
A High Throughput B+tree
for SIMDArchitectures

Weihua Zhang , Zhaofeng Yan, Yuzhe Lin , Chuanlei Zhao, and Lu Peng , Senior Member, IEEE

Abstract—B+tree is one of themost important data structures and has beenwidely used in different fields.With the increase of concurrent

queries and data-scale in storage, designing an efficient B+tree structure has become critical. Due to abundant computation resources,

SIMD architectures provide potential opportunities to achieve high query throughput for B+tree. However, prior methods cannot achieve

satisfactory performance results due to low resource utilization and poor memory performance. In this paper, we first identify the gaps

between B+tree andSIMD architectures. Concurrent B+tree queries involvemany globalmemory accesses and different divergences,

whichmismatch with SIMD architecture features. Based on this observation, we proposeHarmonia, a novel B+tree structure to bridge the

gaps. In Harmonia, a B+tree structure is divided into a key region and a child region. The key region stores the nodeswith its keys in a

breadth-first order. The child region is organized as a prefix-sumarray, which only stores each node’s first child index in the key region. Since

the prefix-sumchild region is small and the children’s index can be retrieved through index computations, most of it can be stored in on-chip

caches, which can achieve good cache locality. Tomake it more efficient, Harmonia also includes two optimizations: partially-sorted

aggregation and narrowed thread-group traversal, which canmitigatememory and execution divergence and improve resource utilization.

Evaluations on a 28-core INTELCPUshow that Harmonia can achieve up to 207million queries per second, which is about 1.7X faster than

that of CPU-basedHB+Tree [1], a recent state-of-the-art solution. And on a Volta TITANVGPU, it can achieve up to 3.6 billion queries per

second, which is about 3.4X faster than that of GPU-basedHB+Tree.

Index Terms—SIMD, B+tree, high-throughput

Ç

1 INTRODUCTION

B+TREE [2] is one of the most important data structures,
which has been widely used in different fields, such

as web indexing, database, data mining and file sys-
tems [3], [4]. In the era of big data, the demand for high
throughput processing is increasing. For example, there
are millions of searches per second on Google while Ali-
baba processes 325,000 sale orders per second [5]. Mean-
while, the data scale on server storage is also expanding
rapidly. For instance, Netflix estimated that there are 12
PetaByte data per day moved upwards to the data ware-
house in stream processing systems [6]. All these factors
put tremendous pressures on applications which use
B+tree as the index data structure.

single instruction multiple data (SIMD) architectures
have been one of the most popular accelerators in modern
processors, such as different SIMD extensions in CPUs and
its variant SIMT in GPUs. Due to high processing capability,
they provide a potential opportunity to accelerate query
throughput of B+tree. Many previous works [1], [7], [8], [9],
[10] have used SIMD architectures to accelerate the query

performance of B+tree. However, those designs have not
achieved satisfactory results, due to low resource utilization
and poor memory performance.

In this paper, we perform a comprehensive analysis
on B+tree and SIMD architectures, and identify several
gaps between the characteristics of B+tree and the fea-
tures of SIMD architectures. For traditional B+tree, a
query needs to traverse the tree from root to leaf, which
would involve many indirect memory accesses. More-
over, two concurrent executed queries may have differ-
ent tree traversal paths, which would lead to different
divergences when they are processed in a SIMD unit
simultaneously. All these characteristics of B+tree are
mismatched with the features of SIMD architectures,
which impedes the query performance of B+tree on
SIMD architectures.

Based on this observation, we propose Harmonia, a
novel B+tree structure, to bridge the gaps between B+tree
and SIMD architectures. In Harmonia, the B+tree structure
is partitioned into two parts: a key region and a child region.
The key region stores the nodes with its keys in a breadth-
first order. The child region is organized as a prefix-sum
array, which only stores each node’s first child index in the
key region. The locations of other children can be obtained
based on these index numbers and the node size. With this
compression, most of the prefix-sum array can be stored in
caches. Therefore, such a design matches memory hierarchy
of modern processors for good cache locality and can avoid
indirect memory accesses.

To further improve the query performance of Harmonia,
we propose two optimizations including partially-sorted

� W.Zhang, Z. Yan, Y. Lin, and C. Zhao are with the Software School, Shanghai
Key Laboratory of Data Science, Institute for Big Data, and Shanghai Institute
of Intelligent Electrontics & System, Fudan University, Shanghai 200433,
China. E-mail: {zhangweihua, zfyan16, yzlin14, clzhao16}@fudan.edu.cn.

� L. Peng is with the Division of Electrical and Computer Engineering,
Louisiana State University, Baton Rouge, LA 70803. E-mail: lpeng@isu.edu.

Manuscript received 4 Apr. 2019; revised 8 Sept. 2019; accepted 11 Sept. 2019.
Date of publication 23 Sept. 2019; date of current version 10 Jan. 2020.
(Corresponding author: Weihua Zhang.)
Recommended for acceptance by R. Ge.
Digital Object Identifier no. 10.1109/TPDS.2019.2942918

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020 707

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0003-1224-2237
https://orcid.org/0000-0002-4807-9630
https://orcid.org/0000-0002-4807-9630
https://orcid.org/0000-0002-4807-9630
https://orcid.org/0000-0002-4807-9630
https://orcid.org/0000-0002-4807-9630
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0003-3545-286X
mailto:
mailto:

aggregation (PSA) and narrowed thread-group traversal
(NTG). For PSA, we sort the queries in a time window before
issuing them. Since adjacent sorted queries are more likely to
share the same tree traversal path, it increases the opportu-
nity of coalesced memory accesses when multiple adjacent
queries are processed in a SIMD unit. For NTG, we reduce
the number of threads for each query to avoid useless com-
parisons.When the thread group for each query is narrowed,
more queries can be combined into a SIMD unit, which may
increase execution divergence. To mitigate the execution
divergence problem brought by query combinations, we
design amodel to decide how to narrow the thread group for
a query.

Evaluations on a 28-core INTELCPU show thatHarmonia
can achieve up to 207 million queries per second, which is
about 1.7X faster than that of CPU-based HB+Tree [1], a
recent state-of-the-art solution. On a Volta TITAN V GPU, it
can achieve up to 3.6 billion queries per second, which is
about 3.4X faster than that of GPU-basedHB+Tree. Themain
contributions of our work can be summarized as follows:

� Analysis on the gaps between B+tree and SIMD
architectures.

� A novel B+tree structure which matches memory
hierarchy well with good locality.

� Two optimizations to reduce divergences and improve
computation resource utilization of SIMDarchitectures.

The rest of this paper is organized as follows. Section 2
introduces the background and discusses our motivation.
Section 3 gives out Harmonia structure and tree opera-
tions. Section 4 introduces two optimizations applied on
Harmonia tree structure. Section 5 introduces the imple-
mentation of the Harmonia. Section 6 shows the experimen-
tal results. Section 7 surveys the related work. Section 8
concludes the work.

2 BACKGROUND AND MOTIVATION

This section first introduces the background. Then, the gaps
between SIMD architectures and B+tree are discussed.

2.1 Modern SIMD Architectures

SIMD architectures have been one of the most popular
accelerators in modern processors, including vector units in
CPUs and its variant, i.e., SIMT in GPUs. In a SIMD unit,
multiple processing units (PUs) or lanes are driven by the
same instruction to process different data simultaneously.
Note that SIMT can be seen as an execution model, where
SIMD is combined with multithreading. Therefore, SIMT is
more flexible. For example, it is not necessary for SIMT to
assemble the data into a fixed-length SIMD register and
SIMT threads can be scheduled to overlap long-latency
memory accesses.

