database
may be record-oriented, attribute-oriented or graph-based.
The operations allowed on stored data may be online analyti-
cal processing (OLAP, concurrent read) [11], [12] or transac-
tional (OLTP, concurrent write) [13], [14]. When concurrent
writes occur, a concurrency control mechanism resolves con-
flicts between them and stores the data. Data is stored onto
persistent storage devices such as disks andNVRAM, usually
with logging techniques to ensure consistency, and may be
cached in the mainmemory for better performance. The oper-
ations together maintain the properties of ACID (atomicity,
consistency, isolation and durability) for transactions.

GPU Transaction Processing Systems. Many GPU-based
transactional processing systems have been proposed, such as
[15], [16], [17], [18], [19], [20]. Most systems proposed use
GPUs as accelerators only for read-only, OLAP workloads,
and leverage the GPU’s capability to perform certain opera-
tions very quickly such as parallel reduction. In those designs,
the GPU does not independently execute transactions and
requires the CPU to step in for certain steps such as query
plan generation. OLTP workloads, on the other hand, are not
as wide-spread as OLAP systems yet, and most of the OLTP
systems do writes completely on the CPU. Incidentally, trans-
action processing is in an early stage on the GPU aswell.

Transactional memory (TM) [21] is a programming con-
struct that originated from the database community, which
simplifies the usage of fine-grained parallelism. Alternatives
to TM include locking (coarse-grained and fine-grained) and
lock-free data structures. Fine-grained and lock-free data
structures provide high performance, but their concurrency
control is difficult to implement and must be implemented
on an case-by-case basis, while coarse-grained locking is easy
to implement but much slower due to serialization. TM is
aimed at combining the performance of fine-grained locking
while being easy to use like coarse-grained locking by auto-
maticallymanaging concurrency control for programmers.

TM and TPS systems were traditionally applied in sys-
tems with either main memory or a combination of main
memory and disks. With NVRAM, these use cases could see
new possibilities.

2.2 NVRAM

NVRAM for the CPU. NVRAMs may be used as drop-in
replacement of caches, memory, or storage devices. Alterna-
tively, they may be used as a byte-addressable persistent
store. The simplest approach to utilize NVRAM as persistent

1108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

store is to apply a file system layer on top of it. While repla-
cing hard drives with NVMs can greatly benefit applica-
tions [22], [23], directly replacing memory and cache with
NVRAM may slow down applications [24]. In addition,
using NVRAM as a drop-in replacement of DRAMmisses its
durability property. To take advantage of the persistence
propertieswould require persistence to be taken into account
during the design of the system. Aside from an application
that requires persistence such as a TPS, a carefully designed
transaction processing mechanism is also needed to guaran-
tee the ACID properties. This line of research started in the
1990s with the appearance of Flash memory technologies, as
exemplified by eNVy [25], and continually evolved with the
newer iterations of NVRAM.

Recent hardware and software proposals such as Memory
Persistency [2], DUDETM [26], and ATOM [27] achieve high
performance by decoupling, i.e., performing persistence out
of the critical path; Study of NVRAM applications in WHIS-
PER [28] quantifies the use of NVRAM in a real-life system.
NV-Heaps [29] discusses the interoperation between the
NVRAM and DRAMwhich are used simultaneously. Kiln [3]
proposes adding non-volatile caches to form a multi-ver-
sioned persistent system. In all use cases, traditional techni-
ques such as speculative execution [30] can benefit NVRAM-
based systems.

GPU and Transactional Memory. Transactional Memory
(TM) is a key technique for enabling OLTPworkloads involv-
ing concurrent reads and writes on the GPU. Both hardware-
based (HTM) and software-based (STM) systems have been
proposed on the GPU. Software systems [31], [32], [33] utilize
the GPU’s parallel processing power to perform basic tasks in
the TM system in parallel, such as lock management, coa-
lesced read andwrite log access, and using GPU-friendly data
layouts such as structs-of-arrays instead of arrays-of-structs.
With these efforts combined, the GPU-based STM systems are
able to rival or even outperformCPU-based STM systems.

HTM systems have also been proposed for GPUs [34],
[35], [36], [37]. As hardware approaches, these proposals
feature TM algorithms implemented in hardware, as well as
new hardware architectures that are aimed at providing
new versioning techniques (such as snapshot isolation) and
new conflict detection mechanisms (such as various eager
conflict detection techniques).

NVRAM on the GPU. For the GPU, NVRAM has been con-
sidered for enhancing existing cache and memory subsys-
tems. Due to the investigated NVRAM having only a fraction
of the bandwidth of that of the DRAM, hybrid designs need to
be adopted to alleviate the bandwidth gap [1], [38]. However,
theseworks do not utilize persistence. Our recent paper [39] is
the first effort to support NVRAM persistence for GPUs.
Here, we extend it with details in sections including back-
ground, design, and experimental results.

NVRAM and Bandwidth. Currently, NVRAM devices fea-
ture higher storage density, but their write bandwidths are
lower than that of the DRAM. Because of this, some
NVRAM products include a small amount of DRAM buffer
to provide better performance, just like hard disk drives.
These optimizations improve the NVRAM’s bandwidth
performance to reasonable levels, but they still lag behind
that of the DRAM. For instance, there is a performance gap
in 4 KB block operations: contemporary high-end NVRAM

devices deliver 500 K write I/O operations per second
(IOPS) [40], which is lower than the 3,000 K write IOPS of
RAM disks over the same PCI-E interface [41].

In recentworks, researchers have assumed aggregate band-
width ranging from several GB/s to tens of GB/s [42] for
NVRAM. In particular, the Intel PMFS offers two choices for
aggregate NVRAM bandwidth: 9.5 and 37 GB/s. This is com-
parable to that of the existing 3D XPoint commercial products.
With specially-designed buffering and caching designs aswell
as software changes, an OLTP system that utilizes a combina-
tion of NVRAM and DRAM can bring the performance of
immediate consistency to the level of DRAM-onlydevices [43].

Bandwidth is mentioned as a first-order concern for
DRAM by a study that addresses the latency divergence
issue in GPU [44] using hardware approaches, targeting the
memory controller. The bandwidth issue affects both the
software side and the hardware side, and compared with
their solution, the TPS performance issue in our study may
be resolved at the transaction processing level using a soft-
ware Helper Warp approach.

2.3 Helper Warps/Threads

Continually-running helper threads/warps has seen its
usage on the GPU and CPU alike. Vijaykumar et al. utilized
GPU helper warps for memory compression [45]. Huang
et al. proposed using helper threads in the HPC environ-
ment to backup critical data structures, with the intent of
alleviating the cost of checkpointing [46].

