

Increasing Off-Chip Bandwidth in Multi-Core

Processors with Switchable Pins

Shaoming Chen, Yue Hu, Ying Zhang, Lu Peng, Jesse Ardonne, Samuel Irving, Ashok Srivastava

Division of Electrical & Computer Engineering, School of Electrical Engineering and Computer Science

Louisiana State University

{schen26, yzhang29, lpeng, jardon2, sirvin1, eesriv}@lsu.edu

Abstract

Off-chip memory bandwidth has been considered as one

of the major limiting factors to processor performance,

especially for multi-cores and many-cores. Conventional

processor design allocates a large portion of off-chip pins

to deliver power, leaving a small number of pins for pro-

cessor signal communication. We observed that the proces-

sor requires much less power than that can be supplied

during memory intensive stages. This is due to the fact that

the frequencies of processor cores waiting for data to be

fetched from off-chip memories can be scaled down in or-

der to save power without degrading performance. In this

work, motivated by this observation, we propose a dynamic

pin switch technique to alleviate the bandwidth limitation

issue. The technique is introduced to dynamically exploit

the surplus pins for power delivery in the memory intensive

phases and uses them to provide extra bandwidth for the

program executions, thus significantly boosting the perfor-

mance.

1. Introduction

As memory-intensive applications such as web servers,

database software, and tools for data analysis prevail, the

focus of computer architects shifts from Instruction Level

Parallelism (ILP) to Memory Level Parallelism (MLP). The

term “Memory Wall” was coined to describe the disparity

between the rate of core performance improvement and the

relatively stagnant rate of off-chip memory bandwidth in-

crease. Additional cores, when integrated on the same die,

and supplemental applications serve to widen this gap,

since each individual core may generate substantial

memory requests that need to be queued and served by the

memory subsystem. Obviously, the capability of the off-

chip memory system largely determines the per-core or

even the overall performance of the entire system. In sce-

narios where the off-chip memory is insufficiently fast to

handle all memory transactions in a timely manner, the

system performance is highly likely to be bottlenecked by

the slow memory accesses. An intuitive solution to this

problem is to increase the off-chip memory bandwidth by

enabling more memory channels. Figure 1 illustrates the

variation of normalized throughput with the number of

memory channels increased from 1 to 4 when 4 lbm pro-

grams are running on an X86 platform. As can be seen

from the figure, enabling more memory channels signifi-

cantly increases the off-chip bandwidth, which in turn

translates to an impressive boost of the system perfor-

mance. Furthermore, compared to compute-intensive stag-

es, processors consume much less power during memory-

intensive phases when cores wait for data to be fetched

from main memory.

Motivated by this observation, we propose an innovative

technique to mitigate the shortage of off-chip bandwidth

during the memory-intensive phases of program execu-

tions, in order to enhance the overall performance. Our

scheme is built on top of a novel switchable pin design and

accurate identifications of memory-intensive phases. Pins

can be dynamically altered for power delivery or signal

transmission via accessory circuits. These circuits enable

pins to deliver quality power or signal with relatively low

area overhead. On the other hand, we identify the memory-

intensive phases by observing the key performance metrics

at runtime. Extra off-chip bandwidth is demanding in phas-

es with high memory intensity. Therefore, by switching the

pins and providing additional bandwidth for off-chip

memory transactions, the performance of memory-intensive

stages can be boosted, thus impressively accelerating the

overall execution.

In general, the main contributions of this paper are as fol-

lows:

1. We devise a memory controller that can dynamically

increase the off-chip bandwidth at the cost of a lower

core frequency. Results show a significant increase in

throughput for memory-intensive workloads with only

a slight hardware overhead.

2. We propose a switchable pin design which can convert

a power pin to a signal pin or the other way around.

Detailed examinations at both the circuit and architec-

tural level are conducted to validate the feasibility of

the proposed design.

3. We examine the performance improvement of our de-

sign in various memory configurations. A sensitivity

study is conducted to compare the benefit of our design

with a different number of channels, buses, banks and

ranks.

4. We design Dynamic Switching to alleviate the nega-

tive side-effects of pin switching by actively identify-

ing memory-intensive phases and only switching

when the condition is satisfied. Without prior

knowledge of program characteristics, this policy

switches the system to prioritize memory bandwidth

or core performance according to the identified phase.

Our experiments show that significant performance

improvement can be achieved for memory-intensive

workloads while maintaining the same performance

for compute-intensive workloads as the system with-

out Pin Switching.

2. Related Work

DRAM-Based Memory System: Several papers propose

to physically alter the main memory in a DRAM-based

memory system to improve the performance and energy

efficiency. Zhang et al. propose setting the bus frequency

higher than the DRAM module to improve channel band-

width where the induced bandwidth mismatch is resolved

by a synchronization buffer inside the DIMM for data and

command [34]. Papers also explore using low power DDR2

(LPDDR2) memory, in place of conventional DDR3, due to

its higher energy efficiency [21][33].

To reduce the delay of bank access, thereby increasing

memory bandwidth, architects optimize the memory system

at the rank and bank level. Zhang et al. subdivides conven-

tional ranks into mini-ranks with a shorter data width.

These mini-ranks can be operated individually via a small

chip on each DIMM for higher DRAM energy efficiency

[35]. Rank sub-setting is also proposed to improve the reli-

ability and performance of a memory system [8].

Inside a DRAM bank, increasing the row buffer hit ratio

is key to improving energy efficiency and performance.

Kim et al. partition a row buffer into multiple sub-arrays

inside a bank to reduce the row buffer miss rate [17]. An

asymmetric DRAM bank organization can be used to re-

duce the bank access latency and improve the system per-

formance [31]. Unlike preceding work, we focus on in-

creasing off-chip bandwidth to boost the performance of

the memory system since it is the major bottleneck of

memory systems in the multi-core era.

Off-Chip Bandwidth: Rogers et al. have already stressed

the significance of off-chip bandwidth [27]. To increase the

overall energy efficiency of a memory system, Udipi et al.

split a 64 bit data bus into eight 8 bit data buses reducing

the queue delay at the expense of data transfer delay [32].

Ipek designs a memory scheduler using principles of rein-

forcement learning to understand program behaviors and

boost performance [15]. Mutlu et al. focus on boosting

multi-threaded performance by providing fair DRAM ac-

cess for each thread in their memory scheduler [24][25].