To utilize the computation resources in a SIMD unit, a
candidate loop is partitioned based on the SIMD width, i.e.,
the PU number, and the consecutive iterations are grouped
together. Each iteration is executed on a PU and different
iterations are processed in a SIMD manner. In each step, if
the instructions from different iterations are the same, they
can be combined into a SIMD instruction and are processed
simultaneously. Otherwise, they will be organized into

several sub-groups based on their instruction types and are
processed one by one. When these sub-groups are executed,
only part of PUs in the SIMD unit are used. Therefore, if the
execution paths among different iterations are not the same,
there exists execution divergence, which would lead to com-
putation resource waste. Moreover, If a batch of memory
addresses requested by a SIMD instruction fall within one
cache line, which is called coalesced memory access [11],
[12], they can be served by singlememory transaction. There-
fore, the coalesced memory access pattern can improve the
memory load efficiency and throughput. Otherwise, multi-
ple memory transactions will be required, which leads to
memory divergence.

SIMD architectures provide powerful computation
resources. To fully utilize them, an application should have
the following characteristics.

Reducing Global Memory Accesses.Global memory accesses
are performance bottlenecks for SIMD architectures. There-
fore, increasing on-chip data locality and reducing global
memory accesses are critical to improving performance.

Avoiding Execution Divergence.All the lanes of a SIMD unit
execute the same instruction at a time. Conditional code
blocks, such as if-else, would cause execution divergence
because some SIMD lanes may execute along the if path
while the others may execute along the else path depending
on the conditional result of each lane. Since the codes in dif-
ferent execution paths cannot be executed at the same time,
they have to be partitioned into several sub-groups based on
the execution path. While the instructions of a sub-group are
executed, the instructions in the other sub-groups have to
wait, which leads to low resource utilization.

Avoiding Memory Divergence.Memory divergence leads to
multiple memory transactions which imposes long memory
overhead. Therefore, avoidingmemory divergence is impor-
tant for SIMDperformance.

2.2 Gaps Between SIMD and B+tree

B+tree is a self-balanced tree [2] where the largest number
of children in one node is called fanout. Each internal node
can store no more than fanout� 1 keys and fanout child
references. There are two kinds of B+tree organizations: reg-
ular B+tree and implicit B+tree [13]. For regular B+tree,
each node in B+tree contains two types of information: key
information and child reference information. Child referen-
ces are used to get the child locations. For implicit B+tree,
the tree is complete and only contains key information,
which is arranged in an array with the breadth-first order.
Implicit B+tree achieves the child locations using index
computations. It has to restructure the entire tree for some
update operations, such as insert or delete. Since restructur-
ing tree structure is very time-consuming, we mainly focus
on regular B+tree in this paper.

For B+tree, when a query is performed, it traverses the
tree from the root to a leaf level by level. At each tree level,
the query visits one node. It first compares the target with
the keys held by current node to find a child whose corre-
sponding range contains the target key. Then it accesses the
child reference to fetch the target child’s position as the next
level node to visit.

Because of high query throughput and the support of
order operations, such as range query, B+tree has been

708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

widely used in different fields like web indexing, file sys-
tems, and databases. Since search performance is more
important for lookup-intensive scenario, such as online ana-
lytical processing (OLAP), decision support systems and
data mining. [1], [14], [15], [16], B+tree systems typically use
batch update instead of mixing search and update opera-
tions to achieve high lookup performance. With data scale
increasing, it has become more and more critical to further
improve B+tree query performance.

It seems that SIMD architecture is a potential solution to
accelerating search performance of B+tree due to its power-
ful computation resources. However, prior SIMD-based
B+tree methods cannot achieve satisfactory performance
results. To understand the underlying reasons, we perform
a detailed analysis and uncover three main sources of the
performance gaps between B+tree and SIMD architectures.
In the following analysis, we use the CPU configuration in
Section 6 as our target hardware platform, the tree size is 223

with 64-fanout and we randomly generate 100 queries for
analysis.

Gap in Memory Access Requirement. Each B+tree query
needs to traverse the tree from root to leaf. This traversal
brings lots of indirect memory accesses, which is propor-
tional to tree height. For instance, if the height of a B+tree is
five, there are four indirect global memory accesses when a
query traverses the tree from root node to its target leaf
node. To illustrate this problem, we use PAPI (Version
5.6.1.0) [17] to collect average results of four memory met-
rics including L1/L2/L3 cache misses and TLB miss. As the
data in Fig. 1 show, the memory performance is poor. There
are 17.8 L1 cache misses, 15.7 L2 cache misses, 5.3 L3 cache
misses and 4.3 TLB misses on average for a query.

Gap in Memory Divergence. Since the target leaf node of a
query is generally random, multiple queries may traverse the
tree along different paths. When they are processed simulta-
neously, such as in a SIMD unit, the memory accesses are dis-
ordered, which would lead to memory divergence and
greatly impede the performance. To illustrate it, we collect
the average number of memory transactions for a SIMD unit
when concurrent queries traverse. For a 4-height and 8-fanout
B+tree, each SIMD unit processes 4 queries concurrently and
the input query data are randomly generated based on uni-
form distribution. As shown in Fig. 2, the average number
ofmemory transactions for a SIMDunit (illustrated in the sec-
ond bar) is 3.16, which is about 97 percent of the worst
case (3.25) shown in the first bar of Fig. 2. For the worst case, 4
queries access the root node in a coalesced manner, so it just
needs 1 memory transaction. For the other levels, 4 queries
access different nodes for theworst case, so it requires 4mem-
ory transactions for each level. Therefore, the memory diver-
gence is very heavy for an unoptimized B+tree.

Gap in Query Divergence. Since the target leaf node of a
query is random, multiple queries may require different
amounts of comparison operations in each level traversal,
which would lead to query divergence. To illustrate this
problem, we collect the average comparison number, the
largest one and the smallest one in each tree level. As shown
in Fig. 3, the comparison numbers of each level for different
queries have a large fluctuation although average compari-
son number is close except level 1 because it’s root node
with fewer keys. We also collect the SIMD unit utilization of
different tree sizes using PAPI. As the data in Fig. 4 show,
the computation resource utilization of a SIMD unit is only
66 percent in average due to query divergence.

3 HARMONIA TREE STRUCTURE

To make the characteristics of B+tree match the features of
SIMD architectures, we propose a novel B+tree structure
called Harmonia. In this section, we first present Harmonia
tree structure. Then we introduce its operations.

3.1 Tree Structure Overview

In a traditional regular B+tree structure, a tree node consists
of keys and child references as shown in Fig. 5a. A child ref-
erence is a pointer referring to the location of the correspond-
ing next level child. In this organization, the size of each node
is large. For example, the size of a node is about 1 KB for a
64-fanout tree. Since the target of each query is random, it is

Fig. 1. Memory performance per query.

Fig. 2. Average memory transactions for a SIMD unit.

Fig. 3. Query divergence for different levels.

ZHANG ETAL.: A HIGH THROUGHPUT B+TREE FOR SIMD ARCHITECTURES 709

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

difficult to utilize the memory hierarchy to explore different
types of locality. Moreover, the next child location is
obtained through the reference pointer, which will involve
many indirect global memory accesses. Therefore, the mem-
ory performance of traditional regular B+tree is poor.

To overcome these constraints and fit memory hierarchy
better, the tree structure is partitioned into two parts in Har-
monia: a key region and a child region. The key region is a
one-dimensional array which holds the key information of
original B+tree nodes in a breadth-first order. The key region
is organized in node granularity and the size of each item (a
node) is fixed (ðfanout� 1Þ � keysize). The child region is
organized as a prefix-sum array. Each item in the array is the
index of the node’s first child in the key region, which equals
to the node number in the key region before its first child.
For example, the prefix-sum child array of the regular B+tree
in Fig. 5a is ½1; 4; 6; 7; 9 . . .�. It means the first child index of
node 0 (root) is 1, and the first child index of node 1 is 4 and
so on. The number of children in a node can be obtained by
the prefix-sum value of its successor node minus its prefix-
sumvalue.Moreover, the index of any child in the key region
can be obtained through simple index computation.