Modern GPUs contain copy engines [47] which utilizes
Direct Memory Access (DMA) to copy data between the main
memory andGPUmemory, allowing data transfers to overlap
with kernel execution, resembling a special kind of helper
warp dedicated to performing copy operations. The copy
engines are usually more optimized for copying large blocks
of data than for scattered, small blocks of data such as the
transactional write logs. Should the copy engine be used for
logging, to make transfer efficient, the logs need first be con-
solidated into a single continuous block, and reproduced in the
NVRAM after the transfer. The Helper Warps proposed in
thiswork are a perfect fit for completing both jobs.

3 LATENCY AND BANDWIDTH IMPACT ON THE GPU

The GPU is designed to tolerate long access latency by run-
ning a large number of threads concurrently. With large
numbers of hardware thread contexts and scratch registers
accessible to the thread scheduler, the scheduler can select
a group of threads to run at a much lower cost compared
to CPU context switching. This will incur high latency
observed from the thread’s perspective, but overall system
throughput will be much higher than when optimizing for
single-thread latency.

Due to this design principle, we are interested in under-
standing how limited bandwidth and throughput will affect
the performance of programs. We run the transactional
benchmarks used in this study with memory bandwidth
enforced on the persistence step using the method described
in Section 6.1. The bandwidth limits range from 484 GB/s
(the native DRAM bandwidth) to 1.6 GB/s, covering the
bandwidth range of the NVRAM devices available currently
and in the future.

CHEN ET AL.: ARCHITECTURAL SUPPORT FOR NVRAM PERSISTENCE IN GPUS 1109

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

The impact of latency on bandwidth-bound transactional
workloads is immediately visible from Fig. 1. Total work-
load run time gets longer as bandwidth gets more limited.

From individual workloads, we can see that slowdown
increases sub-linearly to the reduction in bandwidth; Specif-
ically, when bandwidth is limited to 100 GB/s, about 1/5 of
the original bandwidth, program slows down at a factor of
1.5x; at 1.6 GB/s, which is as low as about 1/300 of the origi-
nal bandwidth, slowdown increases to only as much as 15x.
The relative difference is partly due to the transaction pro-
grams executing in three stages, execute, commit and persist,
and only the persist step is affected. The persist step is more
memory-constrained than the other two stages, where
many threads may be idling, waiting for memory accesses.
Fortunately, the idling compute resources are an opportu-
nity for performance improvement: by completing the per-
sist step asynchronously and overlapping it with the other
stages, we can alleviate the impact of bandwidth limit.

4 TRANSACTION PROCESSING AND PERSISTENCE

To make persistence useful, the data being persisted must
remain consistent. For blockdevices, a file system layer,which
usually incorporates logging, is responsible for maintaining
consistency. Loggingmay also be applied toNVRAM to guar-
antee consistency. With logging, written data is first buffered
into logs (“persist”) and used to advance the system state
stored in theNVRAM (“reproduce”).

Log generation usually requires some concurrency con-
trol mechanism to resolve conflicts between committing
transactions so that the data being written will be free of
data hazards. Usually a software/hardware transactional
memory (TM) or an equivalent of two-phase locking mecha-
nism is used. A TM systemmay include logging for version-
control, which may be extended to work with NVRAM.

We use a metadata-based software TM (STM) as the
transaction execution layer for this study (although the pro-
posed method is not limited to this TM implementation.)
The TM utilizes redo-logging for multi-versioning as it pro-
vides better performance compared to undo-logging for our
study. The conflict detection and logging granularity are
both 32-bit words.

The metadata used in this study include a series of access
locks that resolve conflicts between transactional writes and
reads. In addition to the locks, a transaction ID is stored for
each write and is used by the conflict resolution rule. The
lock and the ID are combined to become an ownership record.

The structure of the STM, from the transaction’s point of
view, is listed in Fig. 2. When a transaction TA performs a
read or a write (Line 1), it first attempts to take the owner-
ship record that corresponds to the word being read/writ-
ten. When an ownership record is not held by any
transaction (Line 4), the current transaction takes exclusive
ownership with an atomic compare-and-swap (CAS) (Line
5). CAS guarantees when there are multiple transactions
trying to acquire the ownership record, only one will suc-
ceed. When an ownership record is held by a transaction
TB, a conflict is said to have happened (line 3). A conflict
must be resolved by aborting either transaction: if TA’s
thread ID is smaller TB’s, TA can preempt this ownership
record and signal TB to abort (Line 10) using a similar CAS
operation. If TB equals TA, nothing needs to be done (Line
14). If TA’s thread ID is larger TB’s, TA must abort itself
(Line 16). This global ordering of priority based on thread
IDs prevents deadlock and ensures system-wide progress.

In terms of implementation, due to the difficulty to send
signals between individual threads on the GPU, aborts are
handled by having each thread check if their own status
flags have been set to “aborted”. This technique also exists
in languages utilizing coroutines such as Go. The check hap-
pens at the commit stage (Line 20). If a transaction sees it
has been aborted by another transaction, it will relinquish
all the ownership records it has taken so far, and discard its
write log. Otherwise, the commit procedure will start,
where the transaction flushes its write log to both the vola-
tile memory and the NVRAM.

When implementing this TM algorithm, standard GPU
programming optimization techniques are applied. For
example, the locks and thread IDs in the metadata are orga-
nized as structs-of-arrays so access can be coalesced.

Fig. 1. Impact of bandwidth on execution time.

Fig. 2. Metadata-based TM algorithm used in this article.

1110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

In the TM algorithm, writes to NVRAM happen during a
successful commit. With baseline settings, the persist opera-
tion is executed on the thread executing the transaction, so
the thread will not be able to execute a new transaction until
it finishes persisting the current one. This will add NVRAM
write latency onto the critical path of transaction execution,
resulting in the overhead illustrated in Fig. 1.

We observe that for the ACID properties, it is possible
that the first three properties be completed asynchronously
from durability/persistence. In this study, we propose a
commit procedure utilizing Helper Warps which is aimed
at this very purpose: move the latency away from transac-
tional critical path by allowing asynchronous persistence
operations.

4.1 Helper Warps

Our approach is aimed at allowing asynchronous persis-
tence operations by having a separate set of threads, called
Helper Warps, do the persistence operations for the normal
warps that execute transactions. Fig. 3 shows the overall
transaction execution process with the Helper Warps
added: committing transactions return after writing to the
persistence buffer instead of writing to the NVRAM, saving
execution time.

The Helper Warps and the normal warps reside in the
same thread block and communicate with each other via the
per-thread-block shared memory, where a persistence
buffer is located as shown in Fig. 4. Each streaming multi-
processor (SM) that executes the thread blocks maintains a
bandwidth monitoring window that keeps track of the
instantaneous persistence bandwidth during runtime. Fig. 5
shows the overall structure of the proposed architecture,
including the memory topology. In this architecture, the
SMs have direct access to the DRAM and the NVRAM.
Writes sets of committed transactions will be written into
the NVRAM as persistence logs and then reproduced.

