
J Supercomput
DOI 10.1007/s11227-017-2042-6

Soft error resilience of Big Data kernels through
algorithmic approaches

Travis LeCompte1 · Walker Legrand1 ·
Sui Chen1 · Lu Peng1

© Springer Science+Business Media New York 2017

Abstract As the volume of data generated each day continues to increase, more
and more interest is put into Big Data algorithms and the insight they provide.? Since
these analyses require a substantial amount of resources, including physical machines,
power, and time, reliable execution of the algorithms becomes critical. This paper
analyzes the error resilience of a select group of popularBigData algorithms and shows
how they can effectively be made more fault-tolerant. Using KULFI (http://github.
com/quadpixels/kulfi, 2013) and the LLVM (Proceedings of the 2004 international
symposium on code generation and optimization (CGO 2004), San Jose, CA, USA,
2004) compiler for compilation allows injection of artificial soft faults throughout these
algorithms, giving a thorough analysis of how faults in different locations can affect
the outcome of the program. This information is then used to help guide incorporating
fault tolerance mechanisms into the program, making them as impervious as possible
to soft faults.

Keywords Soft faults · Fault injection · Numerical errors · Fault resilience · Big Data
kernels

1 Introduction

In today’s world, Big Data processing has become progressively more prevalent. A
large percentage of the world’s population spends hours every day connected to the
Internet in some way. This continuous usage by such a large population generates

B Lu Peng
lpeng@lsu.edu

1 Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge,
Louisiana, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2042-6&domain=pdf
http://github.com/quadpixels/kulfi
http://github.com/quadpixels/kulfi

T. LeCompte et al.

an immense volume of data to process, approximately 2.5 exabytes of data per day
as reported by IBM in 2012 [2]. One can imagine that this number will only grow
in the future. To handle this processing, most companies utilize high-performance
computers such as supercomputers or computing clusters. As these high-performance
computers become more and more advanced, one primary focus is to minimize the
amount of power required by a processor to perform operations. This is combined with
the shrinking feature size of processor circuitry which is expected to reach 5–7 nm,
which is just 10–14 silicon atoms across, in 2020 [24]. Traditionally, error resilience
is focused on natural events that can affect the contents within computer clusters [8],
such as charged alpha particles or cosmic rays. With new circuitry technologies and
low-power operations for energy savings, errors can arise form more varied usage
conditions (such as high temperature/altitude zones/vehicles), 3D interconnect and
chip structures, etc. [24].

A recent study reveals the mean time between failure (MTBF) of double bit errors
in the Tesla K20 GPUs used in the Titan supercomputer [30] is as low as 160 h (about
one error per week.) This is 3 magnitudes smaller than the manufacturer-rated MTBF
of 219,282 h under a controlled environment [28]. As such, Big Data practitioners who
seek to build clusters using commodity hardware (which may not have ECC like the
K20 does) may not be able to consider soft faults to be an impossibility. The result is
errors on less protected systems may go unnoticed. Thus, it has become increasingly
important for programs to detect and prevent these faults on their own.

There exists a large range of Big Data algorithms for many specific applications,
ranging over regression and classification to simple statistical reporting. One can-
not hope to examine each program individually to study its fault-tolerant potential.
However, it is common for programs to share features and reuse basic algorithms.
Researchers have come up with proposals with the goal of characterizing Big Data
programs with simpler benchmarks, including HiBench [22], BigBench [20], AMP
Benchmarks [5], YCSB [15], LinkBench [7], CloudSuite [17], and BigDataBench
[19]. The latest one of the collection, BigDataBench, identifies eight Big Data kernels
or dwarves that are used by a significant number of these programs: linear algebra, sam-
pling, transform operations, graph operations, logic operations, set operations, sort,
and statistic operations. Thus, we believe that studying the fault tolerance of one rep-
resentative from each of these kernels will provide insight into potential fault-tolerant
mechanisms for Big Data overall. In this paper, we selected the following eight algo-
rithms to represent each data dwarf, respectively: matrix multiplication, Markov chain
Monte Carlo, fast Fourier transform, breadth-first search, MD5, union set operation,
quicksort, and GREP. We observe the fault-tolerant potential of each algorithm by
identifying algorithm-specific invariants that, when violated, indicate the occurrence
of a soft fault. These invariant checkers are implemented into each algorithm along
with a recovery system. Faults are then injected during the execution of the algorithm
with fault injection tools such as KULFI, and the resulting behavior is observed. We
show that these fault-tolerant systems reduce the impact of these faults by lowering
both incorrect answers and execution failures. This provides information into the effec-
tiveness of this method of fault tolerance on Big Data applications in general, and the
value of fault resilience in Big Data algorithms. Our experiments demonstrate that the
soft error resilience will be significantly improved with the proposed methods.

123

Soft error resilience of Big Data kernels through...

2 Related works

The study of error resilience and related fields such as uncertainty quantification has
been mostly focused on scientific computing so far [10]. Error resilience is a must for
highly unreliable environments such as on an unmanned aerial vehicles [31], especially
with the increasing processing power of onboard computers.

Numerical errors are more complicated than their integer counterparts as floating-
point operations are not exact and dependent on order of operation. This can be seen in
parallel reduction [14] and the linear algebra routines in BLAS [23]. Arithmetic-heavy
applications including physics-based simulations are designed to cope with round-off
errors [32]. With finite bit precision, floating-point operations and their results can be
seen as approximations. Recently, NVIDIA began to provide half-precision (FP16)
floating-point arithmetics [6] with the aim to boost performance at negligible cost of
accuracy, particularly in deep-learning applications which are closely related to big
data applications. From this point of view, approximation and tolerance to soft faults
are very similar in nature.

The fault resilience workflow encompassing fault injection and resilience can be
done on multiple levels of the hardware–software stack. Existing works have utilized
actual proton sources on the physical level [9], embedded hardware sensors on the
circuit level [27], FPGAs on the digital logic level [29], full-system simulators and
virtual machines on the architectural level [21], and debugging utilities on the high
application level [31].

Fault resilience study can be costly on the experiments side as well as on the
engineering side. Several works have proposed remedies: to reduce the huge size of
the fault injection experiment space, Relyzer [25] exploits control flow and value
equality to prune the fault injection space; to save engineering cost on large code
bases, a programming model called containment domains [13] provides developers
a hierarchical view of fault resilience. Modular analysis [12] provides a first step
toward lowering the cost in fault injection and the understanding of numerical error
propagation.We expect to see fault resilience get increased support in the future in tool
chain and modeling just like profiling and debugging do.

In this paper, we utilized a lightweight fault injector KULFI [4], which is built on
LLVM [26] and extended in a previous work [11] to analyze the fault tolerance of Big
Data algorithms [12]. However, we further extend it to constructing invariant checkers
and recovery systems. These let us observe program behavior with injected faults at
any location in program execution.

To keep the cost of fault injection experiments at an acceptable level, we use a
statistical tool to ensure our experiments are statistically grounded and can represent
the fault injection space with a sample that is much smaller than the experiment space
size.

3 Design procedure

For each of the big data dwarves included,we follow a general approach shown inFig. 1
to analyze the fault tolerance of the dwarf. This process involves identifying a specific

123

T. LeCompte et al.

Fig. 1 Method of testing and
improving fault tolerance of
selected programs

implementation of an algorithm to test and represent the dwarf, which must in turn
be compatible with KULFI and LLVM; identifying one or more invariants within the
algorithm; implementing the said invariant(s) to check for errors, along with recovery
in the event any invariant is violated; identifying an error criteria, to allow for detecting
improper program output; and lastly, injecting faults into program execution during
tests to observe the effects of the invariant implementation and recovery system.

To identify implementations for testing,we searched for published implementations
of algorithms that we consider exemplified the dwarf in question. This search typi-
cally began with the BigDataBench benchmark suite itself, though some compatible
implementations were difficult to find and are taken from public github repositories.

Next we attempt to identify invariants within the algorithm for use in identifying
errors during program execution. Some implementations are relatively simple, such as
grep, and do not exhibit high-level invariants. For these implementations, we choose
to use redundancy in critical operations to eliminate errors. For those that do contain
invariants, we then implement the check for the invariant alongwith a recovery system.
Thus, if faults are injected into the program, the invariants potentially fail and the
program recovers from the fault, instead of allowing the fault to propagate to output
error or program failure.