In this organization, the size of the prefix-sum child array
is small. For example, for a 64-fanout 4-level B+tree, the size
of its prefix-sum array at most is only about 16 KB. There-
fore, most of the prefix-sum child array, even a very large
B+tree, can be saved in low-latency on-chip caches, which
can improve memory locality.

3.2 Tree Operation

Based on the above design, we further describe how Harmo-
nia handles common B+tree operations in a batch update sce-
nario, including search, range query, update, insert and
delete. Batch update scenario is phase-based because updates
are relatively infrequent [18] and can be deferred [19], [20].
For example, it was reported that there is a high read/write
ratio (about 35:1) in TPC-H [18]. Therefore, in Harmonia,
operations are separated into two phases, query phase and
update phase. In Harmonia’s query phase, SIMD units are
used to accelerate query performance. In the update phase,
batched updates are processed and the B+tree is synchro-
nized after the update phase.

3.2.1 Search and Range Query

To traverse a B+tree, a query needs to search from the tree
root to the target leaf level by level. For each level of B+tree,

the query first compares with the keys in the current
node (an item of the key region) and finds the child whose
corresponding range contains the target key. Suppose the ith
child is the target child and current node index is node idx.
Since the prefix-sum child array contains the first child’s
index, the ith child’s index can be computed through Equa-
tion (1) and the next level node can be obtained through
accessing the key region

child idx ¼ PrefixSum½node idx� þ i� 1: (1)

For example, when we are at the root node whose
node idx is 0 and try to visit its second child (i ¼ 2), we will
calculate child idx with Equation (1), so the child index of
root in the key region is 2. Therefore, we can get the next
level node based on its index (2) in the key region.

After the target leaf node is reached and the target key is
found, a query is finished. For a range query, it can use the
basic query operation to get the first target key in the range,
and scan the key region from the first target key to the last
target key in the query range. Since the key region is a con-
secutive array, range queries can achieve high performance.

3.2.2 Update, Insert and Delete

For an update (update an existing record’s value) operation,
it is similar to a query. After the target key is acquired, the
value is updated. Compared with update, insert (insert a
new record) and delete (delete an existing record) are more
complex because they may change the tree structure. Since
insert and delete are a pair of inverse operations, we mainly
discuss the details of insert here.

For a single insert operation, it needs to retrieve the target
leaf node through a search operation. If the target leaf node
is not full, the record will be inserted into the target node.
When the target node is full, the target node needs to be split
and a new node will be created. Because the current key
region is organized in a consecutive way, when a new node
is created, the key region has to be reorganized. The nodes

Fig. 4. Computation resource utilization for a SIMD unit.

Fig. 5. Regular B+tree and Harmonia B+tree.

710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

after the created node must be moved backward so the new
node can be inserted into the key region, while the corre-
sponding prefix-sum array items need to be updated due to
the change of key region item location.

When multiple updates are processed in a parallel man-
ner, thread safe must be guaranteed. In our current design,
a simple locking strategy is used.

Algorithm 1. Syn for Tree Update

1: if Operations == updates without split or merge then
2: //Locking strategy of updates without split or merge
3: LOCK(coarse_lock)
4: global_count++
5: RELEASE(coarse_lock)
6:
7: LOCK(node.fine_lock)
8: operation_without_split_or_merge()
9: RELEASE(node.fine_lock)
10:
11: LOCK(coarse_lock)
12: global_count–
13: RELEASE(coarse_lock)
14: else
15: //Locking strategy of updates with split or merge
16: RETRY:
17: LOCK(coarse_lock)
18: if global_count == 0 then
19: operation_with_split_or_merge()
20: RELEASE(coarse_lock)
21: else
22: RELEASE(coarse_lock)
23: goto RETRY
24: end if
25: end if

If an operation leads to a change of tree structure like
split (in insert) or merge (in delete), a coarse-grained lock is
used to protect the entire tree. Otherwise, a fine-grained
lock is used to protect the particular target leaf node. More-
over, there needs a mechanism, as shown in Algorithm 1, to
avoid conflicts between the coarse-grained lock and fine-
grained locks. To achieve this goal, a global counter is used
to record the number of in-process updates with fine-
grained locks. The coarse-grained lock is also used to pro-
tect global counter accesses. When an operation needs to
update the tree, it needs to first get the coarse-grained lock
in order to update the global counter or check whether it is
zero. If it is an insert operation without split or a deletion
operation without merge (Lines 3-13), it increases the global
counter by one after acquiring the coarse-grained lock, then

releases the coarse-grained lock. Then, it locks the target
leaf using the corresponding fine-grained lock. After the
operation is completed, the fine-grained lock is released and
the global counter is decreased by one with the protection
of the coarse-grained lock; If an insert operation leads to a
split or an deletion operation leads to merge (Lines 16-24), it
needs to get the coarse-grained lock and check whether the
global counter is zero. If so, it will finish its operations and
release the lock. Otherwise, it will release the lock first to
avoid deadlock and retry the step. Through such a design,
the thread safety can be guaranteed.

Although this design can process the update operations,
the memory movement of key region due to node splitting
or merging will involve an enormous overhead. To reduce
the overhead, the memory movements are performed after
a batch of update operations are finished. To support such a
design, Harmonia uses auxiliary nodes to update the tree
structure for node splitting or merging. Here, we use node
splitting as an example to illustrate how it works. When an
insert causes one node to split, an auxiliary node is created
for its father node. The information of keys and children
references of its father node is copied into the auxiliary
node and the father node is tagged as shadowed. After that,
the split is processed on the auxiliary node and the refer-
ence pointer to the newly created node is saved in the auxil-
iary node. In such a design, when a node is traversed, its
status is first checked. If the status is shadowed, its auxiliary
node will be used for children retrieval. Otherwise, the orig-
inal prefix array is used for children retrieval.

After all update operations in a batch are done, the tree
structure might not follow the rules of Harmonia. Therefore,
we need to update the auxiliary node’s information into Har-
monia to maintain the tree structure of Harmonia. The key
region is extended first and some original items in the key
region are moved backward to make room for the newly cre-
ated nodes. And then put the auxiliary nodes in the right loca-
tion. Since the locations of all these data movements can be
known in advance, some of them can be processed in parallel.

Movements after batch can improve update throughput
significantly and achieve comparable performance with
those of the multi-thread traditional B+tree and the state-of-
the-art GPU B+tree as the data shown in Section 6 (Fig. 22).

4 HARMONIA OPTIMIZATIONS

To reduce divergences and improve computation resource
utilization of SIMD units, we further introduce two optimi-
zations for Harmonia including partially-sorted aggregation
(PSA) and narrowed thread-group traversal (NTG).

4.1 Partially-Sorted Aggregation (PSA)

When an application is executed, the most efficient memory
access manner is coalesced. For B+tree, the targets of multi-
ple queries are generally random. When adjacent queries
are processed in a SIMD instruction, it is difficult to achieve
a coalesced memory access because they would traverse the
tree along different paths. Fig. 6 shows an example. Four
query targets are 2, 20, 35 and 1 individually. When they tra-
verse the tree and two adjacent queries are combined into a
SIMD instruction, there is no coalesced memory access after
they leave the root node, as shown in Fig. 7a. Therefore,

Fig. 6. B+tree.

ZHANG ETAL.: A HIGH THROUGHPUT B+TREE FOR SIMD ARCHITECTURES 711

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

processing these concurrent queries in a SIMD instruction
would lead to poor performance due to memory diver-
gence. In this section, we will propose a partially-sorted
aggregation for better memory performance.

4.1.1 Sorted Aggregation

If multiple queries have shared part of the traversal path, the
memory accesses can be coalesced when they are processed
in a SIMD unit. For instance, if the queries with target 1 and
target 2 in Fig. 6 are processed in a SIMD unit, there are coa-
lescedmemory accesses for their first two level traversals.