The persistence buffer is conceptually a FIFO queue physi-
cally implemented in a ring buffer. Address-Value pairs are
enqueued by normal warps committing transactions and are

drained by the Helper Warps. Buffer spaces are acquired by
committing transactions by incrementing an atomic counter
that keeps track of the start location of free buffer space. Thus,
multiple transactions can try to allocate space and write into
the buffer simultaneously. To make sure the buffer entries are
drained in-order, every entry in the queue has a “dirty bit”
associated with it indicating whether the values have been
written. Threads in normal warps and Helper Warps access
the persistence buffer in parallel and access the entries in a
coalesced fashion.

The Helper Warps mechanism comes with two perfor-
mance implications: 1) The sharedmemory needed byHelper
Warps may limit the number of concurrent thread blocks.
This may slow down low-contention workloads, but may
speed up high-contention workloads since less concurrency
leads to less conflicts and thrashing when contention rate is
high. 2) The speedup brought by the HelperWarpmust over-
come the overhead inmaintaining the buffers to achieve over-
all speedup, and 3) If the buffers are frequently full and cause
persisting transactions to stall, the buffers themselves become
a bottleneck. These performance implications can be mostly
resolved by tuning the Helper Warps mechanism, and we
will discuss the tuning process in Section 5.

4.2 Correctness in Recovery

In this study, we assume theworking set of the programfits in
the DRAM, transactions write to both the DRAM and the
NVRAM, and read from the DRAM. Because of the writes to
the DRAM, read operations can immediately see recently-
committed data, and write correctness can be guaranteed by
the STM layer.

In case of a power loss event, the systemwill be restored to
a valid state using the persistence logs. We assume all data
including logs in the DRAM is lost and are not used for recov-
ery. As such, the systemwill only check remaining log entries
in the NVRAM. During this process, decisions are made per
write set, from the oldest transaction to themost recent one:

� If a write set is completely persisted, but only partially
reproduced, it will be reproduced again, no matter

Fig. 3. Transaction behavior in the proposed architecture.

Fig. 4. Persistence buffer located in each shading multiprocessor (SM).

Fig. 5. Overall system architecture.

CHEN ET AL.: ARCHITECTURAL SUPPORT FOR NVRAM PERSISTENCE IN GPUS 1111

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

how much of it has been already reproduced prior to
the crash, to make sure all its updates are reflected
on the system states.

� When we encounter a transaction whose write set has
not been completely persisted, we will discard this
transaction and all transactions that happened after it
without reproducing any of them. This is because the
write sets must be reproduced in the correct order for
the system state to be advanced from a valid state to
another.

In extreme cases such as a power failure in the process of
a recovery, the same recovery process may be applied. Since
only fully-persisted transactions may be reproduced, we
will just reproduce it again to maintain correctness.

5 PERFORMANCE TUNING

5.1 Persistence Bandwidth Monitoring

For profiling and performance tuning, we keep track of the
instantaneous persistence bandwidth. The bandwidth is
computed locally by each SM and aggregated globally. This
approach follows the GPU thread hierarchy. To track the
local persistence bandwidth usage, the amount of data per-
sisted in different time slices are logged. When a time slice
passes, a delta between the bandwidth measurements of the
last time slices are sent and added to the global bandwidth
monitor. This process is illustrated in Figs. 5 and 7.

5.2 Adaptively Enabling Helper Warps

As mentioned earlier, the time saved by the Helper Warp
mechanism must outweigh the overhead it incurs to achieve
speedup. The cost of the Helper Warp mechanism mainly
comes from allocating persistence buffer space. In addition,
when the buffer is full, the normal warps also need to wait
for Helper Warps to drain the buffer entries. For certain
transactions, such as ones with fewer writes, performance
may be better when the Helper Warps are disabled. Again,
this is because the Helper Warps can only outperform the
baseline when the persistence bandwidth becomes the bot-
tleneck in the first place.

Thus, for a program to execute efficiently, it should be able
to automatically determine when the Helper Warp should be
enabled or disabled according to program behavior.

Determining the Threshold. To determine the threshold for a
specific GPU system,weuse a transactionalmicro-benchmark
listed in Fig. 6. It varies the write pressure with different num-
bers of threads, and finds the point at which the memory is
saturated and howmuch latencymay be inserted at that point

to overlap with the wait on write operations. This micro-
benchmark involves a minimal transaction that performs
writes to non-overlapping addresses in the same pattern the
persistence logs are written. The persistence bandwidth is
measured using the global bandwidth monitor described in
Section 4.1. We drop the warm-up and ending phases of the
micro-benchmarks and only consider the steady phases.

The method for determining the Helper Warp enabling/
disabling threshold is independent of the NVRAM hard-
ware connected to the GPU. During run time, per-SM-level
and global bandwidth measurements are updated as trans-
actions commit and persist. The global bandwidth is fetched
from the Global Persistence Bandwidth Monitor by transac-
tions and are used by the SM running the transactions to
decide when to enable/disable Helper Warps.

Since the decision on enabling and disabling Helper
Warps affects the entire system, only one thread across the
entire system may modify it at a given time. Considering
the cost involved, the decision to switch off Helper Warps is
made more conservatively than switching on: When the
instantaneous bandwidth exceeds the threshold determined
in Section 5.1, the Helper Warp is instantly turned on; when
the bandwidth is seen below the threshold for an extended
time (we choose to use 5 slices according to our experi-
ments), the Helper Warps are turned off.

With this mechanism, a program can adaptively turn on
or off Helper Warps according to the workload’s behavior,
achieving better performance than statically enabling/dis-
abling Helper Warps throughout the entire workload.

6 METHODOLOGY

6.1 Bandwidth Emulation

In this paper, we study bandwidth limits ranging from 1.6 to
484 GB/s (the latter is the original bandwidth of the GPU used
in the study.) To obtain desired bandwidth limits, we need to
first find the relationship between the delays and bandwidth
limits. Certain bandwidth limit numbers may be obtained on
certain hardware configurations. An example configuration is
when a block of memory is allocated as pinned memory, GPU
memory writes will be propagated to the main memory
through the PCI-E bus and will thus peak at the PCI-E band-
width, which is 12 GB/s on a PCI-E 3.0 interface. With a
known pair of latency and bandwidth limit, we could vary the
artificially-inserted latencies to obtain the bandwidth limits
that are not directly available on real hardware. The length of
latency will be calibrated against the real hardware measure-
ments. An analytical model will be used to estimate the trend
latency changeswith bandwidth limits.

Fig. 6. Transactional micro-benchmark used to determine the Helper
Warp switching threshold.

Fig. 7. Run-time Helper Warp adaptation process.

1112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

Bandwidth and Concurrency. As a throughput-oriented
device, the GPU encourages maximizing concurrency using
many parallel threads. As the thread count increases, more
requests may be sent out simultaneously, utilizing more
bandwidth. For our study, this means more concurrent
threads will also lead to higher latency per thread.