Our method of adding additional buses to multiply the off-

chip bandwidth is orthogonal to the aforementioned meth-

ods, which focus on the memory scheduler and bus control.

Tradeoff between core performance and off-chip band-

width: Architects employ several sophisticated methods to

balance core and memory performance [9][11][13]. How-

ever, few of them are able to increase the off-chip band-

width beyond the constraint of static pin allocation.

3. Design Overview

Our design aims to boost computer system performance

especially for memory-intensive programs. In conventional

designs, the performances of these workloads are degraded

by a shortage of memory buses which limits off-chip

bandwidth. We provide increased memory bandwidth,

thereby reducing the average latency of off-chip memory

access, at the expense of a lower core frequency. Rather

than retaining a fixed number of buses connected to the

DRAM (typically one bus per channel), our design dynam-

ically switches buses between signal and power pins (VDD

or GND) to reduce the latency for these workloads. This is

referred to as multi-bus mode henceforth, as opposed to

single-bus mode similar to conventional processor opera-

tion. Switchable pins facilitate changing between these two

modes as discussed below. This paper focuses on how to

fully exploit the benefits of substituting power pins for I/O

pins during memory-intensive programs without interfering

with compute-intensive programs.

3.1 Pin Switch

Figure 2 depicts the schematic of two switches and a signal

buffer which serve as the basic units for exchanging power

pins for signal pins. The signal-to-power switch shown in

Figure 2(a) is key to alternate a regular pin between the two

modes. As illustrated in this figure, we utilize a dedicated

power switch [22] which sits on the power delivery path to

minimize the corresponding IR drop and power consump-

tion with its ultra-low switch-on resistance, measuring as

low as 1.8mΩ. While in the single-bus mode, the power

switch is turned on while two 5 stage tri-state buffers on the

signal line are off. Otherwise, the power switch is turned

off to block noisy interference from the power line, and the

tri-state buffers are turned on in one direction according to

whether data is read from the memory or written by the

memory controller. To compensate for the parasitic capaci-

tances of the power switch, we place the 5 stage tri-state

buffers in signal lines to amplify I/O signals. Between each

stage, the buffer size is increased by four times to amplify

Figure 1. The normalized weighted speedup and off-chip

bandwidth of 4 lbm co-running on a processor with 1,2,3,4

memory channels

2

4

6

8

0

1

2

3

1 2 3 4 B
a

n
d

w
id

th
 (

G
B

/s
)

N
o

r
m

a
li

z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

Channels

Thoughput Off-chip Bandwidth

the signal with small delay. In total, the 5 stage tri-state

buffer incurs a 0.9ns delay. On the other hand, the die area

of the aforementioned power switch is commensurate to

that of 3,000 traditional transistors [22]. The number of

signal pins for a DRAM bus could slightly vary depending

on different processors (e.g. with or without ECC). We pick

up 125 power switches per bus which consists of 64 data

pins and 61 address and command pins from the pin alloca-

tion of an i5-4670 Intel Processor [4]. The total die area

consumes 375,000 (3,000 * 125) traditional transistors.

Considering a billion-transistor chip, the area overhead for

the 3 buses which will be used in our work is less than

0.12% of the total chip area.

The signal switch shown in Figure 2(b) is employed to

guarantee that data in the DRAM can be accessed in two

modes. The signal switch uses two pairs of 5 stage tri-state

buffers to enable memory devices that can be accessed via

two buses. The buffers identical to that in the signal-to-

power switch can resist noise from a channel when the oth-

er channel is selected. On the other hand, the signal buffers

shown in Figure 2(c) also have strong peak-drive current

and sink capabilities. They are utilized to amplify the signal

in order to offset the effect of the parasitic capacitance.

Processors possess specific pin allocations depending on

the package, power consumption, and hardware interface

(the number of memory channels). For our experiment, we

use the pin allocation of an i5-4670 Intel Processor [4]

shown in Table 1. While this processor includes 4 cores

and 2 memory channels, 54.6% of the pins are used for

power delivery. Out of the 628 power pins, 125 of these

can be replaced with switchable pins for a single bus. To

maintain the same ratio of VDD to GND pins, we allocate

30 of the 125 switchable pins as VDD pins and the remain-

ing 95 as GND pins. After a sensitivity study in Section

4.1, in our experiment we will allocate at most three addi-

tional buses via pin switching because adding more leads to

a considerable drop in performance.

3.2 Off-Chip Bus Connection

Designing a memory interface which could take the ad-

vantage of the switchable pins to dynamically increase off-

chip bandwidth is non-trivial. In this section, we propose an

off-chip bus connection and instructions to configure the

switchable pins for power delivery or for signal transmis-

sion.

The two modes of the off-chip bus connection could be

described as the multi-bus mode and the single-bus mode,

as shown in Figure 3. In multi-bus mode, several buses

(assuming N) are connected to private DRAM interfaces

via the individual buses. On the other hand, single-bus

mode can only access DRAM by a single bus. Two signal-

to-power switches and a signal switch for each signal wire

of N-1 buses are needed. These signal-to-power switches

configure the switchable pins for signal transmission where

the signal switches connect the bus to DRAM devices in

the multi-bus mode, otherwise the switchable pin is config-

ured for power delivery where the DRAM devices are con-

nected to the shared bus.

In order to implement the mechanism, we control the

signal-to-power switch detailed in Figure 2(a) and the sig-

nal switch detailed in Figure 2(b) to route signal and power

in the two modes. The signal to the DRAM interface could

be divided into two groups: command signals and data sig-

nals. The command signals running in one direction could

be routed via the two switches which only need one direc-

tion buffer instead of a pair. On the other hand, the data

signals (DQ) are bi-directional and the switches shown in

Figure 3 could receive and send signals in both directions.

For the placements of the switches on the printed circuit

board (PCB), one signal-to-power switch for each signal

Table 1. Pin allocation of an Intel processor i5-4670

VDD GND DDR3 Others Total

153 475 250 272 1150

Common
terminal

Power

Signal

Power switch

Five Stage Tri-state Buffer

Ctrl_P

Ctrl w

Ctrl R

Ctrl

Five Stage Tri-state Buffer
1 2 5

Figure 2 (a). The circuit of a signal-to-power switch

Common terminal

Five Stage Tri-state Buffer

Ctrl W_2

Ctrl_R_2

Signal 2

Five Stage Tri-state Buffer

Ctrl W_1

Ctrl R_1

Signal 1

Figure 2(b). The circuit of a signal switch

Five Stage Tri-state Buffer

Ctrl W

Ctrl R

Signal Signal

Signal buffer

Figure 2(c). The circuit of a signal buffer

line should be placed close to the processor package in or-

der to shorten the signal wire which has to bear high cur-

rent for power delivery. To avoid signal reflections caused

by an impedance mismatch, we keep the width of the signal

wires and conduct an experiment to test the feasibility of

high current via these signal wires. Based on a specification

from the PCB manufacturer [6] and the DDR3 PCB layout

guidelines [5], our simulation with COMSOL shows the

MTTF of the 6mil signal wire could be more than 2.5 x 10
5

hours with a 1A current. On the other hand, the signal

switch should be placed near the corresponding DRAM

device to reduce signal reflections.