For two concurrent queries, they will have more opportu-
nities to share a traversal path if they have closer targets. To
achieve this goal, a solution is to sort the queries in a time
window before they are issued. For the example in Fig. 6, the
query target sequence becomes 1, 2, 20, and 35 after sorting
as Fig. 8 shows. When two adjacent queries are combined
into a SIMD unit, the SIMD unit with the first two queries
will have coalesced memory accesses for their shared tra-
versal path as shown in Fig. 7b. Moreover, because the
queries in the same SIMD unit will go through the same
path, it can alsomitigate execution divergence among them.

Although sorting queries can reduce memory divergence
and execution divergence, it brings additional sorting over-
head. To illustrate this problem, we evaluate the overhead
using radix sort [21] to make a batch of queries sorted before
assigning them to the B+tree concurrent search kernel. As the
data in Fig. 9 show, the kernel performance has about 22 per-
cent improvement compared with that of the original one.
However, there is about 7 percent performance slowdown for
the total execution time. The reason behind this is that com-
plete sortingwill generatemore than 25 percent overhead.

4.1.2 Partially-Sorted Aggregation

To achieve a coalesced memory access, multiple memory
accesses in a SIMDunit only need to fall into the address space

of a cache line even they are unordered. As shown in Fig. 7c,
although the query to target 2 is before the query to target 1,
we can still achieve coalesced memory accesses for their
shared path, which has the same effect with that of the
completely sorted queries as shown in Fig. 7b. Therefore, to
achieve the goal of coalesced memory access, there is no need
to sort the queries within a group; a partial sorting among
groups can achieve the effect similar to the complete sorting
for coalescedmemory access.Moreover, bit-wise sorting algo-
rithms, such as radix sort, are commonly used algorithms on
SIMD architectures because they can provide stable perfor-
mance for a large workload [21], [22]. For these bit-wise sort-
ing algorithms, the execution time is proportional to the
sorted bits as the data shown in Fig. 10, which are normalized
statistic data collected on GPU, using radix sort algorithms
supported by CUB [21] library. Therefore, partial sorting can
also be used to reduce the sorting overhead. As the data in the
third bar of Fig. 9 show, the sorting overhead is brought down
after partial sorting is applied and the search performance is
comparable to that of the completely sortedmethod. The over-
all performance has about 10 percent improvement compared
with that of the original one.

For a partial sorting, the queries will be sorted based on
their most significant N bits. If N is large, there is a high
probability that the targets of sorted queries are closer. How-
ever, it will lead to a higher sorting overhead. Here, we dis-
cuss how to decide the PSA size to achieve a better trade-off
between the number of coalesced memory accesses and the
sorting overhead. Suppose each key is represented byB bits,
the size of traversed B+tree is T and a cache line can save K
keys. In this condition, the key range is 2B and each existing
key in the tree can averagely cover the key range of 2B=T .
The keys in a cache line can cover the key range of 2B=T �K
and the bits to represent this range is log2ð2B=T �KÞ on

Fig. 7. An example of memory access pattern for queries.

Fig. 8. Queries share traversal path.
Fig. 9. Sorted queries (sorted) and partially-sorted queries (PS) search
time normalized to the search time of original queries (original).

712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

average. If the memory requests of multiple queries in a
SIMD unit fall in the covering range of a cache line, nomatter
whether they are sorted or not, they are coalesced memory
accesses. Therefore, it is unnecessary to sort the queries
when their target keys fall in the same cache line. Based on
the above analysis, the value of N can be calculated using
Equation (2). Note, our analysis is conservative because we
suppose the key value is full in its space. In reality, the key
number is smaller than its space size. Therefore, it is possible
that the targets exceeding the covering range of a cache line
achieve a coalescedmemory access

N ¼ B� log2
2B

T
�K

� �
: (2)

As an example, suppose the key is represented by 64
bits (B ¼ 64), the tree size is 223 (T ¼ 223) and the size of a
cache line is 128-byte,which can store 16 keys (K ¼ 16). Based
on Equation (2), the value of N equals to 19. To verify its effi-
ciency, we collect average memory transactions per warp for
different partially-sorted bits and the normalized sorting time
for completely sorting on GPU. As the data shown in Fig. 11,
only sorting 19 bits can achieve the similar optimization effort
as that of completely sorted. Moreover, its overhead is about
35 percent of the completely sorted method. The data also
illustrate that the design can achieve a better trade-off. We
also evaluate other tree sizes and find it can draw the same
conclusion. Due to the space constraint, the data are not given
out here.

4.2 Narrowed Thread-Group Traversal (NTG)

Traditional methods [1], [8], [9], [23] generally use the fan-
out number of threads to serve a query.1 Based on our
observation, it has insufficient resource utilization problem
due to many unnecessary comparisons. When a query tra-
verses the B+tree, the comparison goal in one tree level is to
find a child whose range contains the query target. In a
sequential comparison method, only the keys before the tar-
get child are compared. However, in a fanout-based parallel
comparison manner, all the keys in a node are compared.
Although the fanout-based approach simplifies the design,
it will lead to computation resource waste because the com-
parisons with the keys after the target child is useless.

Fig. 12a shows an example. Suppose the tree fanout is 8 and
the PU number of a SIMD unit is 8 as well. The fanout-based
thread group will use the whole SIMD unit to serve a query.
So for the query whose target is 2, only the first 3 threads
make the useful comparisons, and the rest of comparisons
are useless.

In many situations, lots of comparisons are not needed.
To illustrate it, we divide the key region into 4 parts evenly
for different fanout trees and collect the comparison distri-
bution in these four regions, which means the proportion of
queries falling within the four parts. As the data in Fig. 13
show, for different tree fanouts, about 80 percent of queries
can find the target child through searching the front 50 per-
cent part of the key segment. The reasons behind it are two
folds. First, it is a high probability that a B+tree node is half
full, which means a query only needs to compare with a
front half fanout number of keys at most for these nodes.
Second, data distribution also influences it. Therefore, most
comparisons in the fanout-based method are useless, which
leads to the waste of computation resources.

To avoid useless comparisons, the thread group for each
query should be narrowed. The more the thread group is
narrowed, the fewer useless comparisons are involved.
After the thread group for a query is narrowed, multiple
groups for different queries will be combined into a SIMD
unit. Due to the query divergence discussed in Section 2.2,

Fig. 10. Normalized time for different sorting bits. Fig. 11. Normalized avg transmissions for different sorting bits.

Fig. 12. Example of different thread groups.

1. Due to the scale of data stored in the tree, the tree fanout is typi-
cally a large number such as 64 or 128. If the fanout is larger than the
PU number of a SIMD unit, all PUs in a SIMD unit are used for a query.

ZHANG ETAL.: A HIGH THROUGHPUT B+TREE FOR SIMD ARCHITECTURES 713

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

the SIMD unit’s traversal time for one tree level will be
decided by the thread group that will cost the most compari-
son operations, which will hurt the performance. Fig. 12b
shows an example. If we use 4 threads to serve a query, the
useless comparisons for target 2 will be reduced. However,
since two queries are combined into a SIMD unit, the threads
for target 2 has to execute two steps due to the query diver-
gence brought by target 6, although it only needs one step.

Therefore, when the thread group for a query is nar-
rowed, the overhead involved by query divergence must be
considered. To achieve a better trade-off, we propose a
model to decide how to narrow the thread group.

Assume the size of the thread group is GS, the number of
queries processed by one SIMD unit equals to SIMDsize=GS
(SIMDsize is a fixed number). And the throughput (TP) of a
SIMD unit for one tree level equals the number of queries per
SIMD unit divided by SIMD unit execution time T , which is
shown in Equation (3)

TP � SIMDsize

GS � T : (3)

The SIMD unit execution time T is composed of two parts
of time: comparison time and memory access time. Because
some varieties of SIMD architectures , like GPUs, has amech-
anism to hide memory access time by scheduling the warps
on the same SM, and the PSA can also alleviate the memory
divergence in a warp, the influence of memory access time
can be neglected in the throughput equation. Since compari-
son time is proportional to the comparison execution step,
warp execution time T is also positively related to S (themax
comparison step that the warp needs to execute.)