To illustrate this, we run a write test program listed in
Fig. 9. The program is run on an NVIDIA GTX 1,080 Ti with
a theoretical memory bandwidth of 484 GB/s. Each thread
performs a float4 write, the data type that maximizes write
bandwidth on the device. As shown in Fig. 8, the overall
bandwidth increases with the thread count, with a maxi-
mum bandwidth around 350 GB/s. This result is close to
the bandwidthTest example in the CUDA SDK that is uti-
lizing the CUDA built-in function cudaMemcpy. This sug-
gests our write pressure test program is showing expected
behavior.

We can also see from Fig. 8 that as long as the total num-
ber of threads is fixed, the number of thread blocks does not
affect bandwidth usage. For example, 16 blocks of 512
threads and 512 blocks of 16 threads result in very close
bandwidth measurements.

Bandwidth and Latency. Because the number of actually
running threads may vary when a program is running due
to factors including divergence and contention, we need to
be able to find out the corresponding latency for given pairs
of thread count and bandwidth limit. From Fig. 8, the rela-
tionship between the thread number and the final resultant
write bandwidth is not linear. We expect the relationship
between latency and thread number to be also non-linear.

To find out their relationship, we use an empirical
approach: given a bandwidth limit, we find the per-thread
latency that corresponds to the thread count. We vary the
thread count and then accumulate the data to form an
empirical distribution of latency against thread count. For
this goal, we use the same program in Fig. 9, add a no-op
loop between consecutive writes, and then find the latency
that resulted in the bandwidth usage, and repeat this pro-
cess over different thread block dimensions. The number of

blocks and the number of threads in a block are uniformly
chosen between a range of [16, 512], and the latency num-
bers are aggregated into a cumulative density function map
in Fig. 10. This results in a distribution of thread count with
a median of 53,248 threads, a maximum of 262,144 and a
minimum of 256 threads.

It can be seen fromFig. 9 that bandwidth limits of 100GB/s,
the median latency of the thread block dimensions is as high
as 6,000 cycles. When the bandwidth continues to shrink, the
latency increases roughly exponentially. The curves corre-
sponding to different bandwidth limits show similar shapes.
In fact, the mean latency and bandwidth matches well
with the relationship logðmean latencyÞ ¼ �1:105 � logðBWÞþ
6:063, with R2 ¼ 0:9981. This shows us the variables in this
system exhibit logarithmic relationships, which we will use to
fit the running time as a function of bandwidth for the
experiments.

Non-Transactional versus Transactional Persistence Band-
width. On one hand, adding the transactional layer gives the
GPU more work that does not involve non-volatile writes,
thus spreading its write bandwidth pressure over a longer
period of time. On the other hand, the transactional layer
stretches the critical path longer, amplifying the impact of
persistence latency; plus, conflicts and ownership records
will propagate the impact to other threads. The result is
when the system is saturated, we will see that write band-
width measurements are much smaller compared to the
available bandwidth limits.

For example, when NVRAM bandwidth is set to 12 GB/s
with Helper Warps disabled, persistence bandwidth peaks
at around only 200 MB/s. (This value is also the threshold
for adaptive switching we used in this paper). With Helper
Warps enabled, persistence bandwidth may peak at 5�6
GB/s. These values demonstrate how the transactional layer
affects the achievable bandwidth: while non-transactional
runs can reach 350=484 ¼ 72% of the theoretical bandwidth,
with transactional workloads, that ratio becomes lower than
0:5=12 ¼ 2% without Helper Warps or around 6=12 ¼ 50%
with Helper Warps. We expect the gap between these two
benchmarks to depend on the pattern of conflicts, a result of
the characteristics of the workloads being investigated.

For the purpose of bandwidth emulation, the observa-
tions suggest a chain of dependencies between the variables
in a transaction processing system with limited persistence
bandwidth, visualized in Fig. 11:

Fig. 8. Number of concurrent threads and overall write bandwidth in the
non-transactional write pressure test.

Fig. 9. Source code for the write pressure test.

Fig. 10. Cumulative density function of latency between consecutive
writes under various bandwidth limits, assuming thread block dimension
is uniformly distributed.

CHEN ET AL.: ARCHITECTURAL SUPPORT FOR NVRAM PERSISTENCE IN GPUS 1113

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

� The peak bandwidth and benchmark properties deter-
mine the range of observed throughput. For experi-
mentation, we can artificially introduce a latency
between writes in an individual thread to affect the
throughput.

� The higher the throughput is, the faster the bench-
mark runs.

In this dependency chain, the latency may substitute the
effects caused by the combination of peak bandwidth and
benchmark properties, to yield the same throughput and
total execution time. As such, we seek to find the latency
that correspond to a certain bandwidth, including ones that
cannot be obtained directly.

Complete Workflow. Fig. 12 shows the steps we use to
emulate bandwidth limits between 1.6 and 484 GB/s for
each benchmark to capture the dependency chain in
Fig. 11.

First, we measure execution time by having the bench-
marks persist into the GPU RAM (with 484 GB/s band-
width), as well as on the zero-copy pinned memory
accessible through the PCI-E bus (for 1.6 and 12 GB/s). We
call these measurements as reference points. Second, we add
artificial latency in the persist operation to emulate limited
bandwidth on the NVRAM between the measurements in
Step 1. When varying the artificial latency, for each latency
value, we get a corresponding memory bandwidth, called
the proxy bandwidth, by running the write pressure test in
the absence of the transactional processing layer. The
obtained bandwidths are then mapped linearly to the refer-
ence points. The linear function considers the maximum
sustained bandwidth and the maximum theoretical band-
width, such as the 350 GB/s versus 484 GB/s as measured
with the program in Fig. 9. In the end of this procedure, the
running time of an application given a memory bandwidth
between 1.6 and 484 GB/s may be obtained by first comput-
ing the proxy bandwidth, and then performing a lookup
from the proxy bandwidth to expected execution time.

In our experiments, we have found that the proxy band-
width WBx and running time Tx may fit against a function
Tx � a � expð�b �WBxÞ, where a and b are constant parame-
ters. The exponential component matches our observation
in Fig. 10.

6.2 Hardware and Software Platform

We use real-system evaluation because it allows us to take
into account system-wide factors that may impact perfor-
mance. A real-system scenario is also much closer to our
vision of an easy-to-use NVRAM transaction processing use
case, where the user just needs to install a set of libraries in
their GPU programs without having to worry about changes
in other parts of the system.

Experiments in this paper are run on an NVIDIA Pascal
GPU, the GTX 1,080 Ti, which has 56 streaming multiproc-
essors (SMs) operating at a processor clock of 1,582 MHz,
and has access to 11 GB of GDDR5X memory. There are 64
CUDA cores in each of the SMs. The total memory band-
width of the GDDR5X memory is 484 GB/s.

In this study, we implement STM libraries in CUDA for
running transactions on the GPU, using the algorithms in
Fig. 2.