However, we must be able to detect whether a program is creating proper output
or not. These criteria are algorithm specific, typically involving a comparison of out-
puts or of statistics for the outputs. For some programs such as union, this is very
straightforward, while others such as breadth-first search or Markov chain Monte
Carlo (MCMC), which relies on random sampling, are more complex.

Lastly, we need to test the effectiveness of the fault-tolerant additions. This test-
ing includes a minimum of 5000 trials for both fault-tolerant and non-fault-tolerant

123

Soft error resilience of Big Data kernels through...

algorithms each, along with varying-sized data sets for some algorithms. Faults are
injected dynamically into program execution using KULFI, and outputs for both the
fault-tolerant and non-fault-tolerant versions are compared with the “correct” program
output, as determined by a non-fault-tolerant execution with no injected faults. This
comparison gives a metric to determine whether a trial is incorrect, and how incorrect
it is.

4 The eight dwarves

4.1 Linear algebra (Matrix Multiplication)

4.1.1 Introduction

Matrixmultiplication is a common linear algebra operation that involvesmany individ-
ualmultiplications and summations. For this purpose, we use theGSL (GNUScientific
Library) [18] formatrix and vector multiplication. Specifically, wemultiply twomatri-
ces A and B together four different times, once for each combination of transposition
(i.e., transposed A, B, A and B, or neither). This is because GSL provides four paths
for each combination, each with an optimized access pattern that tries to maximize
cache efficiency for the particular combination. With the four combinations, we can
fully evaluate the resilience of GSL’s implementation of this operation.

4.1.2 Invariants

Suppose that we have matrices A, B, and C such that AB = C . Then for any vector v,
ABv = Cv. We can then check the results of multiplication by using a nonzero vector
v. While this is obvious, it is useful due to the associative property of matrix multi-
plication. The multiplication can be associated as A(Bv) = Cv, which in turn avoids
any direct matrix–matrix multiplication, relying only onmatrix–vector multiplication,
which is substantially less expensive to compute.

4.1.3 Testing procedure

As previously stated, the algorithm multiplies matrices in four different transposition
combinations to fully test themultiplication algorithm. For each one of these four mul-
tiplications, the correct output matrix as calculated by the non-fault-tolerant algorithm
with no faults injected is stored to a file. These precomputed matrices are then read
in by the algorithm during testing, where it compares the results of the current trial to
the precomputed matrices. A root-mean-square difference is calculated by comparing
each element of the current trial’s matrix to the corresponding element in the precom-
puted matrix. This comparison includes a tolerance of 1e−8 to account for potential
rounding errors. Thus, an output is generated including one root-mean- square dif-
ference for each one of the four multiplications. Both the non-fault-tolerant and the
fault-tolerant versions are run on 10,000 trials each, using matrices of size 500× 400
and 400 × 300.

123

T. LeCompte et al.

Fig. 2 Number of incorrect results by magnitude of error in incorrect outcomes

4.1.4 Results

For the purpose of consolidating data, the individual error of each of the four multipli-
cations performed in the algorithm has been summed into one total error. For 10,000
trials, the non-fault-tolerant version of the algorithm produced 5793 wrong answers
and 3501 segmentation faults (program execution failures), while the fault-tolerant
version produced 192 wrong answers and 3,503 segmentation faults. This is a massive
reduction in wrong answers by 96.68% and a small increase in segmentation faults
by 0.05%. Additionally, the non-fault-tolerant version has a very large mean error of
7.07e+298, while the fault-tolerant version has a mean error of only 4.57e−03. Thus,
only the smallest errors still occur in the fault-tolerant version, while massive errors
occur in the non-fault-tolerant version.

The included histogram, Fig. 2, shows the number of occurrences of error that occur,
grouped by the base ten logarithm of the consolidated error. First to note is the large
reduction in small errors that occur. Second is the complete elimination of larger errors,
even though they are not extremely common in the non-fault-tolerant version to begin
with. However, since the errors are extremely large, they have a large influence on the
mean error.

Error probability Next we analyze the probability of errors occurring based on the
dynamic fault site the fault is injected into in Fig. 3. Dynamic fault sites in KULFI
essentially count the instructions executed as they are encountered and label them
with their position, which is referred to as the dynamic fault site ID (DFSID). Thus,
analyzing the program behavior by DFSID is similar to examining the probability
of error occurring at certain points of the program’s execution and is determined by
the number of injections at a particular dynamic fault site that cause an incorrect
answer. The dynamic fault sites in turn map to a specific line of source code, so this
effectively measures the probability of a wrong answer occurring due to an error in
a specific line of source code. Due to a difference in dynamic fault site count, in
the following graphs the non-fault-tolerant data points have been stretched to match

123

Soft error resilience of Big Data kernels through...

Fig. 3 Probability of error in
non-fault-tolerant versus
fault-tolerant runs by location of
injected bit flip in Matrix
Multiplication

Fig. 4 Probability of the fault
chcker in Matrix Multiplication
crashed, fixed an error, failed to
fix an error, failed to detect an
error, or resulted correctly
without fault check assistance

the fault-tolerant data points. Thus, both curves represent a full run of the tested
program.

It is clear that there is a massive reduction in error probability across the board,
nearly removing all error. The probability of error is relatively constant at the beginning
of the program in both versions, but the fault-tolerant version removes the majority
of error in the second half of execution, while the non-fault-tolerant version becomes
more erratic. Overall, the fault-tolerant version has much more stable behavior, in
addition to a large reduction in the probability of error consistent with previous results.

Behavior distribution Lastly, in Fig. 4, we analyzed the behavior of the fault-tolerant
algorithm by dynamic fault site ID. The outcomes are classified as one of the fol-
lowing five: correct (no error detected, correct answer), fixed (error detected, correct

123

T. LeCompte et al.

answer), missed (no error detected, incorrect answer), failed (error detected, incor-
rect answer), and crashed (program failed to complete execution). This gives a finer
breakdown of how the fault tolerance works, by comparison to simply a right or wrong
answer.

It becomes immediately clear that there are a large number of fixed outcomes,
demonstrating that the added fault tolerance code has a large effect on program behav-
ior, in accordance with previous results. Additionally, there are a large number of
segmentation faults, as mentioned earlier. There are only a small number of correct
outcomes, meaning that the faults have a large effect on the behavior of the program,
and a small number of missed and failed outcomes, signaling a minor failure of the
fault-tolerant additions.

4.2 Sampling (MCMC, namely Metropolis–Hastings)

4.2.1 Introduction

Markov chain Monte Carlo (MCMC) generally is a popular probabilistic algorithm
that approximates an unknown distribution by sampling from said distribution and
adjusting a test distribution based on samples. In this sense it acts similarly to a dis-
crete Markov chain, the test distribution is adjusted to slowly approach the unknown
distribution, and the transitions made rely only on the current state of the test dis-
tribution and the samples from the unknown distribution. When a large number of
transitions are made, the test distribution comes to be approximately equal to the
unknown distribution.

The specific MCMC implementation used in the following tests is a Metropolis–
Hastings algorithm [1]. Metropolis–Hastings is commonly used to generate many
random samples from distributions that would otherwise be difficult to sample. The
algorithm first calculates an acceptance value A(x) for a proposed sample x . Then if
A(x) is greater than an acceptance criteria probability P(x), the proposed sample is
accepted and the Markov chain changes state. This implementation relies heavily on
the C++ Boost library for random number generation and probability distributions.

4.2.2 Invariants

The invariants used this algorithm are primarily related to the transitioning of the
Markov chain, as the samples fed to the algorithm are random and thus cannot be
bounded well.

For the acceptance criteria probability P(x), 0 ≤ P(x) ≤ 1. This holds true since
P(x) is indeed a probability, and thus should be bound by zero and one. Note that
this does not extend to A(x), where an acceptance value greater than one is allowed,
which would indicate guaranteed acceptance.

For a transition in the Markov chain from state X to state Y , after the transition is
complete, the current state of the chain should be equal to state Y . This is clear by
definition of the transition, but should be checked to guarantee proper transitions.

123

Soft error resilience of Big Data kernels through...