When we narrow the thread group, the waste of computa-
tion resources is reduced. However, the query divergencewill
increase. To check whether narrowing thread group can still
get performance improvement, we compare the SIMD unit
throughput before narrowing (TPb) and after narrowing (TPa)
in Equation (4) and substitute the T with SIMD unit max
comparison steps S. G is the narrowing proportion each time

TPa

TPb
/ Sb �GSb

Sa �GSa
¼ Sb

Sa
�G: (4)

The SIMD unit size is the multiple of 2, so the GS is gen-
erally reduced by 2 each time, which means we can consider
G as a constant. Therefore, to find the appropriate narrow
thread-group size, we only need to approximately check the

change ratio of S after narrowing the thread group in prac-
tice and decide whether there is a performance gain based
on Equation (4).

Because PSA increases the opportunity of queries sharing
a traversal path, major query divergence happens at the last
several levels tree traversal. So to decide the best NTG size,
we only need to have some simple profiling to know the
change ration of S for the last several levels after narrowing
thread group. That data can be collected on CPU easily. Here
we applied a static profiling method. Before processing the
data, some data (for example, 1,000 queries) are used to
collect the average SIMD unit execution steps for different
NTG sizes. Then, the best NTG size is decided based on
Equation (4). If its value is greater than 1, it means narrowing
the thread group can further improve performance. This
step is repeated until its value is smaller than 1. To verify the
accuracy of this model, we collect the performance data of
different NTG size for different tree fanouts including 8, 16,
32, 64 and 128 on different GPU (Tesla K80 and Volta TITAN
V). Experimental results show the NTG size of this model is
basically consistent with the NTG size of the best perfor-
mance. For example, on Tesla K80, the NTG size for the best
performance is 2 for 64-fanout B+tree, and the NTG size for
the best performance is 4 threads for 128-fanout B+tree.

5 IMPLEMENTATION

We implement Harmonia B+tree structure with two
optimizations (PSA and NTG), which can be used to further
improve performance. HB+tree [1] is an optimized B+tree.
In its design, a coarse-grained index structure is involved
into the inner nodes to speed up traversal. In HB+tree, each
inner node consists of a key region and an index region. For
each inner node, the keys are partitioned into multiple sub-
regions in sequence and there is an index in the index region
corresponding to each sub-region. The index value is the
maximal key value for its sub-region. When a query traverse
a node, the operation first traverses the index area to deter-
mine which part of the key sub-region includes the target
key value. And then, the keys in the corresponding sub-
region are compared. Such a manner can achieve better
traversal performance when tree fanout is large, such as 64-
fanout or 128-fanout.

In our current implementation,we also use coarse-grained
index structure, which is the same as that of HB+tree, to
improve the performance of tree traversal. The index struc-
ture in each inner node is stored in the key region. We imple-
ment our system on both CPU through using its SIMD
unit (Intel AVX [24]) andGPUs (Nvidia GPUs).

CPU Implementation. For CPU implementation, we use
OpenMP [25] to exploit thread-level parallelism and use
the SIMD units in each core to implement our design. Since
Harmonia child information is much smaller than regular
B+tree, it can also be saved on on-chip cache, which can
achieve better cache locality on CPU platform.

For the overall search procedure, the queries are first
sorted using radix sort from boost [26]. Then, the sorted
queries are partitioned into sub-groups and these sub-
groups are distributed to different OpenMP threads exe-
cuted on different physical cores. For each sub-group, the
queries in it are finally processed in a SIMD manner. They

Fig. 13. The proportion of queries accessing the different node parts.

714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

are merged together based on the width of the SIMD
instructions for the NTG optimization.

GPU Implementation. For GPU implementation, we put
the whole tree structure on GPU. In a batch scenario, we
implement the queries on GPU and updates on CPU, and
B+tree will be synchronized between GPU and CPU after
the update.

In our current design for GPU, the top level of the prefix-
sum child array is stored in the constant memory,2 and the
rest is fetched into the read-only cache (texture cache) on
each SMwhen they are used. The sharedmemory is not used
to cache the prefix array because its size is not big enough for
prefix-sum child array. Moreover, the prefix-sum array can
be shared among different SMs when it is stored in texture
cache. In this way, the prefix-sum array accesses will be
more efficient than the child references of regular B+tree.

On GPU, we first use CUB [21] library to implement the
partially sort for the PSA method. After that, we dispatch
queries to the warps on GPU in order to process them in
parallel. The number of queries processed by a warp is
decided by the NTG optimization.

6 EVALUATION

In this section, we evaluate the performance of Harmonia
and try to answer the following questions:

� Can Harmonia deliver better performance than the
state-of-art GPU-based B+tree?

� DoesHarmonia solve the issuesdiscussed in Section 2.2?
� Howdoes each design choice affect the performance?
� Can Harmonia achieve good update performance?
� Does Harmonia maintain a good performance in dif-

ferent situations?

6.1 Experimental Setup

We conduct all experiments on a 28-core server (Intel Xeon
CPU E5-2680 v4 @ 2.40 GHz) with a Volta TITAN V GPU.
Each CPU core has a private 32 KB L1 data cache, 32 KB L1
instruction cache, 256 KB L2 cache, and a shared 35 MB L3
cache. We use OpenMP 4.0 [25], Intel AVX2 to implement the
CPU version of Harmonia. Harmonia implementation is com-
piled by GCC 5.4.0 and CUDA 10 on Ubuntu 16.04 (kernel

4.15.0) using O3 optimization option. We evaluate the perfor-
mance ofHarmonia using a throughputmetric.

HB+Tree [1] is a state-of-the-art CPU-GPU hybrid B+tree.
It supports search by using both CPU and GPU, and batch
update on CPU. To compare the performance of different
platforms, a CPU-based HB+tree and a GPU-based HB+tree
are implemented. For GPU-basedHB+tree, we put thewhole
tree structure on GPUs tomake evaluation results fair and all
the tree traversal of a query request is proposed on GPUs.
We also compare the update performance with HB+Tree.
Moreover, we also implement a parallel Regular B+tree [27]
with Pthread [28] and OpenMP 4.0 [25] using the same
thread-safe strategy as that of Harmonia for evaluation.

For overall performance experiment, in order to get stable
performance, we use the data set which size is 100 million.
These input data are queried on different tree sizes including
223, 224, 225 and 226 and the key size is 64 bits. For the scalabil-
ity experiments, we evaluate different key sizes (32 bits ver-
sus 64 bits), different GPUs (Volta TITAN V versus Pascal
TITAN XP) and different distributions (uniform, gamma,
normal). All results are averaged by 5-time executions and
the sorting time is included for Harmonia evaluation.

6.2 Overall Evaluation

In this section, we evaluate the performance of query, range
query and update for Harmonia.

6.2.1 Query Performance

To see whether Harmonia can achieve a better performance,
we conduct an experiment on Harmonia and HB+tree [1]
on CPU and GPU, and an experiment on Regular B+tree on
CPU.

As the data in Fig. 14 show, the performance of Harmo-
nia can reach up to 3.6 billion queries per second. It outper-
forms HB+tree under different tree sizes on GPU. Its
performance is about 3.4X faster than that of GPU-based HB
+tree. As the data in Fig. 15 show, the CPU-Harmonia tree
can reach up to 207 million queries per second which is
about 1.7X faster than CPU-based HB+tree and 2.8X faster
than CPU-based Regular B+tree.

To see whether Harmonia solves the gap issues dis-
cussed in Section 2.2, we first use nvprof [29] to collect
the three metrics on GPU: the number of global memory
transactions, memory divergence, and warp coherence3 for
HB+tree and Harmonia. As the data in Fig. 16 show Harmo-
nia only issues 22 percent global memory transactions of
HB+tree on GPU with 34 percent less memory divergence
and 13 percent higher warp coherence (less warp diver-
gence) than HB+tree on GPU.