3.3 Memory Controller

The data availability of the memory controller is our prima-

ry concern. All the available memory buses in the multi-bus

mode must be fully utilized to achieve maximum band-

width while still allowing all the data in single-bus mode to

be accessed. Due to the complicated synchronization of

memory requests between memory controllers, the switch

between the two bus modes is only implemented inside the

memory controller. Within a memory controller, a memory

interface is designed for each bus to fully exploit the bene-

fit of the multi-bus mode without the interference of traffic

from other buses compared to the design of multiple buses

sharing a single memory interface.

The memory controller in our design includes dedicated

request queues which buffer the incoming requests to the

buses shown in Figure 4. Queues individually receive the

requests from the front arbiter which employs its address

mapping policy when dispatching requests. Once the re-

quests are residing in the queues, they are fetched by the

back arbiter. While in multi-bus mode, the requests are fed

into their corresponding buses via the corresponding

DRAM interfaces. Because memory interfaces can operate

Power Grid

DIMMs

VDD/

GND

Bus #1

Bus #N

DRAM Interface

#1

DIMMs

Multi-bus mode

Power Grid
VDD/

GND

DRAM Interface

#n

DIMMs

Bus #1
DRAM Interface

#1

DRAM Interface

#n

Single-bus mode

Power Grid
VDD/

GND

Power Grid
VDD/

GND

DIMMs
Bus #N

Power-to-signal switch

(Detailed in Figure 2(a))

f

Signal switch

(Detailed in Figure 2(b))

Signal buffer

(Detailed in Figure 2(c))

Package Package

Figure 3. The overview of the hardware design of off-chip bus connection for switching between the Multi-bus mode and the

Single-bus mode

LLC

BUS

Memory Controller
Request

Queue #1
DRAM Interface DIMMs

Request

Queue #N

End

Arbiter

LLC

BUS

Memory Controller
Request

Queue #1

Request

Queue #N

End

Arbiter

Multi-bus mode

Single-bus mode

Front

Arbiter

Front

Arbiter

DRAM Interface DIMMs

DRAM Interface

DRAM Interface

DIMMs

DIMMs

Figure 4. The Overview of the hardware design of memory controller for switching between the Multi-bus mode and the Single-

bus mode

independently and in parallel, the memory bandwidth can

be amplified by a factor of the number of memory buses. In

the single-bus mode, the memory controller works similar

to a conventional processor and communicates with the

attached DIMMs as appended ranks.

3.4 Area Overhead

The circuit overhead of our design consists of the front

arbiter, the end arbiter, and extra DRAM interfaces. As a

result of both arbiters, the cost of dispatching requests

without buffering them should be negligible. Furthermore,

the cost of the additional DRAM interface is inexpensive.

The estimated net area of a typical DRAM interface from

Opencore [1] is 5,134 µm
2
 in 45 nm technology. This esti-

mation is conducted by the Encounter RTL Compiler [2]

with the NanGate Open Cell Library [3]. No more than

three additional buses in total are used in our experiment

thus creating a maximum hardware overhead less than

0.00015 cm
2
 which is significantly less than the typical 1

cm
2
 die area.

3.5 Address Mapping

Data accesses interleave at the page level via different bus-

es exploiting the benefit of memory-level parallelism while

maintaining a high row buffer hit ratio. Interleaving at the

block level considerably decreases the row buffer hit ratio

resulting in longer off-chip latency per request and extend-

ed queue delay. To reduce row-buffer conflicts, we employ

XOR banking indexing which could effectively reduce

bank conflicts resulting from resource-contention-induced

traffic and write-backs. This permutation distributes the

blocks stored in the last level cache into different banks as

Baud =

800

MBPS

50ΩSignal switchPower-to-signal switchPower-to-signal switch

vout Z0=50Ω

Transmission Line

PRBS

Baud =

800 MBPS

Signal switchPower-to-signal switch

Z0=50Ω

Transmission Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

vout
Power-to-signal switch

Baud =

800

MBPS

50Ω

vout

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

Signal buffer #1

Z0=50Ω

Transmission Line

Z0=50Ω

Transmission Line

Signal Switch

PRBS

Baud =

800

MBPS

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF
voutSignal buffer #1

Z0=50Ω
Transmission Line

Signal Switch

Z0=50Ω
Transmission Line

Signal Switch

Z0=50Ω
Transmission Line

Signal Switch

(a). Device to controller in multi-bus mode

(b). Controller to device in multi-bus mode

(d). Controller to device in single-bus mode

(c). Device to controller in single-bus mode

Z0=50Ω

Transmission Line

Signal Switch

Z0=50Ω

Transmission Line

Signal Switch

Z0=50Ω

Transmission Line

Signal Switch

Z0=50Ω
Transmission Line

Signal Switch

Z0=50Ω

Transmission Line

Figure 5. Spice models for signal integrity simulation

Figure 6(a). DQ Read in multi-bus mode

(Device to Controller)

Figure 6(b). DQ Write in multi-bus mode

 (Controller to Device)

Figure 6(c). DQ Read in single-bus mode

(Device to Controller)

Figure 6(d). DQ write in single bus mode

(Controller to Device)

opposed to possibly including tags of physical addresses

containing the same bank index.

3.6 Signal Integrity

Signal integrity is analyzed to demonstrate feasibility in the

single-bus and the multi-bus modes. We simulate SPICE

models of our accessory circuit as well as PCB transmis-

sion lines, bond wire inductance, and driver capacitance

associated with the device package in the AMS packages of

Mentor Graphic as shown in Figure 5. The parameters are

derived from previous works [21][23]. Signal integrity

challenges are alleviated since the DDR3 command signal

is unidirectional and its speed is no more than that of the

data signals [21]. In this study, we only analyze the effect

of our accessory circuit on the data signals which could be

viewed as the worst case for all the signals.