Fig. 5 Number of incorrect
results by magnitude of error in
incorrect outcomes

4.2.3 Testing procedure

Both the fault-tolerant and non-fault-tolerant versions of the algorithmgenerate 10,000
samples from a distribution with a burnin of 500. This leads to a total of 5,000,000
potential samples generated and tested, and the same number of potential transitions,
per execution. Each version of the algorithm was run for a total of 10,000 trials. The
correctness of the algorithm was determined by the absolute value of the difference
between the mean of all 10,000 samples generated in the trial in question and the
mean of all 10,000 samples generated by the non-fault-tolerant version with no faults
injected during execution.

4.2.4 Results

Error occurrences For the 10,000 trials run, the non-fault-tolerant version of the
algorithm produced 646 wrong means and 473 segmentation faults, while the fault-
tolerant version produced 442 wrong means and 429 segmentation faults. This shows
an improvement of 31.58% in errors and 9.31% in segmentation faults. This merely
minor reduction in segmentation faults is due to the fact that the majority of seg-
mentation faults occur in the sources for the Boost library. Interestingly enough, the
fault-tolerant version has a mean difference of 17,744.94, while the non-fault-tolerant
version has a mean difference of 17,740.21. So while there is an overall reduction in
both the number of wrong outputs and failures in execution, the erroneous outputs are
actually larger in difference on average, though not by much.

It is interesting to note in Fig. 5 that there are only three major peaks of error,
most likely caused by a pattern in the fault injection. It is clear that the fault-tolerant
version reduces thesemajor peaks of error substantially.However on the less prominent
peaks, occasionally the fault-tolerant version overtakes the non-fault-tolerant version
in number of occurrences of error.

Error probabilityThegraph inFig. 6 oscillates frequently, and the fault-tolerant version
occasionally overtakes the non-fault-tolerant version, similar to the previous graph in

123

T. LeCompte et al.

Fig. 6 Probability of error in
non-fault-tolerant versus
fault-tolerant runs by location of
injected bit flip in MCMC

Fig. 7 Probability of the
different outcomes of the fault
checker in MCMC

Fig. 4. However, the fault-tolerant version cuts out the major peaks of errors and only
slightly exceeds the non-fault-tolerant version when it does. The magnitudes of the
probabilities are also very small, meaning that one error during execution greatly
influences this graph.

Behavior distribution The first feature to note in Fig. 7 is the overwhelming percentage
of correct outcomes by comparison to all other outcomes. This means that many of
the faults injected during execution do not affect the outcome of the program. Next
is the relatively small percentage of segmentation faults, which largely occur in the
distributions of the Boost library. What remains are mostly fixed outcomes, with a
smaller percentage of missed outcomes and no failed outcomes. This means that the

123

Soft error resilience of Big Data kernels through...

error correction is successful when the errors are detected, but there are errors that are
not seen by the fault-tolerant code.

4.3 Transform operations (FFT)

4.3.1 Introduction

The fast Fourier transform algorithm was developed to quickly compute the discrete
Fourier transform, and its inverse, of a data set of any size. The discrete Fourier
transform is used on complex waveforms and is widely applicable to many fields of
science.

4.3.2 Fault tolerance analysis

The best way to determine whether the FFT algorithm was properly executed is to
perform a check after the transform is performed. The best check for this algorithm is
a theorem called Parseval’s theorem [3] which goes as follows:

N−1∑

n=0

|xn|2 = 1

N

N−1∑

k=0

|Xk |2

The small x indicates the data signal before transformation, and the capitalized
X represents the transformed data signal. Computing these summations on both data
sets after the algorithm has been run and comparing them with a tolerance of 0.001
to account for rounding errors tells whether or not the transform has been returned
properly and whether re-computation is necessary.

4.3.3 Testing procedure

The algorithm was run on an input signal containing 524,288 complex values. Faults
were injected over the course of around 20,000 runs of the algorithm, both with and
without fault checks.

4.3.4 Results

The fault check proved to be quite effective correcting wrong answers. Out of 20,000
fault-injected runs on the original algorithm, 14,119 came out as wrong answers. With
the fault checks implemented, only 972 out of 20,000 runs returned as faulty.

Error probability The graph in Fig. 8 was generated to show the probability of error in
the fault-injected runs with and without the implemented fault checks. As shown in the
graphs, over 90% of the fault- injected runs without fault checks turned up as incorrect
answers. This percentage drops to roughly 5% with the addition of the fault checks.

Behavior distribution The graph in Fig. 9 shows that a large portion of the runs of the
program ended up being detected as faulty and were corrected by the fault checks. The

123

T. LeCompte et al.

Fig. 8 Probability of error in
non-fault-tolerant versus
fault-tolerant runs by location of
injected bit flip in FFT

Fig. 9 Probability of the
different outcomes of the fault
checker in FFT

program also ended up crashing roughly 25% of the time most likely due to the fact
that the complex numbers were contained in arrays which can return segmentation
faults if a fault occurs in an array offset.

4.4 Graph operations (BFS)

4.4.1 Introduction

Breadth-first search (BFS) is a common graph search algorithm that searches for an
element from a root node level by level, such as reading a book (thus the name). This
specific implementation constructs a search tree with a given root node from a given

123

Soft error resilience of Big Data kernels through...

edge list. This effectively finds the shortest path from the root node to each other node.
The algorithm itself heavily uses C arrays for operation.

4.4.2 Invariants

Most of the fault-tolerant additions to the BFS algorithm are duplications to critical
assignments or if statements to guarantee proper execution. Due to the reliance on
arrays, the most common errors observed are segmentation faults due to incorrect
array pointer offsets. Second to this are errors in loop conditions or control variable
assignments and updates. Therefore, most additions of fault-tolerant code involve
assuring proper variable assignment or control flow conditions at critical points of
program execution. These together help ensure the following invariants in the tree are
not violated.

Let n be the number of nodes specified by the input file. After the breadth-first
traversal, the produced tree should contain the same n nodes. The algorithm should
not remove any nodes from the graph, and it should only traverse the edges to find
shortest paths in a breadth-first manner.

Let depth[v] be the depth of a node v, and let parent[v] be the parent node of
a node v. Then after the breadth-first traversal,depth[v]>depth[parent[v]]
for any node v that is not the root node (which has no parent). This holds because BFS
searches in descent from the root node level by level and ignores cycles in the graph,
preventing two nodes at the same depth level from having a parent–child relationship.
Therefore, the only parent–child relationships that exist are those in which the depth
of the parent is less than the depth of the child.

Let distance[v] be the distance from node v to the root of the tree. Then, after
the traversal, distance[v] should be the length of the shortest path from node v to
the root node. This is a common invariant of BFS which has been proven in classroom
lectures [16].

4.4.3 Testing procedure

To test the BFS algorithm under fault injection, we ran the algorithm on both small
(1,024 nodes, 10,240 edges) and large (16,384 nodes, 262,144 edges) data sets. In both
cases, both the fault-tolerant and non-fault-tolerant versions of the algorithm were run
for a total of 10,000 outcomes using the same root node fromwhich to traverse the tree.
Faults were injected into both the fault-tolerant and non-fault-tolerant code, ranging
over the full length of possible fault sites. These faults could be injected into the bit
positions 1, 8, 15, 22, or 29. Error in a given outcome was measured by comparing
the final tree structure output by the execution in question to the same output from
a non-fault-tolerant, non-fault-injected BFS run on the same input data and counting
the number of nodes which had a different parent, or path to the root node.

4.4.4 Results

Error occurrences Out of the 10,000 outcomes for each version of the algorithm
on the small input graph, the non-fault-tolerant version has 1001 wrong outcomes

123

T. LeCompte et al.

Fig. 10 Number of incorrect results by magnitude of error in incorrect outcomes in BFS. a Small input. b
Large input

and 2427 segmentation faults, while the fault-tolerant version has only 412 wrong
outcomes and 1709 segmentation faults. This shows an overall decrease in wrong
outcomes by approximately 58.9% and a reduction in segmentation faults by 29.6%.
The fault-tolerant version also has an average number of wrong values of 8.04 versus
the non-fault-tolerant version’s average of 14.9.