We also use PAPI [17] to collect four performance metrics
on CPU: L1 miss rate, L2 miss rate of L1, TLB miss rate and
the number of branch per query of HB+tree and Harmonia.
As shown in Fig. 17, Harmonia significantly reduces the
cache misses and branches per query when compared to
HB+tree. Harmonia only issues about 28 percent L1 misses,

Fig. 14. GPU query performance.

2. The constant memory on GPU is read-only and faster than global
memory, and it doesn’t need to reload after current kernel finish, but it
has a limit size (64 KB in Nvidia Volta) which is usually smaller than
the prefix-sum child array.

3. Warp coherence metric means the proportion of the coherent step
in the warp execution period. It is anti-correlation with warp diver-
gence. We profile the metric warp_execution_efficiency as warp coher-
ence, the metric gld_transaction as global memory transaction and the
metric gld_transaction_per_request as memory divergence.

ZHANG ETAL.: A HIGH THROUGHPUT B+TREE FOR SIMD ARCHITECTURES 715

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

40 percent L2 misses, 21 percent TLB misses and 33 percent
branches per query of HB+tree.

The reasons for these results are because the size of prefix-
sum child array is small and most of it can be stored in on-
chip caches. Therefore, the global memory accesses can be
significantly reduced.Moreover, as the Section 4.1 discussed,
the design of PSA can reduce memory divergence and
branch divergence because the adjacent sorted queries share
more traversal paths, which brings a higher possibility of
coalesced memory accesses. Therefore, Harmonia bridges
the gaps between B+tree and SIMD architectures by effec-
tively reducing the high latency of global memory transac-
tions, memory divergence and warp divergence, which
results in better performance than the state-of-art SIMD-
based B+tree.

6.2.2 Impact of Different Design Choices

To understand the performance improvement from various
factors, we evaluate different design choices using uniform
distributions as input data set. The baseline refers to HB+tree.
We evaluate the Harmonia B+tree structure (Harmonia tree),
Harmonia B+tree structure with PSA, and the whole Harmo-
nia (Harmonia tree + PSA + NTG). The GPU results and the
CPU results are shown in Figs. 18 and 19 respectively.

As the data in Figs. 18 and 19 show, the three design
choices respectively achieve about 1.4X, 1.9X and 3.4X
speedup for GPU, and 1.1X, 1.5X and 1.7X speedup for CPU.
Those results illustrate these design choices are efficient on
both GPU and CPU. Applying the NTG method achieves
much more performance improvement on GPU than that of
CPU. The reason behind it is because traditional methods
generally use the fanout number of threads to serve a query,

which leads to insufficient resource utilization problem due
to many unnecessary comparisons as analyzed in Section
4.2. The larger the PU number in a SIMD unit is, the more
resource waste would be. In our current evaluation environ-
ments, there are 32 PUs (threads) in a GPU SIMT warp and 8
32-bit PUs in a CPU SIMD unit. The PU number in a GPU
SIMT warp is about 4X compared to that in a CPU SIMD
unit. Therefore, the resource utilization problem of GPU is
muchmore serious than that of CPU in priormethods, which
is also the reasonwhy the performance improvement of CPU
is not as dramatic as that of GPU.

6.2.3 Range Query Performance

To evaluate the range query performance of Harmonia, we
also conduct an experiment. As the data in Figs. 20 and 21
show, the range query throughput of Harmonia can achieve
about 1.1 billion per second on GPU and 90 million per sec-
ond on CPU which is about 2.4X and 1.8X faster than GPU-
based HB+tree on CPU-based HB+tree respectively. Gener-
ally, the range query performance is mainly depended on
two parts: query operation and horizontal traversal in the
leaf layer. In Harmonia, the query operation performance is
improved by the tree structure and its two optimizations.
The horizontal traversal process can also achieve a better
access performance because the contiguous key layout in
Harmonia.

6.2.4 Update Performance

To analyze the update performance, we evaluate the Harmo-
nia update performance by comparing it with those of
the Regular B+tree and HB+tree. We evaluate the update

Fig. 15. CPU query performance.

Fig. 16. GPU profile data normalized to those of HB+tree.

Fig. 17. CPU profile data normalized to those of HB+tree.

Fig. 18. Impact of different design choices on GPU.

716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

performance for different tree sizes and different update
ratios. The update requests include update, insertion and
deletion. The update ratio is the proportion of the update
operations in these requests. For example, a 95 percent update
ratio means that the update operations occupies 95 percent
and the other parts (5 percent) are insertion and deletion. In
the evaluation, the update ratios are from 20 to 95 percent,
and insertion and deletion are equally proportional.

As the data in Fig. 22 show, for 95 percent update ratio, the
update throughput performance of Harmonia can achieve
71 percent that of Regular B+tree and 70 percent of HB+ tree
for different tree sizes on average. This is because the batch
process can avoid many unnecessary data movements. We
also test the throughput of different update ratios. As the
data in Fig. 23 show, Harmonia has higher throughput than
regular B+tree when update operation ratio is less than 70
percent, and the throughput of HB+tree is slightly higher
than that of Harmonia. Since updates are relatively infre-
quent in the batch update scenario as described in [18], the
performance of the proposed CPU-based batch update
method is acceptable.

6.3 Scalability of Harmonia Design

The final performance of a B+tree can be influenced by vari-
ous factors, including the different key sizes, the distribution
of input data and the different hardware configurations.
Therefore, we evaluate the scalability ofHarmonia under dif-
ferent factors. Due to the space constraint, we only use the
performance results of GPUs to illustrate the efficiency. We
also collect the performance data on CPUs, they can get the
same conclusions.

6.3.1 Performance of Different Key Sizes

To understand the performance impact of different key
sizes, we conduct an experimental on 32-bit key and 64-bit
key. As the data in Fig. 24 show, Harmonia can achieve bet-
ter query performance than HB+tree, no matter which key
size is. This is because Harmonia can take full use of the
memory hierarchy and reduce the execution and memory
divergence efficiently. For different key sizes, 32-bits keys
can achieve a better performance than those of 64-bits keys.
The reason behind it is that the smaller the key is, the more
keys can be stored in the cache hierarchy, which can reduce
the number of long latency memory accesses.

6.3.2 Performance of Different Distributions

In order to understand the impact of different input distribu-
tions, we use different data distributions as input data for tree
queries, including uniform distribution, normal distribution ;
(m ¼ 0:5; s2 ¼ 0:125) and gamma distribution (k ¼ 3; u ¼ 3).
As the data in Fig. 25 show, for these three distributions, the
performance of Harmonia and HB+tree has the same trends.
The performance data of GPU-based Harmonia are about
3.4X faster than those of GPU-basedHB+tree.

6.3.3 Performance of Different GPUs

To see the performance impact of different GPUs, we con-
duct an experiment on NVIDIA Pascal TITAN XP and NVI-
DIA Volta TITAN V. As the data in Fig. 26 show, query
throughput can reach up to 1.9 billion and 3.6 billion per sec-
ond on NVIDIA Pascal TITAN XP and NVIDIA TITAN V
respectively. Such results illustrate that the performance of

Fig. 19. Impact of different design choices on CPU.

Fig. 20. Range query throughput on GPU.

Fig. 21. Range query throughput on CPU.

Fig. 22. Update throughput.

ZHANG ETAL.: A HIGH THROUGHPUT B+TREE FOR SIMD ARCHITECTURES 717

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

Harmonia scales well when the hardware platforms become
more powerful (80 SMs on Volta TITAN V versus 30 SMs on
Pascal TITANXP).

