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Abstract 

Off-chip memory bandwidth has been considered as one 

of the major limiting factors to processor performance, 

especially for multi-cores and many-cores. Conventional 

processor design allocates a large portion of off-chip pins 

to deliver power, leaving a small number of pins for pro-

cessor signal communication. We observed that the proces-

sor requires much less power than that can be supplied 

during memory intensive stages. This is due to the fact that 

the frequencies of processor cores waiting for data to be 

fetched from off-chip memories can be scaled down in or-

der to save power without degrading performance. In this 

work, motivated by this observation, we propose a dynamic 

pin switch technique to alleviate the bandwidth limitation 

issue. The technique is introduced to dynamically exploit 

the surplus pins for power delivery in the memory intensive 

phases and uses them to provide extra bandwidth for the 

program executions, thus significantly boosting the perfor-

mance.  

1. Introduction 

As memory-intensive applications such as web servers, 

database software, and tools for data analysis prevail, the 

focus of computer architects shifts from Instruction Level 

Parallelism (ILP) to Memory Level Parallelism (MLP). The 

term “Memory Wall” was coined to describe the disparity 

between the rate of core performance improvement and the 

relatively stagnant rate of off-chip memory bandwidth in-

crease. Additional cores, when integrated on the same die, 

and supplemental applications serve to widen this gap, 

since each individual core may generate substantial 

memory requests that need to be queued and served by the 

memory subsystem. Obviously, the capability of the off-

chip memory system largely determines the per-core or 

even the overall performance of the entire system. In sce-

narios where the off-chip memory is insufficiently fast to 

handle all memory transactions in a timely manner, the 

system performance is highly likely to be bottlenecked by 

the slow memory accesses. An intuitive solution to this 

problem is to increase the off-chip memory bandwidth by 

enabling more memory channels. Figure 1 illustrates the 

variation of normalized throughput with the number of 

memory channels increased from 1 to 4 when 4 lbm pro-

grams are running on an X86 platform. As can be seen 

from the figure, enabling more memory channels signifi-

cantly increases the off-chip bandwidth, which in turn 

translates to an impressive boost of the system perfor-

mance. Furthermore, compared to compute-intensive stag-

es, processors consume much less power during memory-

intensive phases when cores wait for data to be fetched 

from main memory. 

Motivated by this observation, we propose an innovative 

technique to mitigate the shortage of off-chip bandwidth 

during the memory-intensive phases of program execu-

tions, in order to enhance the overall performance. Our 

scheme is built on top of a novel switchable pin design and 

accurate identifications of memory-intensive phases. Pins 

can be dynamically altered for power delivery or signal 

transmission via accessory circuits. These circuits enable 

pins to deliver quality power or signal with relatively low 

area overhead. On the other hand, we identify the memory-

intensive phases by observing the key performance metrics 

at runtime. Extra off-chip bandwidth is demanding in phas-

es with high memory intensity. Therefore, by switching the 

pins and providing additional bandwidth for off-chip 

memory transactions, the performance of memory-intensive 

stages can be boosted, thus impressively accelerating the 

overall execution.  

In general, the main contributions of this paper are as fol-

lows: 

1. We devise a memory controller that can dynamically 

increase the off-chip bandwidth at the cost of a lower 

core frequency. Results show a significant increase in 

throughput for memory-intensive workloads with only 

a slight hardware overhead.  

2. We propose a switchable pin design which can convert 

a power pin to a signal pin or the other way around. 

Detailed examinations at both the circuit and architec-

tural level are conducted to validate the feasibility of 

the proposed design.  

3. We examine the performance improvement of our de-

sign in various memory configurations. A sensitivity 

study is conducted to compare the benefit of our design 

with a different number of channels, buses, banks and 

ranks. 

4. We design Dynamic Switching to alleviate the nega-

tive side-effects of pin switching by actively identify-



 

 

ing memory-intensive phases and only switching 

when the condition is satisfied. Without prior 

knowledge of program characteristics, this policy 

switches the system to prioritize memory bandwidth 

or core performance according to the identified phase. 

Our experiments show that significant performance 

improvement can be achieved for memory-intensive 

workloads while maintaining the same performance 

for compute-intensive workloads as the system with-

out Pin Switching. 

2. Related Work 

DRAM-Based Memory System: Several papers propose 

to physically alter the main memory in a DRAM-based 

memory system to improve the performance and energy 

efficiency. Zhang et al. propose setting the bus frequency 

higher than the DRAM module to improve channel band-

width where the induced bandwidth mismatch is resolved 

by a synchronization buffer inside the DIMM for data and 

command [34]. Papers also explore using low power DDR2 

(LPDDR2) memory, in place of conventional DDR3, due to 

its higher energy efficiency [21][33].  

To reduce the delay of bank access, thereby increasing 

memory bandwidth, architects optimize the memory system 

at the rank and bank level. Zhang et al. subdivides conven-

tional ranks into mini-ranks with a shorter data width. 

These mini-ranks can be operated individually via a small 

chip on each DIMM for higher DRAM energy efficiency 

[35]. Rank sub-setting is also proposed to improve the reli-

ability and performance of a memory system [8]. 