Out of the 10,000 outcomes for each version of the algorithm on the large input
graph, the non-fault-tolerant version has 1258wrong outcomes and 2241 segmentation
faults, while the fault-tolerant version has only 359 wrong outcomes and 1596 seg-
mentation faults. This shows an overall decrease in wrong outcomes by approximately
69.0% and a reduction in segmentation faults by 28.8%. The fault-tolerant version also
has an average number of wrong values of 68.5 versus the non-fault-tolerant version’s
average of 117.1.

The results from the 10,000 outcomes from each version of the algorithmwere com-
piled into a histogram in Fig. 10, counting the number of outcomes grouped together
by their number of errors, which is scaled logarithmically.

The fault-tolerant version improves over the non-fault-tolerant version in both the
small and large input cases, though by more so with large input. The greatest improve-
ment comes in a large reduction of small errors, though there is improvement at nearly
all occurrences of error. The error values are also not well concentrated outside of
the very small areas of error, meaning that faults injected can cause a wide range
of different output errors. Overall, it would appear that the algorithm performs bet-
ter on the large input files, though they naturally have a higher average number of
errors.

Error probability As shown in Fig. 11, there is clearly reduction in the probability
of error at most locations in program execution, in both large and small input cases.
There are certain places in execution, namely the start of the final quarter of execution,
at which the fault-tolerant algorithm increases the probability of error. The program
displays an interesting area of zero probability of error in the middle of program
execution, in both the fault-tolerant and non-fault-tolerant versions. It is also worth

123

Soft error resilience of Big Data kernels through...

Fig. 11 Probability of error occurrences in BFS by dynamic site ID. a Small input. b Large input

Fig. 12 Probability of the different outcomes of the fault checker in BFS. a Small input. b Large input

noting that the probabilities of error seem to have larger peaks in the large input file
than the small input file.

Behavior distribution As shown in Fig. 12, the program displays a large number of
crashed runs (segmentation faults) by comparison to some of the other categories.
This is expected, as the program uses a large number of array operations. Secondly,
the program is relatively fault-tolerant and many of the trials are already correct and
do not detect any error or wrong output whatsoever. There is still a large portion of
trials that are fixed, however, signaling the effect of the added fault-tolerant code.
Lastly, there are a small number of failed/missed trials, and even less so in the large
input trials. Overall, this means that the fault-tolerant code mostly either fixes errors,
experiences no errors at all, or fails to complete execution.

123

T. LeCompte et al.

Fig. 13 Code from the FF() function within the MD5 algorithm using fault checking techniques

4.5 Logic operations (MD5)

4.5.1 Introduction

MD5 was originally developed as a cryptographic hash function, the main purpose
of which is to protect against intentional attacks on data that are being transmitted.
In recent years, MD5 has been shown to be outdated and weak in protecting against
intentional attacks, but it is still used today for checksum purposes and to verify data
integrity.

4.5.2 Fault tolerance analysis

In the MD5 algorithm, there are four functions that are called many times each
throughout the execution of the program. These functions, called FF, GG, HH, and
II, respectively, are used to set up and call a function called rotate_left which
performs the bitwise function of the same name on the data given by the function.
In the original code for the algorithm, each of these four functions contains only one
line:

– FF :a = rotate_left(a + F(b,c,d) + x + ac, s) + b;
– GG:a = rotate_left(a + G(b,c,d) + x + ac, s) + b;
– HH :a = rotate_left(a + H(b,c,d) + x + ac, s) + b;
– I I :a = rotate_left(a + I(b,c,d) + x + ac, s) + b;

The same strategy was used to make each of the FF, GG, HH, and II functions fault-
tolerant. Each function, which previously only contained a single line, was replaced
with the code shown in Fig. 13.

A copy of the data contained in a is placed in the variable z. The data in z are
then checked against a to make sure it was copied properly. The rotate_left()
function is then called twice, once with the a variable and once with the z variable.
The answers are compared, and if for some reason they are not equal, the answer is
computed a third time and this answer is used as the output for the function. Due
to the fact that this function is called numerous times throughout the program, this
results in an instruction count overhead of 70%. Although there is a large addition
of instructions when the fault tolerance checks are added to the program, the positive
results of the fault tolerance appear to outweigh the drawbacks.

123

Soft error resilience of Big Data kernels through...

Fig. 14 Probability of error in non-fault-tolerant versus fault-tolerant runs of MD5 by location of injected
bit flip. a Small input. b Large input

4.5.3 Testing procedure

To test the efficiency of the fault tolerance checks, the program was run thousands
of times, injecting a single fault into a different location each run. To assure that the
effectiveness of the fault tolerance checks was consistent regardless of input size, these
fault injection trials were run on both a small and large input size. The small size was
an input of 1000 randomly generated characters, and the large size was an input of
1,000,000 randomly generated characters. The program was run 50,000 times on each
data set, both with and without the fault tolerance checks for a comparison of how
often the program generated incorrect data.

4.5.4 Results

Line graphs in Fig. 14 were generated for both the small and large data sets in order to
give a more visual representation of the probability of error. As shown in the graphs,
it is clear that the fault tolerance checks create a large difference in error probability
throughout the entire program (Fig. 15).

Error probability Line graphs in Fig. 14 were generated for both the small and large
data sets in order to give a more visual representation of the probability of error. As
shown in the graphs, it is clear that the fault tolerance checks create a large difference
in error probability throughout the entire program.

Behavior distribution Both of the histograms in Fig. 15, which represent the small and
large input trials, seem to be fairly similar and do not exhibit any major differences.
In both graphs, roughly 25% of the trials crashed and did not run to completion due to
some sort of error. Roughly 45% of the runs returned as “fixed” which shows that 45%
of the runs were likely to return an incorrect answer but were corrected by the fault
tolerance checks. The graph also shows that 20% of the runs resulted in correct outputs

123

T. LeCompte et al.

Fig. 15 Probability of different outcomes of the fault checker in MD5. a Small input. b Large input

(i.e., these runs were not affected by fault injection) and 10% resulted with incorrect
outputs that were not detected by the fault checks. An extremely small (<1%) of the
trials returned as “failed,” indicating that an error was detected but was not fixed by
the program.

4.6 Set operations (union)

4.6.1 Introduction

Union is among themost commonly used set operations and is applicable in any branch
of math that deals with sets. A union functions purpose is to take two separate sets of
data and output a single set which contains every element that occurs in at least one of
the two sets. Also, the output of a union function should not contain the same element
twice.

4.6.2 Fault tolerance analysis

The majority of the algorithm is just conditional statements and assignments of vari-
ables, so the best way to make the program resistant to faults that could potentially
give a wrong output is to double check that these conditionals and assignments were
properly executed without error. To do this, three different types of error checks
were set up throughout the program. Though each of the checks only corrected a
small number of wrong outcomes, together, they eliminate a sizable amount of wrong
answers.

Assignments The first check that was used in the program, shown in Fig. 16a, was
to check the assignment of elements contained in arrays. One incorrect bit could
potentially lead to a snowball effect which could cause the output data to be incorrect

123

Soft error resilience of Big Data kernels through...

set3[count] = set1[cnt1];
if (set3[count] != set1[cnt1])

set3[count] = set1[cnt1];

(a)

int tmp = cnt1 + 1;
cnt1++;
if (tmp != cnt1)

cnt1 = tmp;

(b)

label2:
while (set2[cnt2] == temp){

...

...
}...
if (set2[cnt2] == temp){...

goto label2;

(c)

Fig. 16 Code examples from three operations in set union. a Assignment, b increment, c while loops

or even just make the program crash. This type of check was used several times for
the assignment statements throughout the program.

Increment The second type of error check that was used in the algorithm, shown in
Fig. 16b, was used to check to correctness of themultiple increment functions through-
out the program. The variables that are incremented by one throughout the program
are used to keep track of how many elements are being handled by union function.
An error in one of the variable has the potential to drastically change the output. This
check creates a copy of the variable to be incremented that is also incremented. The
two are then compared and corrected if needed.

While loops The last type of check that was used to make the algorithm more fault
tolerant, shown in Fig. 16c, was a check for while loops. Once the while loop is
terminated, the program immediately double checks the conditional statement to assure
that the while loop was terminated at the right time. If not, it goes back and continues
with the while loop until it is supposed to be completed.