7 RELATED WORK

With the popularity of parallel hardware, such as multi-core
CPUs andGPUs, there have beenmany efforts to accelerate B
+tree search performance. Rao et al. propose a cache line con-
scious B+tree structure, called CSS-tree [30], to achieve better
cache performance. CSS-tree is further extended to CSB
+-tree [31] to provide an efficient update. Prior works [32],
[33], [34] analyzed the influence of B+tree node size to search
performance. They find the cache performance can be
improved when the node size is larger than the cache line
size. Kim et al. propose FAST [35], a configurable binary tree
structure for multi-core systems. Its tree structure can be
defined based on CPU cache-line size, memory page size and
SIMD width. Besides, several works optimize the concurrent
B+tree performance on distribution system aim to improve
the concurrency and provide consistency [36], [37], [38].

GPUs have been widely used to improve application per-
formance in different fields, such as matrix manipula-
tion [39], [40], [41], [42], [43], [44], [45], [46], Stencil [47], [48],
[49], [50], [51] and so on. To utilize the computation resources
of GPUs, FAST [35] and HB+ tree [1] utilize the heteroge-
neous platform to search B+tree. HB+tree [1] also discusses
several heterogeneous collaboration modes to make CPU
and GPU cooperation more efficient such as CPU-GPU pipe-
lining, double buffering. Kaczmarski [8], [9] proposes a
GPU-based B+tree, which can update efficiently, and also
discusses several methods for single-key search or batch

search on GPU. Since GPU resides across the PCIe bus, Fix
et al. [23] present a method that reorganizes the original B
+tree of database into a continuous layout before uploading
onto GPU, and search the B+tree using braided method par-
allelism. Daga et al. [10] accelerate B+tree on an APU to
reduce the cost of transmission between GPU and CPU and
overcome the irregular memory representation of the tree.
Awad et al. [52] design a GPU B-Tree for batch update per-
formance with a warp-cooperative work-sharing strategy. In
contrast, we design a novel tree structure with two optimiza-
tions, which can bridge the gaps between B+tree and GPUs
to achieve high query performance.

8 CONCLUSION

In this paper, through a comprehensive analysis of the char-
acteristics of B+tree and SIMD architectures, we identify
several gaps between B+tree and SIMD architectures, such
as the gap in memory access requirements, memory diver-
gence, and query divergence. Based on this observation, we
proposed a novel B+tree structure called Harmonia. In Har-
monia, the B+tree structure is divided into a key region and
a prefix-sum child region. Due to the small size of prefix-
sum array, the Harmonia B+tree structure can fully utilize
the memory hierarchy to decrease the number of high
latency memory accesses via cache accesses on chip. There
are also two optimizations in Harmonia to alleviate the dif-
ferent divergences on SIMD architectures and improve
the resource utilization: partially-sorted aggregation and
narrowed thread-group. As a result, Harmonia performs
average 1.7X speedup to CPU-based HB+tree and 3.4X
speedup to GPU-based HB+tree.

Fig. 23. Throughput of different update ratios.

Fig. 24. Performance for different key sizes on GPU.

Fig. 25. Performance for different distributions on Volta TITAN V.

Fig. 26. Performance for different GPUs.

718 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We are very grateful to the anonymous reviewers for their
valuable feedback and comments. This work is supported
in part by the National Natural Science Foundation of
China (No. 61672160), Shanghai Municipal Science and Tech-
nologyMajor Project (No.2018SHZDZX01) and ZJLab, Shang-
hai Technology Development and Entrepreneurship Platform
forNeuromorphic andAI SoC.

REFERENCES

[1] A. Shahvarani and H.-A. Jacobsen, “A hybrid B+-tree as solution
for in-memory indexing on CPU-GPU heterogeneous computing
platforms,” in Proc. Int. Conf. Manage. Data, 2016, pp. 1523–1538.

[2] D. Comer, “Ubiquitous B-tree,” ACMComput. Surveys, vol. 11, no. 2,
pp. 121–137, 1979.

[3] V. Srinivasan and M. J. Carey, “Performance of B+ tree concur-
rency control algorithms,” VLDB J., vol. 2, no. 4, pp. 361–406, 1993.

[4] P. Kieseberg, S. Schrittwieser, L. Morgan, M. Mulazzani, M. Huber,
and E. Weippl, “Using the structure of B+-trees for enhancing log-
ging mechanisms of databases,” Int. J. Web Inf. Syst., vol. 9, no. 1,
pp. 53–68, 2013.

[5] R. C. Teresa Lam and C. Li, “Sales performance of Alibaba in 2017
single’s day,” 2017. [Online]. Available: https://www.fbicgroup.
com/sites/default/files/CREQ_04.pdf

[6] My data is bigger than your data! 2018. [Online]. Available:
https://lintool.github.io/my-data-is-bigger-than-your-data

[7] P. Bakkum and K. Skadron, “Accelerating SQL database operations
on a GPU with CUDA,” in Proc. 3rd Workshop Gen.-Purpose Comput.
Graph. Process. Units, 2010, pp. 94–103.

[8] K. Kaczmarski, “Experimental B+-tree for GPU,” in Proc. East-Eur.
Conf. Advances Databases Inf. Syst., 2011, pp. 232–241.

[9] K. Kaczmarski, “B+-tree optimized for GPGPU,” in Proc. OTM
Confederated Int. Conf., 2012, pp. 843–854.

[10] M. Daga and M. Nutter, “Exploiting coarse-grained parallelism in
B+ tree searches on an APU,” in Proc. SC Companion: High Perform.
Comput. Netw. Storage Anal., Nov. 2012, pp. 240–247.

[11] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C
Programming, W. Zhang, Ed. Hoboken, NJ, USA: Wiley, 2014.

[12] CUDA C Programming Guide, 2018. [Online]. Available: https://
docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[13] J. I. Munro andH. Suwanda, “Implicit data structures for fast search
and update,” J. Comput. Syst. Sci., vol. 21, no. 2, pp. 236–250, 1980.

[14] G. Graefe, et al., “Modern B-tree techniques,” Found. Trends�

Databases, vol. 3, no. 4, pp. 203–402, 2011.
[15] A. Vaisman and E. Zim�anyi, “Data warehouses: Next challenges,”

in Proc. Eur. Bus. Intell. Summer School, 2011, pp. 1–26.
[16] P. Vassiliadis and A. Simitsis, “Near real time ETL,” in New Trends

in Data Warehousing and Data Analysis. Berlin, Germany: Springer,
2009, pp. 1–31.

[17] S. Browne, J. J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A porta-
ble programming interface for performance evaluation on modern
processors,” Int. J. High Perform. Comput. Appl., vol. 14, pp. 189–204,
2000.

[18] Microsoft Redmond and Microsoft Research Cambridge, “DBMS
workloads in online services,” 2009. [Online]. Available: http://
www.tpc.org/tpctc/tpctc2009/tpctc2009-10.pdf

[19] K. Pollari-Malmi, E. Soisalon-Soininen, andT. Ylonen, “Concurrency
control in B-trees with batch updates,” IEEE Trans. Knowl. Data Eng.,
vol. 8, no. 6, pp. 975–984, Dec. 1996.

[20] B. Shneiderman, “Batched searching of sequential and tree struc-
tured files,” ACM Trans. Database Syst., vol. 1, no. 3, pp. 268–275,
1976.

[21] D. Merrill, NVIDIA Research Group, “CUB Documentation,”
2018. [Online]. Available: https://nvlabs.github.io/cub/index.
html#sec9

[22] E. Stehle and H.-A. Jacobsen, “A memory bandwidth-efficient
hybrid radix sort on GPUs,” in Proc. ACM Int. Conf. Manage. Data,
2017, pp. 417–432.

[23] J. Fix, A. Wilkes, and K. Skadron, “Accelerating braided B+ tree
searches on a GPU with CUDA,” in Proc. 2nd Workshop Appl. Multi
Many Core Processors: Anal. Implementation Perform., 2011, pp. 1–11.

[24] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel AVX:
New frontiers in performance improvements and energy efficiency,”
IntelWhite Paper, vol. 19, 2008, Art. no. 20.