In Figure 6(a-d), the eye patterns of writing data (control-

ler to device) and reading data (device to controller) in the

two modes are derived from the corresponding SPICE

models in Figure 5(a-d) respectively. They have clear eyes

since the signal-to-power switch alleviates the effect of the

parasitic capacitance of the power switches. Furthermore,

the signal switches as well as signal buffers alleviate the

signal reflections caused by discontinuities. Thus, the re-

sults indicate our accessory circuit could maintain the sig-

nal quality in the two modes.

3.7 Power Delivery Simulation

In this section, we assess the repercussions experienced by

the power delivery network (PDN) when the switchable

pins are shifted from single-bus mode to multi-bus mode.

The PDN is depicted in Figure 7(a). The power delivery

path is modeled with RL components (i.e. resistors and

inductors) connected in series across the PCB, the package,

and the silicon die. Decoupling capacitors are introduced

between each individual PDN to control any voltage fluctu-

ations. The on-chip power grids and processor circuits on

the silicon die are modeled separately as RL components

with an ideal current source. Figure 7(b) illustrates the RL

model of the Controlled Collapse Chip Connection (C4)

pads [12] in which the resistance of the on-state power

switches is taken into consideration. Table 2 lists the pa-

rameter values obtained from prior work [16].

PDN simulations are performed in PSPICE to evaluate

the impact of Pin Switching. Due to resistance along the

power delivery path, an IR drop exists between the supply

voltage and load voltage as current flows through the PDN.

We assume a normalized IR drop should be upper-bounded

by 5% as prior work dictates [18][19]. This implies that the

maximum currents are 125A, 104A, 80A, and 56A for the

baseline and then for Pin Switching mechanisms with one,

two, and four borrowed buses respectively. In other words,

the three Pin Switching diagrams switch 125, 250, and 375

power pins to signal pins providing 16.8%, 36.0%, and

55.2% less current with 19.9%, 39.8% and 59.7% less

power pins respectively. The percentage of current decrease

is less than that of proportional power pin quantity decrease

because the IR drop depends on the resistance in the PCB

and power grids.

We assume the processor employs a dynamic voltage and

frequency scaling (DVFS) mechanism supporting 4 voltage

and frequency operating points. The frequency can be

scaled down from 4.0GHz to 1.2GHz. Correspondingly, the

voltage will be decreased from 1.0V to 0.64V. According

to McPAT [19], the baseline design can work at a frequen-

cy of 4.0GHz given the power delivery information. How-

ever, the processor frequency must be decreased individual-

ly to 3.2GHz, 2.4GHz, and 1.2GHz when the power pins

for one, two, and three sets of memory channel pins are

Table 2. Power network model parameters

Resistance Value Inductance Value

RPCB 0.015 mΩ LPCB 0.1 nH

RPKG, C 0.2 mΩ LPKG,C 1 pH

RLOAD,C 0.4 mΩ LLOAD,C 1 fH

RGRID 0.01 mΩ LGRID 0.8 fH

RC4, SINGLE 40 mΩ LC4, SINGLE 72 pH

RSWITCH,ON 1.8 mΩ

Capacitance

CPKG,C 250 µF CLOAD,C 500 nF

Table 3. Processor power and frequency parameters for

different number of buses

BUS 1 2 3 4

Current (A) 125 104 80 56

Voltage (V) 1 0.88 0.76 0.64

Power (W) 125 92 61 36

Frequency (GHz) 4 3.2 2.4 1.2

LPCB LC4, P, LUMP LGRID

Printed circuit board MicroprocessorPackage (C4 pads)

RPCB

RPCB
LPCB

CPKG, C

RPKG, C

CLOAD, C

RLOAD, C

ILOAD

RC4, G, LUMP

LC4, G, LUMP

VDD

RC4, P, LUMP
RGRID

LGRIDRGRID

LPKG, C LLOAD, C

(a) Power delivery network

RSWITCH,ON

LC4, SINGLE
RC4, SINGLE

RL model of a single C4 pad

RL model of a C4 pad that connects with a power switch

(b) RL model of a C4 pad

Figure 7. RLC power delivery model

borrowed as I/O pins respectively. The results shown in

Table 3 are used in the following evaluation.

3.8 Runtime Switch Conditions

Designing a predictor to choose the most beneficial mode

for the next interval is non-trivial for multi-program work-

loads. Simply switching based on the amount of consumed

off-chip bandwidth is not sophisticated enough to improve

the overall performance of a system in which only some of

the programs that suffer from long off-chip access latency

are likely to benefit from multi-bus mode. To identify in-

tervals that will benefit from Pin Switching it is necessary

to estimate both the performance change of each program

and the overall benefit of switching for the following inter-

val based on the current performance before a switching

occurs. We introduce a metric called the switching benefit

 to help identify the most beneficial mode for each 1

millisecond interval, where represents the estimated

reward for running the interval following time in mode
instead of mode . Based on the history of the switching

benefit, we predict ̃ as the switching benefit for the

following interval using ̃ ∑

 , where represents the

switching benefits detailed in equation (1) and can be

measured from the N intervals ago and N is the length of

the history to consider which were carefully chosen to be 2

for our experiment. If the predicted switching benefit is

negative, the system will stay in mode , otherwise, it will

switch to mode .
The switching benefit is calculated using the following

equation:
 ∑

 - (1)

where and stand for the estimated

weighted speedups for program k at time in mode i and

mode j respectively, while p represents the number of sim-

ultaneously executing programs which is equal to 4 in our

experiment. The weighted speedup of each program in

mode i during the interval can be estimated based on the

information derived from hardware counters and off-line

profiling, since the system is running in mode during the

current interval. The weighted speedup is calculated as fol-

lows:

where stands for the execution time of the

same instructions running without interfernce from co-

runners and denotes the execution time of a

fraction of program k running with others during the

current interval which is equal to the length of an interval

(1 milisecond). Furthermore,

stands for the number of committed instructions during the

interval following of program k, directly derived from a

hardware counter since it should be identical to the number

when program k shares the main memory system with oth-

ers. Averge IPS obtained from off-line profiling denotes

the average number of executed Instructions Per Second

(IPS) when program k running alone. These values are used

to approximate based on the assumption that

the IPS of each program is relatively steady when it runs

alone, since an accurate estimation of is

challenging [24].