6.3 Benchmarks

We use a series of transactional benchmarks to evaluate the
HelperWarpmechanism proposed in this paper. The bench-
marks are built on our STM library implementing the algo-
rithm in Fig. 2. They are listed as follows:

ATM is a program that performs bank transfers between
two accounts. We use two different configurations. Configu-
ration A1 involves 1 M transactions between 100 K accounts
and A2 involves 1 M transactions and 1 M accounts. A1 is
expected to experiencemore conflicts than A2. The source and
destination accounts of transfers performed are randomly
generated.

Hashtable is an implementation of a key-value store,
which resolves conflicts using linear probing. Inserted
keys are mapped to the base entry table, backed by an
extended entry table, which also handles collision resolu-
tion. Parallel insertions into the hash table are realized
through transactions. This benchmark involves two con-
figurations: H1 performs 500 K insertions into a hash table
with 15 M base entries and 35 M extended table entries,
while H2 performs 900 K insertions into a hash table with
1 M base entries and 3 M extended entries. Inserted
entries are generated randomly.

Bounding Volume Hierarchy [48] is a program that builds a
bounding volume hierarchy (BVH) for a 3D mesh model.
This benchmark involves two kernels: 1) BVH Construction,
that finds the parents of the nodes according to the sorted
Morton Codes assigned to each of the primitives, and 2)
BVH Reduction, which sets the bounding volume of every
node by computing the union of its children. The first kernel

Fig. 11. Interaction of the critical variables in the system.

Fig. 12. Approach for emulating bandwidths between 1.6 GB/s and
484 GB/s with artificial latency.

1114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

has no write/read conflicts and therefore serves as a light-
weight write pressure test for the proposed Helper Warp
system in a GPU-optimized algorithm context. The second
kernel performs reduction from the leaf to the root of the
BVH tree, which requires each node to be touched exactly
once as a performance optimization technique. This con-
straint requires the updates to nodes be performed in trans-
actions which keep track of both the bounding volume
associated with a node as well as a flag that indicates
whether this node has been touched. The benchmark has
two configurations, each taking a model with 100,000 faces
and 187,854 faces respectively as input. The two kernels in
these configurations are denoted B1, R1 and B2, R2,
respectively.

All benchmarks are run with a thread dimension of 512
blocks of thread, with each block containing 256 threads.
This will give 131,072 concurrent threads.

7 EVALUATION

7.1 Overall Results

Fig. 13 shows the run time of the benchmarks with and with-
out Helper Warps, using the Metadata-based TM implemen-
tation. The lines denote the trend in which the run time is
changing according to NVRAM bandwidth limit. Green and
red lines and dots denote the running time with the Helper
Warps enabled and disabled, respectively. As the bandwidth
decreases, running time for both configurations tend to
increase. However, the speeds at which the running times
increase are not the same in the two configurations, with the
running timewith HelperWarps disabled eventually increas-
ing faster and eventually surpassing the time with Helper
Warps enabled. The point when these two running time
curves cross each other is referred to as the crossover point.
Given a benchmark, if the NVRAM bandwidth is below the
crossover point, the Helper Warps approach will result in
shorter running time than the baseline (noHelperWarps).

The crossover point varies in different benchmarks: The
benchmarks with the highest crossover point to the ones

with the lowest crossover point are H1, A2, H2, A1, R1, R2,
B1 and B2, in decreasing order as listed in Fig. 14. Overall,
the order matches a decrease in persistence intensity in
those benchmarks; a benchmark with more writes are more
likely to be bottlenecked by a bandwidth limit. To compare
the different configurations of the same workload, H1 and
A2 show less contention than H2 and A1 and therefore have
a higher crossover points. The rest of the benchmarks, BVH
construction and reduction, all have lower cross over point
values than Hashtable and ATM. The reason is in those
benchmarks each transaction write is preceded by more
work than Hashtable and ATM. In other words, they do not
have as high a write pressure as Hashtable and ATM. The
write pressure may be seen in the persistence buffer utiliza-
tion as well, which we will discuss in Section 7.2.

7.2 Persistence Buffer Utilization

The utilization of the Persistence Buffer is the number of write
set entries that are in the Persistence Buffer, which reflects
how “full” the Persistence Buffer is during run time. Utiliza-
tion is affected by how frequent benchmark persists during
run time.

When the Persistence Buffer is full, newly-committed
transactions must wait for free space on the Buffer before it
can persist. Thus, the buffer utilization can also reflect
whether the Persistence Buffer itself has become the

Fig. 13. Overall running time of the benchmarks, with helper warps enabled (green) and disabled (red). The “crossover point bandwidths” are marked
with vertical dashed lines.

Fig. 14. The crossover point bandwidths.

CHEN ET AL.: ARCHITECTURAL SUPPORT FOR NVRAM PERSISTENCE IN GPUS 1115

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

bottleneck. With a constantly-full buffer, the system through-
put will be limited by how fast the HelperWarp can drain the
Persistence Buffer. In extreme cases where all writes are coa-
lesced and no contentions happen, Helper Warps may not be
able to write as fast as normal warps simply because there are
much fewer Helper Warps. For this case, disabling Helper
Warps may yield better performance than enabling Helper
Warps.

For a high-level overview, We aggregate the per-bench-
mark utilization measurements into a percentile map in
Fig. 15. This figure presents an overview of the cumulative
density function of Persistence Buffer utilization, through-
out the life time of the workloads. The points on the curves
with an X value of 50 percent correspond to the median of
the utilization, while the values on the right end of the
curves correspond to the maximum utilization observed
through each benchmark. From the figure, we can see the
benchmarks that stress the buffer the most, namely A1, A2,
H1, H2, has a median utilization of 650�800 entries out of
1,280, or 50�63 percent full. In other words, for these bench-
marks, the buffer is less than 50�63 percent full for half of
the run time. This suggests the buffer is not being thrashed
to become a bottleneck. Buffer utilization is benchmark-
specific: benchmarks with high write pressure (H1, H2, A1
and A2) showing higher utilization than benchmarks with
lower write pressure (B1, B2, R1 and R2).

Fig. 16 shows the details of how the buffer utilization
changes over time. For the sake of brevity, only B1 and H1
are shown as representations of benchmarks with high and
low utilization. From the figure, we can see that the buffers
are drained almost as quickly as they are filled, despite
there being only one Helper Warp serving multiple normal
warps in a thread block. As a result, although the buffer
may sometimes become full, it can be drained quickly
enough such that the benchmark does not get stalled for too
long. The buffers can be drained quickly partly because the

Helper Warp’s write into the NVRAM is less scattered than
writes in the baseline, where each transaction writes to dif-
ferent locations without coalescing. This, combined with
adequate buffer space, results in the overall speedup of the
method proposed in this paper.