4.6.3 Testing procedure

Due to the frequent error checks that are necessary to keep the algorithm going in
the case that a fault occurs, the fault-tolerant version contains roughly 70% more
overhead instructions than the standard version. In order to study the effects that the
fault tolerance checks had on the outcome of the program when faults are injected,
we ran several trials of runs on the program. The first two trials (one with the original
code, the other with the fault tolerance checks included) were set to unify two separate
sets, each containing 1000 integers. The algorithm was run roughly 5000 times on
both the original and the fault-tolerant code, injecting a fault into a different place in
the code each time. The next two trials were to study the effects on a larger data size.
These trials were set to unify two separate sets, each containing 100,000 integers, and
ran the algorithm approximately 10,000 times.

123

T. LeCompte et al.

Fig. 17 Number of incorrect results by magnitude of error in incorrect outcomes in set union. a Small
input. b Large input

Fig. 18 Probability of error in non-fault-tolerant versus fault-tolerant runs of set union. a Small input. b
Large input

4.6.4 Results

For the small data set, which was run roughly 5000 times, the number of errors in the
non-fault-tolerant version versus the fault-tolerant version dropped from 1302 to 266.
The large data set returned similar results but out of around 10,000 runs, showing a
drop in faulty outcomes from 2672 to 651.

Error occurrences The two images in Fig. 17 are histograms of the number of faulty
runs from least faulty to most faulty. This was determined by how many elements of
the outputted union array were in the correct spot in the array. As shown in the graphs,
the majority of the runs had either only a small amount of numbers wrong or almost
all of the numbers wrong, which resulted in the big dip in the middle of the graphs.

The two graphs in Fig. 18 were generated to show the probability of error in the
original code versus the fault-tolerant code. The Y -axis is the number of incorrect
outputs divided by the total number of runs in the trial. The X-axis shows where in the

123

Soft error resilience of Big Data kernels through...

Fig. 19 Probability of different outcomes of the fault checker in set union. a Small input. b Large input

program the fault was injected (the left end being the beginning of the program, the
right being the end). Both graphs for the large and small input do not seem to show
much difference. The error probability of the non-fault-tolerant runs seems to fluctuate
around 50%,while the fault-tolerant runs drop to around only 10% probability of error.

Behavior distribution Both of the bar graphs in Fig. 19, which represent the small and
large input trials, seem to be fairly similar and do not exhibit any major differences.
In both graphs, roughly 35% of the trials crashed due to some sort of error caused
by fault injection. Another 35% of the runs resulted as “fixed” which shows that 35%
of the runs were likely to return an incorrect answer but were corrected by the fault
tolerance checks. The graph also shows that around 25% of the runs resulted in cor-
rect outputs (i.e., these runs were not affected by fault injection). The remaining 5%
consists mostly of runs that resulted with incorrect outputs that were detected by the
fault checks, but the fault checks failed to fix them. An extremely small number of
runs (∼ 1%) resulted as “missed,” indicating that no error was detected but the output
was incorrect, meaning a fault that altered the output data somehow slipped through
the cracks of the fault checks.

4.7 Sort (Quicksort)

4.7.1 Introduction

Quicksort is known for being among the fastest sorting algorithms around. With an
average run time of O(n · log(n)), assuming n values, quicksort is often among the
fastest sorting algorithms. Quick sort uses a recursive divide and conquer method,
starting with a “pivot” number in an array and splitting it into two separate arrays,
one containing all numbers larger than the pivot and the other containing all numbers
smaller than the pivot. This is done recursively, selecting pivots in both of the smaller
arrays and breaking them down further until the entire array is in order.

123

T. LeCompte et al.

temp = data[left];
if (temp != data[left]) {

cout << "Fault detectedn";
temp = data[left];

(a)

label:
while (left < right) {

...
}
if (left < right) {

cout << "Fault detectedn";
goto label;

(b)

label2:
int tmp = right - 1;
right --;
if (tmp != right) right = tmp;

(c)

label2:
if (left < right) {

...
} else {

if (left < right) {
...

(d)

Fig. 20 Code examples in quicksort. a Assignment, b while loops, c increment, d if statements

4.7.2 Fault tolerance analysis

A large portion of the function is mainly conditional statements contained within
while() and if() statements, so the most effective way to make this sorting algo-
rithm fault-tolerant is to double check that these conditional statements were handled
correctly/without error. To reduce these errors, four types of error checkers were used.

Assignments After each assignment statement in the code, an if statement, shown in
Fig. 20a, was placed to assure that the data had been properly copied from source to
destination. If not, a second attempt to assign the data is made. This type of checker
is used four times after the following lines of code:

– temp = data[left];
– data[left] = data[right];
– data[right] = data[left];
– data[left] = temp;

While loopsAfter each while statement in the code, an if statement, shown in Fig. 20b,
was used to determine whether or not the while loop had been accurately terminated.
If the condition in the if statement passes as true, then the program is set back to
the beginning of the while loop so the loop can continue as it was supposed to. This
checker was implemented into the program after three while loops:

– while(left<right);
– while(left<right && data[right]>=temp);
– while(left<right && data[left]<=temp);

Increment/decrement operators For each increment/decrement operator in the pro-
gram, a temporary variable, shown in Fig. 20c, was created to assure the proper value

123

Soft error resilience of Big Data kernels through...

Fig. 21 Number of incorrect results by magnitude of error in incorrect outcomes in quicksort. a Small
input. b Large input

was assigned to the variable. This checker was used twice in the program for the right–
and left++ lines.

If statements Finally, an else statement, shown in Fig. 20d, was placed after each if
statement in the program and within the else statement is a copy of the if statement
as well as the lines of code that are within the brackets of the if statement. This
assures that if the conditional statement was faulty in the first call of the if statement,
the program will still execute the proper lines after it double checks the conditional
statement in the else brackets. This checker is placed in the program three times after
all three if statements that are if(left<right).

4.7.3 Testing procedure

In order to show the effectiveness of the fault-tolerant version of the program versus
the original code, we ran four separate trials. The first two trials were run on an input
size of 10,000 values (one trial without fault-tolerant changes and the other with these
fault-tolerant changes), while the other two trials were run on a size of 1,000,000
values to give an idea of how the size of the input may affect the fault tolerance of the
program. Faults were injected into roughly 20,000 fault sites throughout each program
giving us 20,000 different outputs for each trial.

4.7.4 Results

The small data set showed a drop in incorrect outcomes from 2822 to 854, while the
large data set dropped from 3019 to 1289. This may indicate that as input data size
increases, the program is less tolerant of faults and more prone to incorrect outcomes.

Error occurrences The graphs pictured in Fig. 21 display the frequency of varying
error magnitudes in the incorrect runs. In all trials, the majority of the faulty runs seem
to have a small faultiness value which results in the spike at the beginning of each
graph. After the initial spike, the number of runs based on faultiness seems to be fairly
consistent across the rest of the graph with a final dip at the end. In both graphs, the
line generated by the fault-tolerant version clearly follows the non-fault-tolerant line

123

T. LeCompte et al.

Fig. 22 Number of incorrect results by magnitude of error in incorrect outcomes in quicksort. a Small
input. b Large input

Fig. 23 Probability of the different outcomes of the fault checker in quicksort. a Small input. b Large input

but at almost half the size, showing that the fault tolerance checks were successful a
significant portion of the time. The fault tolerance checks also seemed to remove a
significant amount of the small errors in the small input, but only eliminated around
half of these small errors in the large input indicating that the fault checks may be
slightly less effective as input size grows.

Error probability The graphs in Fig. 22 do not take into account the amount of seg-
mentation faults in the trial results. These graphs only consider runs of the program
that were executed to completion, and display the ratio of incorrect results to overall
number of outcomes in each given trial. In both cases, the percentage of incorrect
outcomes seems to drop by roughly 15–20% due to the fault tolerance checks.

Behavior distribution The graphs in Fig. 23 do not seem to be different from each other
by a noteworthy degree. Both graphs show that roughly 25% of the trials resulted in

123

Soft error resilience of Big Data kernels through...

segmentation faults, approximately 15–20% were “fixed” which shows that the fault
tolerance correct a significant portion of runs that would have otherwise returned an
incorrect result, and just over 50%of the runs turnedupas correctwhich shows that over
half of the faults injected had no effect on the outcome of the program. The majority of
the remaining 5% ended up as “missed” with a small amount of “failed” runs as well.