The estimation of the weighted speedup of each program

in currently unused mode j is more difficult compared to

that in current mode i, since we can only estimate the per-

formance of mode j according to the information collected

in mode i. The weighted speedup is calculated as follows:

where is identical to) and

 represents the execution time of program k

running with others in mode j. It can be divided into two

parts based on whether the execution times vary with core

frequency: denotes the portion of the

execution time spent inside the core which is inversely

proportional to core frequency, while

expresses the portion of execution time incurred by activity

outside the core. We estimate based on the

corresponding time in mode i using:

⁄

where and are the freqencies in mode i and

mode j respectively. We estimate with the

same breakdown using

where is the execution time incurred in the

shared last level cache (LLC) in mode i, which is estimated

using the number of the accesses to LLC, and
denotes the execution time incurred by activity in the

DRAM controller in mode i. is the cumula-

tive time spent when there is at least one in-flight read re-

quests in the DRAM controller, since it can avoid the over-

estimation due to the overlap of multiple in-flight read re-

quests for single thread [26].

On the other hand, is mainly affected by

the number of buses between different modes since the

queue delay inside the DRAM controller is typically de-

creased as more off-chip buses are added. We cacluate the

time using:

⁄

where and denote

the execution time incurred inside the queue of the DRAM

controller in modes i and j respectively, while

 and stand for the average

number of waiting requests per incoming read requests

which have to wait until they have been completed in

modes i and j. can be estimated by the

time when there is at least one read request in the queue of

DRAM controller. can be estimated by

sampling the number of waiting requests in different modes

3.9 Switching Overhead

Any runtime overhead incurred by switching comes from

the DVFS and IR drop fluctuations caused by the pin

switch. The overhead for DVFS is 20µs [20] and the time

for the IR drop to re-stabilize is also bounded by 20µs ac-

cording to our power delivery simulation. Because both of

these delays overlap each other, the estimated total over-

head is 20µs and is taken into consideration. Therefore, the

penalty is 40µs when a phase is incorrectly identified.

However, the overall switching overhead is still negligible

since the average length of the identified phases shown is

much longer than the overhead in our workloads. Since

most programs only switch a few times during execution,

nearly all the program phase transitions have been identi-

fied by the predictor.

4. Experimental Setup

To evaluate the benefit of our design, we simulate the x86

system documented in Table 4 using the Gem5 simulator

[10]. We modify the DRAM model integrated in Gem5 to

accurately simulate the proposed method. Throughout the

experiments, multi-bus mode will utilize all available buses

with the corresponding core frequency shown in Table 3.

The buses are partially unutilized with a high core frequen-

cy between multi-bus and single-bus modes. We employ

off-chip DVFS to maintain the same frequency on all 4

cores at any given time.

4.1 Performance and Energy Efficiency Metrics

We use weighted speedup [29] lists as follows to represent

the throughput of our system shown in the following equa-

tion.

Table 5. The selected memory-intensive and compute-

intensive workloads

workload

Memory-intensive programs

M1 lbm milc soplex libquantum

M2 lbm milc leslie3d libquantum

M3 lbm milc soplex leslie3d

M4 lbm soplex libquantum leslie3d

M5 milc soplex libquantum leslie3d

M6 mcf mcf mcf mcf

M7 mcf mcf astar astar

M8 astar astar astar astar

Mixed programs

MIX1 lbm milc bzip2 bzip2

MIX2 lbm milc omnetpp omnetpp

MIX3 lbm soplex omnetpp omnetpp

MIX4 milc soplex omnetpp omnetpp

MIX5 lbm milc omnetpp bzip2

MIX6 milc soplex omnetpp bzip2

Compute-intensive programs

C1 bzip2 bzip2 bzip2 bzip2

C2 hmmer hmmer hmmer hmmer

C3 gromacs bzip2 omnetpp h264ref

C4 gromacs bzip2 sjeng h264ref

C5 gromacs omnetpp sjeng h264ref

C6 bzip2 omnetpp sjeng h264ref

Table 4. The configuration of the simulated system

Processor 4 X86 OoO cores with issue width 4

L1 I cache Private 32KB, 8 way, 64B cache line, 2 cycles

L1 D cache Private 32KB, 8 way, 64B cache line, 2 cycles

L2 Cache Shared 8MB, 8 way, 64B cache line, 20 cycles

Memory control-

ler
FR-FCFS scheduling, open row policy

Channel 1

Bus per channel 2 /3/4 (additional buses 1/2/3)

Rank per bus 2

Bank per rank 8

Bank

8*8 DDR3-1600 chips

Parameters of DDR3-1600 from Micron

datasheet[23]

Table 6. The memory statistics of benchmarks

Benchmark IPC LLC

MPKI

Row

buffer

hit ratio

Bandwidth(MByte/s)

libquantum 0.30 58.14 96% 4441.57

milc 0.16 41.86 81% 3641.48

leslie3d 0.62 20.72 85% 3311.84

soplex 0.31 31.34 80% 2501.53

lbm 0.36 23.12 87% 2151.90

mcf 0.15 57.54 19% 2138.81

astar 0.25 29.12 51% 1871.53

omnetpp 1.38 0.49 83% 172.09

gromacs 1.34 0.38 82% 129.60

h264 1.13 0.13 32% 38.03

bzip2 1.13 0.12 94% 35.54

hmmer 1.95 0.00 38% 0.28

 ∑

 ⁄

 ⁄

Here,
 and

 denote the execution time of a single

program running alone and the execution time running with

other programs respectively. Because the IPC is distorted

by the frequency change from the employed DVFS, the

execution time is used in place of it.

We utilize Energy per Instruction (EPI) for the evalua-

tion of energy efficiency. This metric can be obtained from

dividing consumed energy by the number total number of

instructions committed.

4.2 Workloads

Various multi-program workloads consisting of SPEC 2006

benchmarks [28] are used for our evaluation. As listed in

Table 5, the benchmarks are categorized into two separate

groups based on their relative memory intensities: memory-

intensive programs and compute-intensive programs. Each

workload consists of four programs from one of these

groups to represent a memory-intensive workload or com-

pute-intensive workload accordingly. Memory-intensive

workloads are used to demonstrate the benefit of multi-bus

mode while the compute-intensive workloads demonstrate

that there are negligible side-effects. Without losing gener-

ality, we also include six MIX workloads consisting of

mixed memory- and compute-intensive programs which

demonstrate moderate performance benefits.