7.3 Discussion

Determining the Shared Persistence Buffer Size. We ran the
benchmarks across a range of persistence buffer between
500 entries to 9,000 entries. Fig. 17 shows the relative run
time with respect to the baseline (i.e., without Helper
Warps) for different persistence buffer sizes under two
selected bandwidths for 4 of the benchmarks running with
the metadata-based TM. For benchmark H1, the shared
buffer size does not significantly affect the overall perfor-
mance, but a staircase pattern is observed in benchmark A1

with 12 GB/s bandwidth and BVH and R1 with 1.6 GB/s
bandwidth. The staircase pattern is a direct result of the lim-
ited concurrency permitted by the fixed L1 cache size in the
SMs. From this figure we pick 1,300 entries as the persis-
tence buffer size for all of the benchmarks.

Analysis of Transaction Timeline. Fig. 18 shows the commit
timeline of transactions in block 0 for benchmark A1. The
maximum commit count per clock cycle is equal to the
warp size of 32. It can be observed that when persistence
bandwidth is limited to 1.6 GB/s, a big gap appears
between consecutive commits. Since behavior of different
blocks will be similar, the gap will directly translate to lon-
ger overall running time. With Helper Warps, the gap is
noticeably reduced, resulting in a much shorter running
time for the benchmarks.

Fig. 15. Percentiles of persistence buffer utilization.

Fig. 16. Change of persistence buffer utilization over time.

Fig. 17. Relative running time as a function of the shared persistence
buffer size.

Fig. 18. Block-level transaction commit timeline for A1 with metadata-
based TM.

1116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

Transaction Execution Time Breakdown. Fig. 19 shows the
breakdown of transaction execution time with Helper
Warps either statically enabled and disabled. From the
figure, the latency in the persistence phase introduced by
limited bandwidth causes other committing transactions to
run for significantly longer time than with Helper Warps.
This is due to warp-level divergence, where transactions in
the same warp as a committing transaction will have to wait
for the lengthy persistence operation to complete. In addi-
tion, transactions holding the ownership records for a lon-
ger time also increase abort rates. By enabling Helper
Warps, both the time spent in persistence and in executing
transactions are reduced, leading to overall speedup.

7.4 Dynamic Switching of Helper Warps

Weapplied the switchingmechanismdescribed in Section 5.2
to various bandwidth limits. In extreme cases, the optimal
choice is to either turn on Helper Warps throughout the
benchmarks (when the bandwidth is set to theminimal value
of 1.6 GB/s) or turn off Helper Warps (when set to the maxi-
mal value of 484 GB/s bandwidth.) For these two cases,
dynamic switching does not yield noticeable benefits. With
intermediate bandwidth limits, effects of dynamically swit-
ching starts to become noticeable. in while benchmarks are
running. The effectiveness depends on the characteristics of
the benchmarks: In Fig. 20, benchmarks A1, B2, B2, R1 and
R2 see speedup of up to around 6 percent with dynamic
switching compared to always enabling HelperWarps, while
the rest of the benchmark showed slight slowdown due to
switching overheads. We now take a closer look at a few of

the benchmarks in detail to see why they react to dynamic
switching differently.

Benchmarks B1 and R1. Fig. 21 shows the switching of
Helper Warps in action in response to changing persistence
bandwidth. This program consists of two kernels, B1 followed
by R1. InB1, each thread onlywrites one element, since in this
kernel every transaction performs one operation on one node
of the BVH tree; to compare, transactions in R1 start from the
leaf nodes of the tree and may go all the way up to the root
node, thus the number of writes performed can be asmany as
the height of the tree. The result is R1’s higher persistence
bandwidth than that of B1: While the persistence bandwidth
of B1 mostly stays below 125 MB/s, the bandwidth of R1
spikes to nearly 1,000 MB/s. The spikes of both kernels corre-
spond to the waves of commits at the different levels of the
tree, with the spikes in R1 taller than those in B1. Overall,
dynamic switching reduced running time in both kernels
(around 6 percent in B1 and 0.8 percent in R1), resulting in an
overall improvement of 20 percent compared to always turn-
ing off Helper Warps, or around 3 percent compared to
always turning onHelperWarps, as shown in Fig. 22.

Benchmark A2. For some benchmarks, the persistence band-
width observed exceeds the switching threshold threshold for
most of the program execution, and A2 is one of these bench-
marks. Its persistence bandwidth trend is shown in Fig. 23.
Dynamic switching for this benchmark results in the Helper
Warps being turned on for the most of the duration of the
benchmark; indeed, there is not much low-bandwidth regions
that may benefit from Helper Warps being turned off. Overall,
the running time is on parwith always enablingHelperWarps,
with a slight performance loss of around 0.3 percent as a result
of the switching overhead. The results are shown in Fig. 24.

Fig. 19. Breakdown of the average execution time of transactions for the
metadata-based TM used in this study.

Fig. 21. Adaptive switching of Helper Warps and running time in the BVH
benchmark (green=on, blue=off) (with two kernels, B1 and R1, on either
side of the blue line).

Fig. 20. Comparison of dynamic switching of Helper Warps versus
always enable helper warps with 12 GB/s persistence bandwidth limit.

Fig. 22. Running time of BVH1 with three different Helper Warp
configurations.

CHEN ET AL.: ARCHITECTURAL SUPPORT FOR NVRAM PERSISTENCE IN GPUS 1117

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

Overall, the comparison between Figs. 22 and 24 suggests
the performance gain mainly results from regions with a
mix of low and high persistence bandwidths. With a correct
choice of the switching threshold bandwidth, the time saved
by dynamic switching can outweigh the switching overhead
and result in overall performance gain.

7.5 Power and Energy Consumption

We measure power consumption using a Yokogawa WT210
[49] power meter. Because the power meter measures
power draw from the wall socket, we derive GPU power
consumption by subtracting the system idle power without
GPU installed. Each benchmark is repeated 1,000 times so
that the time duration is long enough to obtain a stable read-
ing. Fig. 25 shows power, running time and energy con-
sumption results (one row per metric). Energy consumption
data obtained by multiplying average power reading with
the average run time for each of the benchmarks.

Effects of helper warps on power consumption may be seen
from the line pairs in the first column that correspond to the
PCIe emulationmethod. From the line pair in the first row, we
can see that the Helper Warps introduce additional power
consumption, as the data points for all benchmarks appear
higher than those without Helper Warps. The power con-
sumption increase could also be due to the fact that most of
the GPU time is spent in executing transactions rather than
waiting for persistence operation, with executing transaction
being more power-intensive. Despite higher power consump-
tion, with reduced running time (line pair in the second row),
the overall energy consumption is actually lower with Helper
Warps enabled. For example, with benchmark A2which has a
big power increase from125 to 187W, a steep increase of about
50 percent, yet run time gets reduced by an even largermargin
of about 62 percent (from 40 to 15 milliseconds), resulting in a
net energy consumption reduction of about 44 percent.

8 CONCLUSION

In this paper, we have identified that the bandwidth limit of
NVRAMs can result in longer persistence latency, due to the
massive parallelism that exist on GPUs.When the NVRAM is
used as a drop-in replacement of the main memory, the
latencywill be directly added onto the critical path of transac-
tions, causing transactions to run longer. Further, this latency
can affect other threads located in the samewarp, which turns
into evenmore running time overhead for entire benchmarks.