4.8 Statistics operations (GREP)

4.8.1 Introduction

The acronym “grep” stands for “globally search for a regular expression and print.” As
the name suggests, the generic grep algorithm searches a given file or directory for a
given regular expression andprints all found results. This specificgrep implementation,
MPI_Grep, prints the total number of found occurrences of the regular expression. It is
actually a relatively simple algorithm, relying heavily on the C string library functions
for searching.

4.8.2 Invariants

In order to identify and count all of the occurrences of a regular expression, grep
divides up the given file into sections of a certain size, searches each section for
the number of occurrences, and then aggregates the count from each section into
a total count. As such, the invariants deal with both the counter variables and the
pointers specifying locations within the file. These invariants were discovered by
examining the algorithm and through testing. The specific invariants used are listed
below:

In the aggregation function, let Ci be the count at iteration i . Then, Ci + 1 ≥ Ci
and Ci ≥ 0 for all iterations i . This can be observed from the code, as there is only an
addition operation of two positive numbers per iteration, and it would not make sense
to have a negative count of occurrences.

In the matching function, letCi be the count at iteration i . Then,Ci +1 ≥ Ci +1 ≥
Ci and Ci ≥ 0 for all iterations i . Similar to above, the code only contains an addition
of positive numbers. The added constraint is specified because the code only allows
for one increment (“++”) operation per iteration. If the counter were to increase by
more than one per iteration, it would signal an error.

Let Pi be the location in the text at iteration i . Then, Pi +1 ≥ Pi for all iterations i .
This was discovered by looking at the string library “find” function, which searches
the string for a given pattern in a forward direction. As such, it would not make sense
for the location in the file to be a lower value after an iteration than it was previously.

4.8.3 Testing procedure

To test the grep algorithm’s behavior under fault injection, we ran the grep algo-
rithm on both a 52.4 and 522.2 MB file of random text. Both the fault-tolerant and
non-fault-tolerant algorithm were run for a total of 10,000 outcomes on the file,

123

T. LeCompte et al.

Fig. 24 Number of incorrect results by magnitude of error in incorrect outcomes in Grep. a Small input.
b Large input

searching for the same pattern. Faults were injected into both the fault-tolerant and
non-fault-tolerant code, ranging over the full length of possible fault sites. These faults
could be injected into the bit positions 1, 8, 15, 22, or 29. Error in a given outcome
was measured by the magnitude of the difference between found occurrences of the
given outcome and the correct number of occurrences, as determined by a non-fault-
tolerant, non-fault-injected MPI_Grep algorithm run on the same file with the same
pattern.

4.8.4 Results

Error occurrences Out of the 10,000 outcomes for each version on the small input
file (52.4 MB), the non-fault-tolerant version has a total number 4730 wrong counts
and 232 segmentation faults, while the fault-tolerant version has only 1829 wrong
counts and 139 segmentation faults. This shows an overall decrease in wrong counts
by approximately 61.3% and a decrease in segmentation faults by 40.1%. The
fault-tolerant version also boasts a much lower average difference from the correct
count, with an average of 23 compared to the non-fault-tolerant versions average of
22,545,776.

Out of the 10,000 outcomes for each version on the large input file (522.2 MB),
the non-fault-tolerant version has a total number 5298 wrong counts and 209 seg-
mentation faults, while the fault-tolerant version has only 1804 wrong counts and
116 segmentation faults. This shows a similar improvement, with an overall decrease
in wrong counts by approximately 65.9% and a decrease in segmentation faults by
44.5%. The fault-tolerant version again has a much lower average difference from
the correct count, with an average of 347 compared to the non-fault-tolerant versions
average of 25,864,037.

The first thing to note is that both the small and large input files exhibit a large
number of errors having a count difference of only one shown in Fig. 24, though the
non-fault-tolerant version reduces this number by approximately half. Next is that
the non-fault-tolerant version seems to follow a certain pattern of error not present
in the fault-tolerant version. In fact, the error values coincide directly with the bits

123

Soft error resilience of Big Data kernels through...

Fig. 25 Probability of error in non-fault-tolerant versus fault-tolerant runs of Grep. a Small input. b Large
input

into which we are injecting errors. Since we are injecting into bits 1, 8, 15, 22, and
29, the error values are interestingly enough 2E1, 2E8, and so forth. This shows that
the output of the program is very sensitive to single bit-flip errors that may occur.
This also explains why the non-fault-tolerant version has such a large mean error.
However, it would seem that the fault-tolerant version introduces error patterns not
already present in the non-fault-tolerant version or exacerbates errors already present.
This can be due to errors being injected into the fault-tolerant code itself, resulting in
unexpected behavior.

Error probabilityFrom these graphs inFig. 25, it is clear that the fault-tolerant program,
at all stages of execution (ignoring the drop at the end of execution this is caused by the
difference in dynamic fault site count), largely reduces the probability of error by over
half, with a greater improvement being seen in large input files. This is in agreement
with the previous histograms, which show a large reduction in the count of errors (and
thus the probability of error).

Program behavior The first thing to notice in Fig. 26 is a very large percentage of
fixed outcomes, with both large and small input files. This shows that many of the
detected errors are correctly fixed to result in proper program behavior. There is also a
substantial number of correct outputs, meaning that the faults injected were not seen
by the fault-tolerant code to affect program output. With both input files, there is a
moderate number ofmissed errors—thismeans that some faults are injected that do end
up affecting the output and have not been accounted for. There is a small percentage
of failed outcomes as well, more so with large input files. Thus, larger input files have
more injected faults that it can detect but cannot correct properly. Lastly, there are a
small percentage of outcomes that crash and thus fail to produce outcome at all. This
seems to be handled better with large input files.

123

T. LeCompte et al.

Fig. 26 Probability of different outcomes of the fault checker in Grep. a Small input. b Large input

5 Determining the number of experiments

The sample space (total number of dynamic fault sites) can be prohibitively large. To
be practical, we sample a small fraction of the space, ensuring that the drawn sample is
statistically sound and is representative of the fault injection space. For a fault-injected
run, its outcome is a direct result of the chosen fault injection parameters, namely the
dynamic/static fault site IDs and the bit IDs. Therefore, a sample that is representative
of the fault site should retain the relation between dynamic/static fault sites to the
outcomes.

To quantify the quality of the sample, we train a boosted regression tree model
as a proxy, as this model can discover the relation between fault site/bit IDs and the
outcome. A sample that is good should enable the model to report its results with a
high confidence level, which translates to a low variance in its prediction accuracy.
We measure the accuracy of the model as well as the variance in its accuracy by
cross-validation on the collected sample.

Figure27 shows the trend of the standard deviation (square root of variance) and
means of the accuracy of the regression model with regard to the increasing sample
size for each of the kernels. It can be observed from the figure that:

– The expected accuracy of the model shows an increasing trend as the number of
experiments increases and stabilizes after a certain point. In comparison, randomly
guessing one of three possible outcomes will result in an accuracy of 33%.

– The standard deviation of the model accuracy decreases as the number of exper-
iments increases, suggesting the model’s increasing confidence in its prediction.
The standard deviation is a result of two sources: 1) the instability of the model
and 2) the finiteness of the sample. As the sample size increases, variance resulting
from sampling will decrease and is reflected in the decrease in the overall standard
deviation of the model accuracy.

123

Soft error resilience of Big Data kernels through...

Fig. 27 a Expected accuracy. b Standard deviation. Trend of the expectation (left) and standard deviation
(right) of the accuracy of the boosted regression tree classifier trained on samples of varying sizes (X axis).
The threshold on standard deviation used to determine experiment size (0.01) is marked by the black line
in (b)

Based on these observations, we choose the number of experiments such that the
standard deviation in the accuracy of the model built on the sample decreases below a
threshold (in this experiment, 0.01), to make sure that the sample is large enough for
analytic models to produce results with high confidence and narrow error intervals.

6 Comparison of dwarves

Each of the dwarves included in the previous section displays a reduction in wrong
answers and some additionally lowers the execution failure counts. However, some
display much greater improvement than others. In this section, we aim to summarize
the results of all eight dwarves and provide explanation on their relative behaviors.

Figure28 includes a summary of all eight dwarves. The columns on the left detail
the non-fault-tolerant performance results of algorithms, while the columns on the
right display the performance outcomes of their respective fault-tolerant versions.
This allows for an investigation of the improvement of each algorithm while making
comparisons between algorithms simple.