We select a simulated region of 200 million instructions

for each benchmark based on their memory characteristics

collected from Pin [7]. The regions are independently exe-

cuted to gather instructions per cycle (IPC), last-level-cache

misses per 1,000 instructions (LLC MPKI), row buffer hit

ratio, and the bandwidth displayed in Table 6. The band-

width and LLC MPKI numerically portray the memory

access intensity, making them indicators of our design’s

potential benefit. Row buffer hit ratio reveals the memory

access locality and latency. Programs with low row buffer

hit ratios suffer from longer bank access latency due to the

row buffer miss penalty. Longer memory accesses increase

the queue delay which impedes the following incoming

requests in the buffer.

The simulation for a workload does not end until the

slowest program finishes its 200 million instructions. Faster

programs continue running after committing the first 200

million instructions. Execution time of each program is

collected after the program finishes its instructions. The

compute-intensive programs of MIX workloads run 600

million instructions, which prolong the execution time

comparable to that of memory-intensive benchmarks in the

same group.

5. Results

The execution latency of a program is composed of the on-

chip and off-chip latency. The percentage of latency in the

total execution time reveals which factor tends to be more

influential to the overall performance of a workload. In

Figure 9. The normalized weighted speedup of memory-

intensive workloads with 2, 3, and 4 buses against the each

baseline

1

1.1

1.2

1.3

1.4

1.5

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

r
m

a
li

z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

Workloads

2 buses 3 buses 4 buses

Figure 11. The normalized weighted speedup of memory in-

tensive workloads boosted by Static Switching and Dynamic

Switching with 3 buses against the baseline

0.9

1.1

1.3

1.5

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

r
m

a
li

z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

Workloads

Baseline

Static

Dynamic

Figure 12. The increased bandwidth due to pin switching.

The normalized bandwidth of baseline, static pin switch-

ing, and dynamic pin switching.

0.9

1.1

1.3

1.5

M1 M2 M3 M4 M5 M6 M7 M8

N
o

r
m

a
li

z
e
d

B
a

n
d

w
id

th

Workloads

Baseline

Static

Dynamic

Figure 8. The normalized off-chip latencies and on-chip laten-

cies of workloads against the total execution time.

0

0.2

0.4

0.6

0.8

1

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
IX

1
M

IX
2

M
IX

3
M

IX
4

M
IX

5
M

IX
6

C
1

C
2

C
3

C
4

C
5

C
6

N
o

r
m

a
li

z
e
d

E
x
e
c
u

ti
o

n
 T

im
e

Workloads

On-chip Off-chip

Figure 10. The average normalized weighted speedup of

memory workloads in geometric mean with multi-bus mode.

Each normalize to the same configuration with single bus

mode

1.3

1.35

1.4

1 2 4 8 16 32

N
o

rm
a

li
ze

d

W
e
ig

h
te

d

S
p

e
e
d

u
p

Ranks per channel Banks per rank

Figure 8 we demonstrate the off-chip and on-chip latency

for the selected workloads in the three categories. Specifi-

cally, more than 80% of the latency of memory-intensive

workloads comes from off-chip latency, while more than

60% of the latency of compute-intensive workloads are

from on-chip latency. This implies that the memory-

intensive and mixed workloads could be sped up by our Pin

Switching.

5.1 Memory-Intensive Workloads

Figure 9 shows the performance improvements of memory-

intensive workloads enhanced by 2, 3, and 4 buses. The

weighted speedup of each case is normalized against its

own baseline. The baseline is the simulated system fixed in

the single-bus mode with the corresponding number of bus-

es and DRAM devices when the processor runs at 4.0GHz.

Remarkably, the improvements experienced with 3 buses

consistently surpass 2 and 4 buses in all workloads. These

results stem from the balance between core performance

and off-chip bandwidth that the 3 buses experience to max-

imize the throughput of the simulated system. Based on our

specific hardware configuration and selected workloads,

the multi-bus mode with 3 buses is the optimal choice and

therefore referred to as the default configuration for the

discussion of Static and Dynamic Switching that will be

presented in later sections. Figure 10 illustrates the perfor-

mance improvement for multi-bus mode tested using vari-

ous DRAM configurations. The weighted speedup for each

configuration is normalized against the same configuration

in single-bus mode. As can be seen from the figure, all

banks and ranks have weighted speedups greater than 32%.

As the number of ranks per channel or the number of banks

per rank increases, improvement is slightly diminished due

to the resulting lower row buffer hit ratio causing shorter

bank access latency.

Figure 11 presents the benefits of Static Switching and

Dynamic Switching with 3 buses versus the baseline of a

simulated system that does not use the pin switch mecha-

nism on memory-intensive workloads. Both schemes are

able to speed up the execution of all workloads by more

than 1.3 times, while an approximately 42% performance

improvement is observed for M2. The geometric means of

Static Switching and Dynamic Switching are respectively

1.34 and 1.33 due to more than 99% of the running time

being identified as typical memory-intensive phases by

Dynamic Switching.

The benefit of the multi-bus mode is mainly attributed to

the increase of consumed bandwidth as shown in Figure 12.

The increase is similar to this of the weighted speedup in

Figure 11. For example, M2 and M7 gain 47% and 39%

off-chip bandwidth when switching from the single-bus

mode to the multi-bus mode for static switching, while their

performances are improved by 44% and 36% respectively.

This similarity results from the fact that their execution

latencies are largely dominated by off-chip latency. On the

other hand, Dynamic Switching achieves a slightly smaller

increase in bandwidth, which results in its performance

being close to that of Static Switching.

The throughput improvement of Dynamic Switching

could be strengthened by using prefetchers which can uti-

lize extra bandwidth brought by additional buses in our

design. In our experiment, we use a stride prefetcher in the

last level cache to demonstrate the benefit. More sophisti-

cated prefetchers could be employed to further improve the

Figure 13. The improved throughput of Dynamic Switching boosted by a stride prefetchers (degree = 1, 2, 4) for memory-

Intensive workloads.

0.8
1

1.2
1.4
1.6
1.8

2
2.2

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

r
m

a
li

z
e
d

W
e
ig

h
te

d

S
p

e
e
d

u
p

Workloads

Baseline+prefetch (degree 1)

Baseline+prefetch (degree 2)

Baseline+prefetch (degree 4)

Dynamic+prefetch (degree 1)

Dynamic+prefetch (degree 2)

Dynamic+prefetch (degree 4)

Figure 14. The off-chip bandwidth of Dynamic Switching improved by a stride prefetcher (degree = 1, 2, 4) for memory-

Intensive workloads.