We have proposed Helper Warps, which consists of a
persistence buffer located in the on-chip shared memory,
where transaction persistence will be redirected to. This
removes the time overhead on the critical path of transac-
tions and makes the persistence operation faster. We also
identified an optimal size for the shared buffer, which
makes a tradeoff between larger buffer size and more con-
current thread blocks. Overall our proposed Helper Warps
method yields better performance when the NVRAM write
bandwidth does not exceed a threshold value, which can be
up to hundreds of gigabytes per second in certain cases.
This covers the range of NVRAM bandwidth available
today and in the near future.

ACKNOWLEDGMENTS

The authors would like to appreciate the invaluable com-
ments from the anonymous reviewers. This work was sup-
ported in part by The US National Science Foundation (NSF)
Grants CCF-1422408 and CNS-1527318. The authors would
also like acknowledge the computing resources provided by
the LouisianaOptical Network Initiative (LONI) HPC team.

REFERENCES

[1] J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics
memory with hybrid memory technologies and adaptive data
migration,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
2012, pp. 81–87.

Fig. 23. Adaptive switching of Helper Warps (green=on, blue=off) and
instantaneous bandwidth of A2.

Fig. 24. Running time of A2 with 3 different Helper Warp configurations.

Fig. 25. Power and energy consumption with Helper Warps enabled and
disabled and two bandwidth emulation methods.

1118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

[2] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in
Proc. ACM/IEEE 41st Int. Symp. Comput. Archit., 2014, pp. 265–276.

[3] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persis-
tence support,” in Proc. 46th Annu. IEEE/ACM Int. Symp. Micro-
archit., 2013, pp. 421–432.

[4] T. Wang, J. Levandoski, and P. Larson, “Easy lock-free indexing in
non-volatile memory,” in Proc. IEEE 34th Int. Conf. Data Eng., 2018,
pp. 461–472.

[5] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist
barriers for multicores,” in Proc. 48th Int. Symp. Microarchit., 2015,
pp. 660–671.

[6] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31,
no. 5, pp. 7–17, Sep./Oct. 2011.

[7] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A transaction recoverymethod supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” in ACM
Trans. Database Syst., vol. 17, no. 1, pp. 94–162.

[8] W. H. Highleyman, Performance Analysis of Transaction Processing
Systems. Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.

[9] P. M. Gray, D. S. Moffat, and N. W. Paton, “A prolog interface to a
functional data model database,” in Proc. Int. Conf. Extending Data-
base Technol., 1988, pp. 34–48.

[10] N. W. Paton and P. M. Gray, “Identification of database objects by
key,” in Proc. Int. Workshop Object-Oriented Database Syst., 1988,
pp. 280–285.

[11] N. W. Alkharouf, D. C. Jamison, and B. F. Matthews, “Online ana-
lytical processing (OLAP): A fast and effective data mining tool
for gene expression databases,” BioMed Res. Int., vol. 2005, no. 2,
pp. 181–188, 2005.

[12] C. Chen, X. Yan, F. Zhu, J. Han, and S. Y. Philip, “Graph OLAP:
Towards online analytical processing on graphs,” in Proc. 8th
IEEE Int. Conf. Data Mining, 2008, pp. 103–112.

[13] J. M. Andrade, M. T. Carges, and M. R. MacBlane, “Open online
transaction processing with the TUXEDO system,” in Proc. Dig.
Papers COMPCON Spring, 1992, pp. 366–371.

[14] J. Gray, “Database and transaction processing performance
handbook,” in The Benchmark Handbook Database Trans. Syst.,
2nd ed., Morgan Kaufmann Publishers, San Francisco, 1993.

[15] S. Breß, “The design and implementation of CoGaDB: A column-
oriented GPU-accelerated DBMS,” Datenbank-Spektrum, vol. 14,
pp. 199–209, Nov. 2014.

[16] Y. Yuan, R. Lee, and X. Zhang, “The Yin and Yang of processing
data warehousing queries on GPU devices,” Proc. VLDB Endow-
ment, vol. 6, pp. 817–828, Aug. 2013.

[17] B. He and J. X. Yu, “High-throughput transaction executions on
graphics processors,” Proc. VLDB Endowment, vol. 4, pp. 314–325,
Feb. 2011.

[18] C. Root and T. Mostak, “MapD: A GPU-powered big data analyt-
ics and visualization platform,” in Proc. ACM SIGGRAPH Talks,
2016, pp. 73:1–73:2.

[19] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl,
“Hardware-oblivious parallelism for in-memory column-stores,”
Proc. VLDB Endowment, vol. 6, pp. 709–720, Jul. 2013.

[20] S. Zhang, J. He, B. He, and M. Lu, “OmniDB: Towards portable and
efficient query processing on parallel CPU/GPU architectures,”
Proc. VLDBEndowment, vol. 6, pp. 1374–1377, Aug. 2013.

[21] M. Herlihy and J. E. B. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” in Proc. 20th Annu. Int.
Symp. Comput. Archit., 1993, pp. 289–300.

[22] Samsung Semiconductor Inc., “Performance benefits of running
RocksDB on Samsung NVMe SSDs.” 2015. [Online]. Available:
https://www.samsung.com/us/labs/pdfs/collateral/Performance-
Benefits-of-Running-RocksDB-on-SSDs_Whitepaper.pdf

[23] L. Liu, S. Yang, L. Peng, and X. Li, “Hierarchical hybrid memory
management in OS for tiered memory systems,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 30, no. 10, pp. 2223–2236, Oct. 2019.

[24] M. Shihab, J. Zhang, S. Gao, J. Sloan, andM. Jung, “Couture: Tailor-
ing STT-MRAM for persistent main memory,” in Proc. 4th Workshop
Interact. NVM/Flash Operating Syst. Workloads, 2016, pp. 1–6.

[25] M. Wu and W. Zwaenepoel, “eNVy: A non-volatile, main memory
storage system,”ACMSIGPLANNotices, vol. 29, pp. 86–97,Nov. 1994.

[26] M. Liu et al., “DudeTM: Building durable transactions with decou-
pling for persistent memory,” in Proc. 22nd Int. Conf. Archit. Sup-
port Program. Lang. Operating Syst., 2017, pp. 329–343.

[27] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: Atomic
durability in non-volatile memory through hardware logging,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit., Feb. 2017,
pp. 361–372.

[28] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with WHISPER,” SIGOPS
Operating Syst. Rev., vol. 52, pp. 135–148, Apr. 2017.

[29] J. Coburn et al., “NV-Heaps: Making persistent objects fast and
safe with next-generation, non-volatile memories,” ACM SIG-
PLAN Notices, vol. 46, pp. 105–118, Mar. 2011.

[30] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-
atomic slotted paging for persistent memory,” ACM SIGPLAN
Notices, vol. 52, pp. 91–104, Apr. 2017.