To begin, some algorithms provided higher-level invariants that allow for simpler
check systems, such as matrix multiplication and FFT (Type 1). These algorithms
display the greatest vulnerability to faults, which we suspect is caused by their reliance
on complex data structures and the propagation of error through the program.However,
the check systemsbasedonhigh-level invariantsmanage to identify andfix themajority
of wrong answers and can additionally avoid abnormal termination. We believe this is
due to the reliance on the high-level invariants for error identification and correction
that detect errors before they propagate into program termination. Therefore, this first
collection of dwarves with high-level invariants displays the least error resilience
natively but the greatest improvement once fault-tolerant additions are included.

Other algorithms such as grep and set union lacked higher-level invariants, relying
on lower-level checking systems (see Fig. 16 for examples). These algorithms display

123

T. LeCompte et al.

Fig. 28 Aggregated data of all eight dwarves. Non-fault-tolerant behavior shown on left, fault-tolerant
behavior on right

moderate innate fault tolerance and respond reasonably well with the added fault-
tolerant mechanisms. The improvement is less than that of the first group of dwarves,
but still yields a reduction in both wrong answers and program failure occurrences.

Lastly, BFS and MCMC (Type 3) both do not show much improvement in their
performance. They display minor reductions in wrong answers and program failure
outcomes, but at a much smaller rate than the previous groups. Additionally, they
both display relatively large correct answer percentages without the addition of fault-
tolerant mechanisms. We attribute this to the design of the algorithms themselves. For
instance, MCMC relies on sampling a random distribution to construct the original
distribution. If an error is injected into the generation of a single random value, that
is not easily detectable nor does it greatly influence the behavior of the algorithm as
there are many other samples taken that are not faulty.

To combine with these aggregated results, we measured the execution time of the
non-fault-tolerant and fault-tolerant versions of each algorithm to compute execution
overhead percentages (Fig. 29). This was measured by execution both versions of each
algorithm fifty times without injecting faults and averaging the collected execution
times of each algorithm. As would be expected, the algorithms with higher-level
invariants (type 1 algorithms in Fig. 28) have low overhead percentages, while those
with lower-level checkers (type 2 and type 3 algorithms in Fig. 28) display greater
overhead percentages. Most interesting is the large overhead of MD5, which suggests
that the fault-tolerant additions add more overhead than its improvement warrants.

To this end, we calculated expected running times of each algorithm and normalized
the results by themeasured running times of the non-fault-tolerant versions. This calcu-
lation is essentially a weighted average for each algorithm, weighing the fault-tolerant
and non-fault-tolerant execution times by their error probabilities. This allows one to
compare the algorithms by their expected execution times to view which algorithms
display the best improvement rates for their respective overhead values, as shown in

123

Soft error resilience of Big Data kernels through...

Fig. 29 Measured execution time overhead percentages for each algorithm

Fig. 30 Normalized expected running times for each algorithm

Fig. 30. We have drawn a line to mark the baseline non-fault-tolerant performance of
each algorithm.

Viewing these expected execution times, the algorithms group themselves similarly
to Fig. 28. We see that the Matrix Multiplication and FFT algorithms display the
lowest running times and thus the greatest improvement for the introduced overhead.
What is surprising is the relative improvement of the type 2 algorithms, namely MD5.
Despite the relatively large overheads, the large reductions in error probability still
result in an improved expected running time. It also seems that, taking overhead
into account, quicksort aligns more closely with the type 3 algorithms than the type 2
algorithms. These type 3 algorithms all display relatively minor expected running time
improvements, even exceeding the baseline performance in the case of MCMC. This
means that for the type 3 algorithms, the fault-tolerant additions are not very beneficial
for the overhead they introduce, while type 1 algorithms show large improvement and
type 2 algorithms show moderate improvement.

7 Conclusion

We have shown the effects of fault-tolerant code added into Big Data algorithms by
experimenting with eight Big Data Dwarves as defined by the Big Data Benchmark

123

T. LeCompte et al.

suite. For each of the eight dwarves, we have implemented algorithm-specific invari-
ants where applicable to identify and correct errors in program execution. We have
discussed the effects of the fault-tolerant additions to each algorithm individually by
evaluating error magnitudes, error probabilities, and program output behavior. Addi-
tionally, we have compared the eight algorithms to each other, resulting in three classes
of Big Data dwarves: those with high-level invariants that are extremely vulnerable
to faults, but show the most improvement with fault-tolerant code additions; those
without high-level invariants but with moderate natural resilience, which show lower
improvement rates than the first group; and those that are naturally extremely resilient,
which show minor execution improvement with the fault-tolerant code additions. We
have also analyzed the overhead introduced by the fault-tolerant mechanisms and
quantified the expected running times for the algorithms to evaluate the benefit of the
mechanisms in light of their overhead introduced, which supports the fault-tolerant
performance of algorithms being grouped by level of invariant.

Together, these analyses create a portfolio displaying the resilience that fault-
tolerant additions can lend to common Big Data algorithms, reducing the chances
of program failure and wrong output. This additionally reduces the time and energy
wasted to rerun faulty algorithms and helps avoid the danger of not detecting a wrong
output which, if undetected, could cause unprecedented damage.

8 Future works

We aim to expand our research to include similar tests on parallel applications. We
believe this will more accurately represent realistic usage of Big Data applications and
error resilience as most of these programs would rely on parallelism. Additionally, we
hope to expand the functionality of KULFI to include instruction encoding errors,
again to more realistically simulate natural soft faults.

Acknowledgements We are grateful to Prof. Nian-Feng Tzeng at the Center for Advanced Computer Stud-
ies, University of Louisiana at Lafayette, for providing invaluable feedbacks to our research.We are grateful
to Vishal Sharma and Arvind Haran, the authors of the original KULFI and for granting us permission to
modify it for our experiment purposes. We are also appreciative of the opportunity to be involved in and
contribute to KULFI. Support of this research was provided by National Science Foundation under Award
Numbers: 1527318, 1422408 (Directorate for Computer and Information Science and Engineering), and
1017961 (Division of Computing and Communication Foundations).

References

1. Christoforides A (2011) Metropolis–Hastings implementation. https://github.com/alexischr/mh
2. IBM’s Big Data Platform and Decision Management (2012) What is big data? http://www-01.ibm.

com/software/data/bigdata/what-is-big-data.html
3. Gordon R (2013) http://math.stackexchange.com/questions/346894/prove-of-the-parsevals-theorem-

for-discrete-fourier-transform-dft
4. Sharma V, Haran A, Chen S (2013) Kulfi fault injector. http://github.com/quadpixels/kulfi
5. AMPLab at University of California, Berkeley (2014) AMPLab big data benchmark. https://amplab.

cs.berkeley.edu/benchmark/
6. Harris M, NVidia (2015) https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/

123

https://github.com/alexischr/mh
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://math.stackexchange.com/questions/346894/prove-of-the-parsevals-theorem-for-discrete-fourier-transform-dft
http://math.stackexchange.com/questions/346894/prove-of-the-parsevals-theorem-for-discrete-fourier-transform-dft
http://github.com/quadpixels/kulfi
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/

Soft error resilience of Big Data kernels through...