0

5

10

15

M1 M2 M3 M4 M5 M6 M7 M8

O
ff

-c
h

ip

B
a

n
d

w
id

th

(G
B

/s
)

Workloads

Baseline+prefetch (degree 1)

Baseline+prefetch (degree 2)

Baseline+prefetch (degree 4)

Dynamic+prefetch (degree 1)

Dynamic+prefetch (degree 2)

Dynamic+prefetch (degree 4)

Figure 15. The normalized EPI of Dynamic Switching for

memory intensive workloads with 3 buses, and the EPI from

DVFS (running on 2.4GHz with the single bus)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

r
m

a
li

z
e
d

E
n

e
r
g

y
 p

e
r

In
st

r
u

c
ti

o
n

Workloads

DVFS

Dynamic

system performance. The stride prefetcher used here has a

prefetch degree of 1, 2, or 4, which denotes the number of

prefetches issued on every memory reference. As illustrated

in Figure 13, the geometric mean of the performance im-

provements of Dynamic Switching for all memory-

intensive workloads with a prefetch degree of 1, 2, and 4

are 1.51, 1.64, and 1.79 respectively, compared with those

of the baseline which are 1.10, 1.17, and 1.27. The gap of

the improvements between Dynamic Switching and the

baseline increases as the prefetch degree increases, which

imply an aggressive stride prefetch could benefit more from

Dynamic Switching. This observation could be demonstrat-

ed in all workloads except M6 which only gains a slight

performance improvement from increasing the prefetch

degree, since the stride prefetcher has a low coverage on

mcf [14]. This performance improvement could be verified

by the higher consumed off-chip bandwidth of Dynamic

Switching shown in Figure 14. It implies that Dynamic

Switching could boost the performance of the prefetch by

providing more off-chip bandwidth.

The energy efficiency of the system could be also im-

proved by Dynamic Switching. Figure 15 details the energy

efficiency improvement of the simulated system. In theory,

the energy savings come from two sources: (1) low voltage

and frequency scaling; and (2) the execution reduction time

stemming from multiple buses brought by pin switching.

We quantify the first part by setting the core frequency of

the simulated system to 2.4 GHz (relating to the frequency

of our multi-bus mode scheme) with the corresponding

voltage for single bus. The results depicted as gray bars in

Figure 15 demonstrate 40% improvement in the geometric

mean of the EPI for all the workloads over the baseline.

Note that the overall execution time of this setting is only

slightly longer than that of the baseline system because all

workloads are memory-intensive. Furthermore, the multi-

bus mode offers an average of 66% improvement in the

geometric mean of the EPI for all the workloads over the

baseline resulting from execution time reduction.

5.2 Mixed Workloads

Figure 16 shows the system performance improvement of

mixed compute-intensive and memory-intensive workloads

using Pin Switching. The highest benefit is achieved using

2 buses and per-core DVFS [30], which is the configuration

used in this experiment after we explored the configuration

space for these workloads. The geometric means of the

normalized weighted speedup from using Static Switching

and Dynamic Switching are 1.10 and 1.09 respectively,

implying that Dynamic Switching captures the most benefit

of Pin Switching for these mixed workloads. Figure 17

shows the co-improvement of Pin Switching and stride

prefetching with varying degrees (1, 2, 4) compared with

the improvement of the prefetching alone. The geometric

means of the normalized weighted speedup of Dynamic

Switching with prefetching degree (1, 2, 4) are 1.15, 1.16,

1,15 respectively, while the means with prefetching alone

are all 1.04. The co-optimization for all workloads satu-

rates, or even slightly drops as the degree increases, which

implies aggressive prefetching wastes off-chip bandwidth

rather than exploiting the benefit of MLP for workloads.

This can be confirmed by observing the performance of the

baseline using prefetching alone as the degree increases.

5.3 Compute-Intensive Workloads

Figure 18 depicts the Dynamic Switching efficiency of

compute-intensive workloads in comparison to Static

Switching at the cost of lower core frequency and the base-

line. The geometric mean of performance degradation for

compute-intensive workloads introduced by the Static

Switching scheme is 29%. The worst case results in a 35%

slowdown of C5. In contrast, Dynamic Switching retains

Figure 18. The normalized weighted speedup of Compute-

Intensive workloads with Static Switching and Dynamic

Switching.

0.6

0.8

1

1.2

C1 C2 C3 C4 C5 C6 GM

N
o

r
m

a
li

z
e
d

W
e
ig

h
te

d

S
p

e
e
d

u
p

Workloads

Baseline

Static

Dynamic

Figure 17. The improved throughput of Dynamic Switching boosted by a stride prefetchers (degree = 1, 2, 4) for mixed work-

loads.

0.9

1

1.1

1.2

1.3

MIX 1 MIX 2 MIX 3 MIX 4 MIX 5 MIX 6 GM

N
o

r
m

a
li

z
e
d

W
e
ig

h
te

d

S
p

e
e
d

u
p

Workloads

Baseline + Prefetch (Degree 1)

Baseline + prefetch (Degree 2)

Baseline + prefetch (Degree 4)

Dynamic + prefetch (Degree 1)

Dynamic + prefetch (Degree 2)

Dynamic + prefetch (Degree 4)

Figure 16. The normalized weighted speedup of mixed work-

loads boosted by Static Switching and Dynamic Switching.

0.9

0.95

1

1.05

1.1

1.15

MIX

1

MIX

2

MIX

3

MIX

4

MIX

5

MIX

6

GM

N
o

rm
a

li
ze

d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

Workloads

Baseline

Static

Dynamic

the same performance as the baseline during compute-

intensive workloads because our metric successfully identi-

fies non-memory-intensive phases when the rewards of the

multi-bus mode are limited. Furthermore, Dynamic Switch-

ing surpasses the baseline for the C1 workload by identify-

ing compute-intensive and memory-intensive phases. Over-

all, Dynamic Switching exhibits no performance penalty on

compute-intensive workloads, in contrast to Static Switch-

ing.

The energy consumption of the Dynamic Switching

mechanism is almost the same as the baseline since the

processor runs at single-bus mode most of the time for

compute-intensive programs. Therefore, we do not illus-

trate the EPI comparison figure here.