[31] D. Cederman, P. Tsigas, and M. Chaudhry, “Towards a software
transactional memory for graphics processors,” in Proc. Euro-
graphics Symp. Parallel Graphics Vis., 2010, pp. 121–129.

[32] A. Holey and A. Zhai, “Lightweight software transactions on
GPUs,” in Proc. 43rd Int. Conf. Parallel Process., 2014, pp. 461–470.

[33] S. Irving, S. Chen, L. Peng, C. Busch, M. Herlihy, and C. J. Michael,
“CUDA-DTM: Distributed transactional memory for GPU
clusters,” in Proc. Int. Conf. Netw. Syst., 2019, pp. 183–199.

[34] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt,
“Hardware transactional memory for GPU architectures,” in Proc.
44th Int. Symp. Microarchit., 2011, pp. 296–307.

[35] W. W. L. Fung and T. M. Aamodt, “Energy efficient GPU transac-
tional memory via space-time optimizations,” in Proc. 46th Int.
Symp. Microarchit., 2013, pp. 408–420.

[36] S. Chen and L. Peng, “Efficient GPU hardware transactional mem-
ory through early conflict resolution,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit., 2016, pp. 274–284.

[37] S. Chen, L. Peng, and S. Irving, “Accelerating GPU hardware
transactional memory with snapshot isolation,” in Proc. ACM/
IEEE 44th Int. Symp. Comput. Archit., 2017, pp. 282–294.

[38] B. Wang et al., “Exploring hybrid memory for GPU energy effi-
ciency through software-hardware co-design,” in Proc. 22nd Int.
Conf. Parallel Archit. Compilation Techn., 2013, pp. 93–102.

[39] S. Chen, F. Zhang, L. Liu, and L. Peng, “Efficient GPU NVRAM
persistence with helper warps,” in Proc. 56th ACM/IEEE Annu.
Design Autom. Conf., 2019, Art. no. 155.

[40] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage
performance with 3D Xpoint technology,” Proc. IEEE, vol. 105,
no. 9, pp. 1822–1833, Sep. 2017.

[41] E. Kim, “‘How fast is fast?’ Block IO performance on a RAM disk,”
in Proc. Storage Netw. Ind. Assoc. Data Storage Innov. Conf., Art. no.
13, 2015.

[42] M. Shantharam,K. Iwabuchi, P. Cicotti, L. Carrington,M.Gokhale, and
R. Pearce, “Performance evaluation of scale-free graph algorithms in
low latency non-volatile memory,” in Proc. Int. Parallel Distrib. Process.
Symp.Workshops, 2017.

[43] Intel, “Intel optane DC persistent memory now sampling,” 2018.
[Online]. Available: http://www.legitreviews.com/intel-optane-dc-
persistent-memory-now-sampling_205757.Accessed on:May 30, 2018.

[44] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and
R. Balasubramonia, “Managing DRAM latency divergence in
irregular GPGPU applications,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2014, pp. 128–139.

[45] N. Vijaykumar et al., “A case for core-assisted bottleneck accelera-
tion in GPUs: Enabling flexible data compression with assist
warps,” in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit.,
2015, pp. 41–53.

[46] Y. Huang, K. Wu, and D. Li, “High performance data persistence
in non-volatile memory for resilient high performance
computing,” in CoRR, May 2017.

[47] NVIDIA Corporation, “NVIDIA Quadro dual copy engines,”
2010. [Online]. Available: https://www.nvidia.com/docs/IO/
40049/Dual_copy_engines.pdf. Accessed on: Aug. 01, 2018.

[48] T. Karras, “Maximizing parallelism in the construction of BVHs,
Octrees, and K-D Trees,” in Proc. 4th ACM SIGGRAPH / Euro-
graphics Conf. High-Perform. Graphics, 2012, pp. 33–37.

[49] Yokogawa, “WT210/WT230 digital power meters,” 2009.
[Online]. Available: http://www.electro-meters.com/Assets/
pdf2_files/Yokogawa/Power_meters/WT200/WT210_WT230_
Manual.pdf. Accessed on: Oct. 07, 2019.

CHEN ET AL.: ARCHITECTURAL SUPPORT FOR NVRAM PERSISTENCE IN GPUS 1119

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

https://www.samsung.com/us/labs/pdfs/collateral/Performance-Benefits-of-Running-RocksDB-on-SSDs_Whitepaper.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Performance-Benefits-of-Running-RocksDB-on-SSDs_Whitepaper.pdf
http://www.legitreviews.com/intel-optane-dc-persistent-memory-now-sampling_205757
http://www.legitreviews.com/intel-optane-dc-persistent-memory-now-sampling_205757
https://www.nvidia.com/docs/IO/40049/Dual_copy_engines.pdf
https://www.nvidia.com/docs/IO/40049/Dual_copy_engines.pdf
http://www.electro-meters.com/Assets/pdf2_files/Yokogawa/Power_meters/WT200/WT210_WT230_Manual.pdf
http://www.electro-meters.com/Assets/pdf2_files/Yokogawa/Power_meters/WT200/WT210_WT230_Manual.pdf
http://www.electro-meters.com/Assets/pdf2_files/Yokogawa/Power_meters/WT200/WT210_WT230_Manual.pdf

Sui Chen received the bachelor’s degree in infor-
mation security from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2011, and the master’s
and PhD degrees from Louisiana State University,
BatonRouge, Louisiana, in 2016 and 2017, respec-
tively. He is currently a software engineer with
AMD, Santa Clara, California. His research inter-
ests include GPU performance, transactional
memory, and resilience.

Lei Liu is an associate professor with the Insti-
tute of Computing Technology (ICT), CAS, where
he leads the Sys-Inventor Research Group. His
research interests include OS, memory architec-
ture, and computer architecture. His efforts are
published in ISCA, PACT, the IEEE Transactions
on Computers, ACM Transactions on Architec-
ture and Code Optimization, etc.

Weihua Zhang received the PhD degree in com-
puter science from Fudan University, Shanghai,
China, in 2007. He is currently a professor of Parallel
Processing Institute, Fudan University. His research
interests include compilers, computer architecture,
and parallelization and systems software.

Lu Peng received the bachelor’s and master’s
degrees in computer science and engineering from
Shanghai Jiao Tong University, Shanghai, China,
and the PhD degree in computer engineering from
the University of Florida, Gainesville, Florida. He is
currently the Gerard L. “Jerry” Rispone professor
with the Division of Electrical and Computer Engi-
neering, Louisiana State University, Baton Rouge,
Louisiana. His research interests include memory
hierarchy system, reliability, power efficiency, and
other issues in processor design. He was a recipi-

ent of the ORAU Ralph E. Power junior faculty enhancement awards in
2007 and the Best Paper Award from IEEE International Green and Sus-
tainable Computing Conference (IGSC) in 2019 and IEEE International
Conference on Computer Design (ICCD) processor architecture track in
2001. He is a senior member of the IEEE and ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:25:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