7. Armstrong TG, Ponnekanti V, Borthakur D, Callaghan M (2013) Linkbench: a database benchmark
based on the Facebook social graph. In: Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, ACM, New York, NY, USA, SIGMOD ’13, pp 1185–1196. doi:10.
1145/2463676.2465296

8. Austin T (1999)Diva: a reliable substrate for deep submicronmicroarchitecture design. In: Proceedings
of the 32nd Annual International Symposium on Microarchitecture (MICRO 1999)

9. Bender C, Sanda PN, Kudva P,Mata R, Pokala V, Haraden R, SchallhornM (2008) Soft-error resilience
of the ibm power6 processor input/output subsystem. IBM J Res Dev 52(3):285–292. doi:10.1147/rd.
523.0285

10. Cappello F, Geist A, Gropp W, Kale S, Kramer B, Snir M (2014) Toward exascale resilience: 2014
update. J Supercomput Front Innov 1(1). doi:10.14529/jsfi140101

11. Chen S, Bronevetsky G, Li B, Guix MC, Peng L (2015) A framework for evaluating comprehensive
fault resilience mechanisms in numerical programs. J Supercomput 71(8):2963–2984. doi:10.1007/
s11227-015-1422-z

12. Chen S, Bronevetsky G, Peng L, Li B, Fu X (2016) Soft error resilience in big data kernels through
modular analysis. J Supercomput 72(4):1570–1596. doi:10.1007/s11227-016-1682-2

13. Chung J, Lee I, Sullivan M, Ryoo JH, Kim DW, Yoon DH, Kaplan L, Erez M (2012) Containment
domains: a scalable, efficient, and flexible resilience scheme for exascale systems. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis
(SC12)

14. Collange S, Defour D, Graillat S, Iakymchuk R (2015) Numerical reproducibility for the parallel
reduction onmulti- andmany-core architectures. Parallel Comput 49:83–97. doi:10.1016/j.parco.2015.
09.001, http://www.sciencedirect.com/science/article/pii/S0167819115001155

15. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud serving
systems with ycsb. In: Proceedings of the 1st ACM Symposium on Cloud Computing, ACM, New
York, NY, USA, SoCC ’10, pp 143–154, doi:10.1145/1807128.1807152

16. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms, 3rd edn. The MIT
Press, Cambridge, MA

17. Ferdman M, Adileh A, Koçberber YO, Volos S, Alisafaee M, Jevdjic D, Kaynak C, Popescu AD,
Ailamaki A, Falsafi B (2012) Clearing the clouds: a study of emerging scale-out workloads on modern
hardware. In: Proceedings of the 17th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2012, London, UK, March 3–7, 2012, pp 37–48.
doi:10.1145/2150976.2150982

18. Free Software Foundation (2016) GSL—GNU scientific library. https://www.gnu.org/software/gsl/
19. Gao W, Luo C, Zhan J, Ye H, He X, Wang L, Zhu Y, Tian X (2015) Identifying dwarfs workloads in

big data analytics. http://arxiv.org/abs/1505.06872
20. Ghazal A, Rabl T, Hu M, Raab F, Poess M, Crolotte A, Jacobsen HA (2013) Bigbench: towards

an industry standard benchmark for big data analytics. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ACM, New York, NY, USA, SIGMOD ’13, pp
1197–1208. doi:10.1145/2463676.2463712

21. Guan Q, Debardeleben N, Blanchard S, Wu P, Monrow L, Chen Z (2016) P-FSEFI: a parallel soft error
fault injection framework for parallel applications. In: Proceedings of the 12th Workshop on Silicon
Error in Logic-System Effect (SELSE)

22. Huang S, Huang J, Dai J, Xie T, Huang B (2010) The HiBench benchmark suite: characterization of the
MapReduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineering
Workshops (ICDEW), pp 41–51. doi:10.1109/ICDEW.2010.5452747

23. Iakymchuk R, Collagne S, Defour D, Graillat S (2015) Exblas: reproducible and accurate BLAS
library. In the Proceedings of the Numerical Reproducibility at Exascale (NRE2015) workshop held
as part of the Supercomputing Conference (SC15). Austin, TX, USA, November 15-20, 2015. HAL
ID: hal-01202396

24. ITRS (2013) International technology roadmap for semiconductors. Technical report
25. Kumar S, Hari S, Adve SV, Naeimi H, Ramachandran P (2012) Relyzer: exploiting application-level

fault equivalence to analyze application resiliency to transient faults. In: Proceedings of the 17th
ACM International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2012)

123

http://dx.doi.org/10.1145/2463676.2465296
http://dx.doi.org/10.1145/2463676.2465296
http://dx.doi.org/10.1147/rd.523.0285
http://dx.doi.org/10.1147/rd.523.0285
http://dx.doi.org/10.14529/jsfi140101
http://dx.doi.org/10.1007/s11227-015-1422-z
http://dx.doi.org/10.1007/s11227-015-1422-z
http://dx.doi.org/10.1007/s11227-016-1682-2
http://dx.doi.org/10.1016/j.parco.2015.09.001
http://dx.doi.org/10.1016/j.parco.2015.09.001
http://www.sciencedirect.com/science/article/pii/S0167819115001155
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/2150976.2150982
https://www.gnu.org/software/gsl/
http://arxiv.org/abs/1505.06872
http://dx.doi.org/10.1145/2463676.2463712
http://dx.doi.org/10.1109/ICDEW.2010.5452747

T. LeCompte et al.

26. Lattner C, AdveV (2004) LLVM:A compilation framework for lifelong program analysis and transfor-
mation. In: Proceedings of the 2004 International Symposium on Code Generation and Optimization
(CGO 2004), San Jose, CA, USA

27. Liu W, ZhangW,Wang X, Xu J (2016) Distributed sensor network-on-chip for performance optimiza-
tion of soft-error-tolerant multiprocessor system-on-chip. IEEE Trans Very Large Scale Integr (VLSI)
Syst 24(4):1546–1559. doi:10.1109/TVLSI.2015.2452910

28. NVIDIA (2013) Tesla k20 gpu accelerator. http://www.nvidia.com/content/PDF/kepler/
Tesla-K20-Passive-BD-06455-001-v07.pdf

29. Serrano F, Clemente JA, Mecha H (2015) A methodology to emulate single event upsets in flip-flops
using FPGAs through partial reconfiguration and instrumentation. IEEE Trans Nucl Sci 62(4):1617–
1624. doi:10.1109/TNS.2015.2447391

30. Tiwari D, Gupta S, Gallarno G, Rogers J, Maxwell D (2015) Reliability lessons learned from GPU
experience with the titan supercomputer at oak ridge leadership computing facility. In: SC15: Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, pp 1–12.
doi:10.1145/2807591.2807666

31. Wang L, Bertran R, Buyuktosunoglu A, Bose P, Skadron K (2014) Characterization of transient error
tolerance for a class of mobile embedded applications. In: 2014 IEEE International Symposium on
Workload Characterization (IISWC), pp 74–75. doi:10.1109/IISWC.2014.6983042

32. Yeh TY, Reinman G, Patel SJ, Faloutsos P (2009) Fool me twice: exploring and exploiting error toler-
ance in physics-based animation. ACM Trans Graph 29(1):5:1–5:11. doi:10.1145/1640443.1640448

123

http://dx.doi.org/10.1109/TVLSI.2015.2452910
http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
http://dx.doi.org/10.1109/TNS.2015.2447391
http://dx.doi.org/10.1145/2807591.2807666
http://dx.doi.org/10.1109/IISWC.2014.6983042
http://dx.doi.org/10.1145/1640443.1640448

	Soft error resilience of Big Data kernels through algorithmic approaches
	Abstract
	1 Introduction
	2 Related works
	3 Design procedure
	4 The eight dwarves
	4.1 Linear algebra (Matrix Multiplication)
	4.1.1 Introduction
	4.1.2 Invariants
	4.1.3 Testing procedure
	4.1.4 Results

	4.2 Sampling (MCMC, namely Metropolis–Hastings)
	4.2.1 Introduction
	4.2.2 Invariants
	4.2.3 Testing procedure
	4.2.4 Results

	4.3 Transform operations (FFT)
	4.3.1 Introduction
	4.3.2 Fault tolerance analysis
	4.3.3 Testing procedure
	4.3.4 Results

	4.4 Graph operations (BFS)
	4.4.1 Introduction
	4.4.2 Invariants
	4.4.3 Testing procedure
	4.4.4 Results

	4.5 Logic operations (MD5)
	4.5.1 Introduction
	4.5.2 Fault tolerance analysis
	4.5.3 Testing procedure
	4.5.4 Results

	4.6 Set operations (union)
	4.6.1 Introduction
	4.6.2 Fault tolerance analysis
	4.6.3 Testing procedure
	4.6.4 Results

	4.7 Sort (Quicksort)
	4.7.1 Introduction
	4.7.2 Fault tolerance analysis
	4.7.3 Testing procedure
	4.7.4 Results

	4.8 Statistics operations (GREP)
	4.8.1 Introduction
	4.8.2 Invariants
	4.8.3 Testing procedure
	4.8.4 Results

	5 Determining the number of experiments
	6 Comparison of dwarves
	7 Conclusion
	8 Future works
	Acknowledgements
	References