[25] L. Dagum and R. Menon, “OpenMP: An industry standard API
for shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5,
no. 1, pp. 46–55, Jan.–Mar. 1998.

[26] B. Sch€aling, The Boost C++ Libraries, XML Press; 2nd ed. (Sep. 22,
2014), 2011.

[27] A. Aviram, “B+ tree implementation,” 2018. [Online]. Available:
http://www.amittai.com/prose/bpt.c

[28] W. R. Stevens, B. Fenner, and A. M. Rudoff, UNIX Network Pro-
gramming: The Sockets Networking API, vol. 1. Reading, MA, USA:
Addison-Wesley, 2004.

[29] Profile User’s Guide, 2018. [Online]. Available: https://docs.nvidia.
com/cuda/profiler-users-guide/index.html

[30] J. Rao and K. A. Ross, “Cache conscious indexing for decision-
support in main memory,” in Proc. 25th Int. Conf. Very Large Data
Bases, 1999, pp. 78–89.

[31] J. Rao and K. A. Ross, “Making B+-trees cache conscious in main
memory,” ACM SIGMOD Rec., vol. 29, no. 2, pp. 475–486, 2000.

[32] R. A. Hankins and J. M. Patel, “Effect of node size on the perfor-
mance of cache-conscious B+-trees,” ACM SIGMETRICS Perform.
Evaluation Rev., vol. 31, no. 1, pp. 283–294, 2003.

[33] S. Chen, P. B. Gibbons, and T. C. Mowry, “Improving index per-
formance through prefetching,” ACM SIGMOD Rec., vol. 30, no. 2,
pp. 235–246, 2001.

[34] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin, “Fractal pre-
fetching B+-trees: Optimizing both cache and disk performance,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2002, pp. 157–168.

[35] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey, “FAST : Fast architecture sen-
sitive tree search on modern CPUs and GPUs,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2010, pp. 339–350.

[36] X. Wang, W. Zhang, Z. Wang, Z. Wei, H. Chen, and W. Zhao,
“Eunomia: Scaling concurrent search trees under contention using
HTM,” in Proc. 22nd ACM SIGPLAN Symp. Principles Practice Par-
allel Program., 2017, pp. 385–399.

[37] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general
distributed transactions using RDMA and HTM,” in Proc. 11th
Eur. Conf. Comput. Syst., 2016, Art. no. 26.

[38] W. Zhang, X. Wang, S. Ji, Z. Wei, Z. Wang, and H. Chen,
“Eunomia: Scaling concurrent index structures under contention
using HTM,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 8,
pp. 1837–1850, Aug. 2018.

[39] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and
P. Sadayappan, “Automatic selection of sparse matrix representa-
tion on GPUs,” in Proc. 29th ACM Int. Conf. Supercomput., 2015,
pp. 99–108.

[40] N. Sedaghati, A. Ashari, L.-N. Pouchet, S. Parthasarathy, and
P. Sadayappan, “Characterizing dataset dependence for sparse
matrix-vector multiplication on GPUs,” in Proc. 2nd Workshop Par-
allel Program. Analytics Appl., 2015, pp. 17–24.

[41] J. Li, X. Li, G. Tan, M. Chen, and N. Sun, “An optimized large-
scale hybrid DGEMM design for CPUs and ATI GPUs,” in Proc.
26th ACM Int. Conf. Supercomput., 2012, pp. 377–386.

[42] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun, “Fast
implementation of DGEMM on Fermi GPU,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2011, Art. no. 35.

[43] Y. Nagasaka, A. Nukada, and S. Matsuoka, “Cache-aware sparse
matrix formats for Kepler GPU,” in Proc. 20th IEEE Int. Conf. Paral-
lel Distrib. Syst., 2014, pp. 281–288.

[44] Y. Nagasaka, A. Nukada, and S. Matsuoka, “High-performance
and memory-saving sparse general matrix-matrix multiplication
for NVIDIA pascal GPU,” in Proc. 46th Int. Conf. Parallel Process.,
2017, pp. 101–110.

[45] Y. Nagasaka, A. Nukada, and S. Matsuoka, “Adaptive multi-level
blocking optimization for sparse matrix vector multiplication on
GPU,” Procedia Comput. Sci., vol. 80, pp. 131–142, 2016.

[46] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and
P. Sadayappan, “Fast sparse matrix-vector multiplication on
GPUs for graph applications,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2014, pp. 781–792.

[47] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on GPU architectures,” in
Proc. 26th ACM Int. Conf. Supercomput., 2012, pp. 311–320.

[48] T. Endo, Y. Takasaki, and S. Matsuoka, “Realizing extremely
large-scale stencil applications on GPU supercomputers,” in Proc.
IEEE 21st Int. Conf. Parallel Distrib. Syst., 2015, pp. 625–632.

[49] G. Jin, T. Endo, and S.Matsuoka, “A parallel optimizationmethod for
stencil computation on the domain that is bigger thanmemory capac-
ity of GPUs,” in Proc. IEEE Int. Conf. Cluster Comput., 2013, pp. 1–8.

ZHANG ETAL.: A HIGH THROUGHPUT B+TREE FOR SIMD ARCHITECTURES 719

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

https://www.fbicgroup.com/sites/default/files/CREQ_04.pdf
https://www.fbicgroup.com/sites/default/files/CREQ_04.pdf
https://lintool.github.io/my-data-is-bigger-than-your-data
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.tpc.org/tpctc/tpctc2009/tpctc2009-10.pdf
http://www.tpc.org/tpctc/tpctc2009/tpctc2009-10.pdf
https://nvlabs.github.io/cub/index.html#sec9
https://nvlabs.github.io/cub/index.html#sec9
http://www.amittai.com/prose/bpt.c
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[50] G. Jin, T. Endo, and S. Matsuoka, “A multi-level optimization
method for stencil computation on the domain that is bigger than
memory capacity of GPU,” in Proc. IEEE 27th Int. Parallel Distrib.
Process. Symp. Workshops PhD Forum, 2013, pp. 1080–1087.

[51] P. S. Rawat, F. Rastello, A. Sukumaran-Rajam, L.-N. Pouchet,
A. Rountev, and P. Sadayappan, “Register optimizations for sten-
cils on GPUs,” in Proc. 23rd ACM SIGPLAN Symp. Principles Prac-
tice Parallel Program., 2018, pp. 168–182.

[52] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and
J. D. Owens, “Engineering a high-performance GPU B-tree,” in
Proc. 24th ACM SIGPLAN Symp. Principles Practice Parallel Pro-
gram., Feb. 2019, pp. 145–157.

Weihua Zhang received the PhD degree in com-
puter science from Fudan University, in 2007.
He is currently a professor of Parallel Processing
Institute, Fudan University. His research interests
include compilers, computer architecture, paralle-
lization, and systems software.

ZhaofengYan is nowworking toward the graduate
degree in the Software School, Fudan University
and working in the Parallel Processing Institute. His
work is related to parallel processing, GPU com-
puting, transaction memory, systems software and
so on.

Yuzhe Lin is now working toward the graduate
degree in the Software School, Fudan University
and working in the Parallel Processing Institute.
His work is related to parallel processing, trans-
actional memory, GPU computing and so on.

Chuanlei Zhao is now working toward the under-
graduate degree in the Software School, Fudan
University and working in the Parallel Processing
Institute. His work is related to parallel processing,
GPU computing, system performance improve-
ment and so on.

Lu Peng received the PhD degree in computer
engineering from the University of Florida, in 2005
and joined the Electrical and Computer Engineer-
ing Department, Louisiana State University where
he is currently the Gerard L. Jerry Rispone profes-
sor. His research focuses on computer architec-
ture, reliability, and big data analytics etc. He
received an ORAU Ralph E. Powe Junior Faculty
Enhancement Award in 2007. He is a senior mem-
ber of the IEEE and ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

720 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Authorized licensed use limited to: Louisiana State University. Downloaded on February 26,2020 at 20:23:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