Inside a DRAM bank, increasing the row buffer hit ratio 

is key to improving energy efficiency and performance. 

Kim et al. partition a row buffer into multiple sub-arrays 

inside a bank to reduce the row buffer miss rate [17]. An 

asymmetric DRAM bank organization can be used to re-

duce the bank access latency and improve the system per-

formance [31]. Unlike preceding work, we focus on in-

creasing off-chip bandwidth to boost the performance of 

the memory system since it is the major bottleneck of 

memory systems in the multi-core era. 

Off-Chip Bandwidth: Rogers et al. have already stressed 

the significance of off-chip bandwidth [27]. To increase the 

overall energy efficiency of a memory system, Udipi et al. 

split a 64 bit data bus into eight 8 bit data buses reducing 

the queue delay at the expense of data transfer delay [32]. 

Ipek designs a memory scheduler using principles of rein-

forcement learning to understand program behaviors and 

boost performance [15]. Mutlu et al. focus on boosting 

multi-threaded performance by providing fair DRAM ac-

cess for each thread in their memory scheduler [24][25]. 

Our method of adding additional buses to multiply the off-

chip bandwidth is orthogonal to the aforementioned meth-

ods, which focus on the memory scheduler and bus control. 

Tradeoff between core performance and off-chip band-

width: Architects employ several sophisticated methods to 

balance core and memory performance [9][11][13]. How-

ever, few of them are able to increase the off-chip band-

width beyond the constraint of static pin allocation. 

3. Design Overview  

Our design aims to boost computer system performance 

especially for memory-intensive programs. In conventional 

designs, the performances of these workloads are degraded 

by a shortage of memory buses which limits off-chip 

bandwidth. We provide increased memory bandwidth, 

thereby reducing the average latency of off-chip memory 

access, at the expense of a lower core frequency. Rather 

than retaining a fixed number of buses connected to the 

DRAM (typically one bus per channel), our design dynam-

ically switches buses between signal and power pins (VDD 

or GND) to reduce the latency for these workloads. This is 

referred to as multi-bus mode henceforth, as opposed to 

single-bus mode similar to conventional processor opera-

tion. Switchable pins facilitate changing between these two 

modes as discussed below. This paper focuses on how to 

fully exploit the benefits of substituting power pins for I/O 

pins during memory-intensive programs without interfering 

with compute-intensive programs. 

3.1 Pin Switch 

Figure 2 depicts the schematic of two switches and a signal 

buffer which serve as the basic units for exchanging power 

pins for signal pins. The signal-to-power switch shown in 

Figure 2(a) is key to alternate a regular pin between the two 

modes. As illustrated in this figure, we utilize a dedicated 

power switch [22] which sits on the power delivery path to 

minimize the corresponding IR drop and power consump-

tion with its ultra-low switch-on resistance, measuring as 

low as 1.8mΩ. While in the single-bus mode, the power 

switch is turned on while two 5 stage tri-state buffers on the 

signal line are off. Otherwise, the power switch is turned 

off to block noisy interference from the power line, and the 

tri-state buffers are turned on in one direction according to 

whether data is read from the memory or written by the 

memory controller. To compensate for the parasitic capaci-

tances of the power switch, we place the 5 stage tri-state 

buffers in signal lines to amplify I/O signals. Between each 

stage, the buffer size is increased by four times to amplify 

  

 

Figure 1.  The normalized weighted speedup and off-chip 

bandwidth of 4 lbm co-running on a processor with 1,2,3,4 

memory channels 

2

4

6

8

0

1

2

3

1 2 3 4 B
a

n
d

w
id

th
 (

G
B

/s
) 

N
o

r
m

a
li

z
e
d

 

W
e
ig

h
te

d
 S

p
e
e
d

u
p

 

Channels 

Thoughput Off-chip Bandwidth



 

 

the signal with small delay. In total, the 5 stage tri-state 

buffer incurs a 0.9ns delay. On the other hand, the die area 

of the aforementioned power switch is commensurate to 

that of 3,000 traditional transistors [22]. The number of 

signal pins for a DRAM bus could slightly vary depending 

on different processors (e.g. with or without ECC). We pick 

up 125 power switches per bus which consists of 64 data 

pins and 61 address and command pins from the pin alloca-

tion of an i5-4670 Intel Processor [4]. The total die area 

consumes 375,000 (3,000 * 125) traditional transistors. 

Considering a billion-transistor chip, the area overhead for 

the 3 buses which will be used in our work is less than 

0.12% of the total chip area. 

The signal switch shown in Figure 2(b) is employed to 

guarantee that data in the DRAM can be accessed in two 

modes. The signal switch uses two pairs of 5 stage tri-state 

buffers to enable memory devices that can be accessed via 

two buses. The buffers identical to that in the signal-to-

power switch can resist noise from a channel when the oth-

er channel is selected. On the other hand, the signal buffers 

shown in Figure 2(c) also have strong peak-drive current 

and sink capabilities. They are utilized to amplify the signal 

in order to offset the effect of the parasitic capacitance.   