6. Conclusion

The limited off-chip memory bandwidth has been widely

acknowledged as a major constraint to prevent us from ob-

taining commensurate performance benefit from the faster

processor cores. This is especially challenging in the cur-

rent multi-core era due to a high volume of memory re-

quests coming from an increasing number of processor

cores. To alleviate the shortage of off-chip bandwidth, we

propose an innovative pin switching technique which dy-

namically allocates pins for power delivery or signal trans-

mission with minimal changes to the circuit. By accurately

identifying memory-intensive phases at runtime, the pro-

posed strategy converts a portion of the pins used for power

delivery to signal transmission mode, providing additional

off-chip bandwidth and improving the overall performance.

As shown by the evaluation results, along with other tech-

niques including Dynamic Switching and stride prefetch-

ing, our scheme is capable of significantly accelerating the

program execution.

References

[1] http://opencores.org

[2] http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx

[3] https://www.si2.org/openeda.si2.org/projects/nangatelib

[4] http://www.intel.com/content/dam/www/public/us/en/documents/dat
asheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf

[5] http://www.freescale.com/files/32bit/doc/app_note/AN3940.pdf

[6] http://www.protoexpress.com/content/stcapability.jsp

[7] http://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

[8] Jung Ho Ahn, Norman P. Jouppi, Christos Kozyrakis, Jacob Lever-
ich, and Robert S. Schreiber. 2009. Future scaling of processor-
memory interfaces. In Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis (SC '09).

[9] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of
multiple interacting resources in chip multiprocessors: A machine
learning approach. In MICRO, 2008.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. How-
er, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2
(August 2011), 1-7.

[11] M. Chen, X. Wang, and X. Li. Coordinating Processor and Main
Memory for Efficient Server Power Control. In ICS, 2011.

[12] K. DeHaven, J. Dietz "Controlled collapse chip connection (C4)-an
enabling technology," Electronic Components and Technology Con-
ference, 1994. Proceedings., 44th , vol., no., pp.1,6, 1-4 May 1994.

[13] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F.
Wenisch, and Ricardo Bianchini. 2012. CoScale: Coordinating CPU
and Memory System DVFS in Server Systems. In MICRO '12.

[14] Sorin Iacobovici, Lawrence Spracklen, Sudarshan Kadambi, Yuan
Chou, and Santosh G. Abraham. 2004. Effective stream-based and
execution-based data prefetching. In Proceedings of ICS '04.

[15] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self Optimizing
Memory Controllers: A Reinforcement Learning Approach. In Pro-
ceedings of ISCA, 2008.

[16] R. Jakushokas, M. Popovich, A.V. Mezhiba, S. Kose, and E.G.
Friedman. Power Distribution Networks with On-Chip Decoupling
Capacitors. 2011.

[17] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur
Mutlu. 2012. A case for exploiting subarray-level parallelism
(SALP) in DRAM. SIGARCH Comput. Archit. News 40, 3 (June
2012).

[18] K. L. Kishore and V.S.V. Prabhakar. VLSI Design, I K International
Publishing House, 2009.

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N.
P. Jouppi. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO,
Dec. 2009.

[20] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. 2011. Scalable
power control for many-core architectures running multi-threaded
applications. In Proceedings of ISCA 2011.

[21] Krishna T. Malladi, Benjamin C. Lee, Frank A. Nothaft, Christos
Kozyrakis, Karthika Periyathambi, and Mark Horowitz. 2012. To-
wards energy-proportional datacenter memory with mobile DRAM.
In Proceedings of ISCA '12.

[22] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C.
Kozyrakis. Power Management of Datacenter Workloads Using Per-
Core Power Gating. In Computer Architecture Letter 2009.

[23] Micron Corp. Micron 2 Gb x 4, x8,x16, DDR3 SDRAM:
MT41J512M4, MT41J256M4, and MT41J128M16, 2011.

[24] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In Proceedings of MICRO,
2007.

[25] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling:
Enhancing Both Performance and Fairness of Shared DRAM Sys-
tems. In Proceedings of ISCA, 2008.

[26] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N.
Patt. 2006. A Case for MLP-Aware Cache Replacement. In ISCA
'06.

[27] Brian Rogersy, Anil Krishnaz, Gordon Bellz, Ken Vuz, Xiaowei
Jiangy, Yan Solihin. Scaling the Bandwidth Wall: Challenges in and
Avenues for CMP Scaling. In Proceedings of ISCA, 2009.

[28] Standard Performance Evaluation Corporation. SPEC CPU 2006.

[29] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simul-
taneous multithreading processor. In ASPLOS-9, 2000.

[30] Jose Tierno, Alexander Rylyakov, Daniel Friedman, Ann Chen,
Anthony Ciesla, Timothy Diemoz, George English, David Hui,
Keith Jenkins, Paul Muench, Gaurav Rao, George Smith III, Michael
Sperling, Kevin Stawiasz. A DPLL-based per core variable frequen-
cy clock generator for an eight-core POWER7 x2122 microproces-
sor. In VLSIC. 2010.

[31] Young Hoon Son, O. Seongil, Yuhwan Ro, Jae W. Lee, and Jung Ho
Ahn. 2013. Reducing memory access latency with asymmetric
DRAM bank organizations. In Proceedings of ISCA '13.

[32] Aniruddha N. Udipi, Naveen Muralimanohar, Niladrish Chatterjee,
Rajeev Balasubramonian, Al Davis, and Norman P. Jouppi. 2010.
Rethinking DRAM design and organization for energy-constrained
multi-cores. In Proceedings of ISCA '10.

[33] Doe Hyun Yoon, Jichuan Chang, Naveen Muralimanohar, and Par-
thasarathy Ranganathan. 2012. BOOM: enabling mobile memory
based low-power server DIMMs. SIGARCH Comput. Archit. News
40, 3 (June 2012).

[34] Hongzhong Zheng, Jiang Lin, Zhao Zhang, and Zhichun Zhu. 2009.
Decoupled DIMM: building high-bandwidth memory system using
low-speed DRAM devices. In Proceedings of ISCA '09.

[35] Hongzhong Zheng, Jiang Lin, Zhao Zhang, Eugene Gorbatov, How-
ard David, and Zhichun Zhu. 2008. Mini-rank: Adaptive DRAM ar-
chitecture for improving memory power efficiency. In MICRO 41

http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
https://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.freescale.com/files/32bit/doc/app_note/AN3940.pdf
http://www.protoexpress.com/content/stcapability.jsp