Processors possess specific pin allocations depending on 

the package, power consumption, and hardware interface 

(the number of memory channels). For our experiment, we 

use the pin allocation of an i5-4670 Intel Processor [4] 

shown in Table 1. While this processor includes 4 cores 

and 2 memory channels, 54.6% of the pins are used for 

power delivery. Out of the 628 power pins, 125 of these 

can be replaced with switchable pins for a single bus. To 

maintain the same ratio of VDD to GND pins, we allocate 

30 of the 125 switchable pins as VDD pins and the remain-

ing 95 as GND pins. After a sensitivity study in Section 

4.1, in our experiment we will allocate at most three addi-

tional buses via pin switching because adding more leads to 

a considerable drop in performance.  

3.2 Off-Chip Bus Connection 

Designing a memory interface which could take the ad-

vantage of the switchable pins to dynamically increase off-

chip bandwidth is non-trivial. In this section, we propose an 

off-chip bus connection and instructions to configure the 

switchable pins for power delivery or for signal transmis-

sion.   

The two modes of the off-chip bus connection could be 

described as the multi-bus mode and the single-bus mode, 

as shown in Figure 3. In multi-bus mode, several buses 

(assuming N) are connected to private DRAM interfaces 

via the individual buses. On the other hand, single-bus 

mode can only access DRAM by a single bus. Two signal-

to-power switches and a signal switch for each signal wire 

of N-1 buses are needed. These signal-to-power switches 

configure the switchable pins for signal transmission where 

the signal switches connect the bus to DRAM devices in 

the multi-bus mode, otherwise the switchable pin is config-

ured for power delivery where the DRAM devices are con-

nected to the shared bus.  

In order to implement the mechanism, we control the 

signal-to-power switch detailed in Figure 2(a) and the sig-

nal switch detailed in Figure 2(b) to route signal and power 

in the two modes. The signal to the DRAM interface could 

be divided into two groups: command signals and data sig-

nals. The command signals running in one direction could 

be routed via the two switches which only need one direc-

tion buffer instead of a pair. On the other hand, the data 

signals (DQ) are bi-directional and the switches shown in 

Figure 3 could receive and send signals in both directions.  

For the placements of the switches on the printed circuit 

board (PCB), one signal-to-power switch for each signal 

Table 1. Pin allocation of an Intel processor i5-4670 

VDD GND DDR3 Others Total 

153 475 250 272 1150 
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Figure 2 (a). The circuit of a signal-to-power switch 

Common terminal

Five Stage Tri-state Buffer

Ctrl W_2

Ctrl_R_2

Signal 2

Five Stage Tri-state Buffer

Ctrl W_1 

Ctrl R_1

Signal 1

Figure 2(b). The circuit of a signal switch 

Five Stage Tri-state Buffer

Ctrl W

Ctrl R

Signal Signal

Signal buffer
 

Figure 2(c). The circuit of a signal buffer 



 

 

line should be placed close to the processor package in or-

der to shorten the signal wire which has to bear high cur-

rent for power delivery. To avoid signal reflections caused 

by an impedance mismatch, we keep the width of the signal 

wires and conduct an experiment to test the feasibility of 

high current via these signal wires. Based on a specification 

from the PCB manufacturer [6] and the DDR3 PCB layout 

guidelines [5], our simulation with COMSOL shows the 

MTTF of the 6mil signal wire could be more than 2.5 x 10
5 

hours with a 1A current. On the other hand, the signal 

switch should be placed near the corresponding DRAM 

device to reduce signal reflections.    

3.3 Memory Controller 

The data availability of the memory controller is our prima-

ry concern. All the available memory buses in the multi-bus 

mode must be fully utilized to achieve maximum band-

width while still allowing all the data in single-bus mode to 

be accessed. Due to the complicated synchronization of 

memory requests between memory controllers, the switch 

between the two bus modes is only implemented inside the 

memory controller. Within a memory controller, a memory 

interface is designed for each bus to fully exploit the bene-

fit of the multi-bus mode without the interference of traffic 

from other buses compared to the design of multiple buses 

sharing a single memory interface. 

The memory controller in our design includes dedicated 

request queues which buffer the incoming requests to the 

buses shown in Figure 4. Queues individually receive the 

requests from the front arbiter which employs its address 

mapping policy when dispatching requests. Once the re-

quests are residing in the queues, they are fetched by the 

back arbiter. While in multi-bus mode, the requests are fed 

into their corresponding buses via the corresponding 

DRAM interfaces. Because memory interfaces can operate 
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Figure 3. The overview of the hardware design of off-chip bus connection for switching between the Multi-bus mode and the 

Single-bus mode 
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Figure 4. The Overview of the hardware design of memory controller for switching between the Multi-bus mode and the Single-
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independently and in parallel, the memory bandwidth can 

be amplified by a factor of the number of memory buses. In 

the single-bus mode, the memory controller works similar 

to a conventional processor and communicates with the 

attached DIMMs as appended ranks. 

3.4 Area Overhead  

The circuit overhead of our design consists of the front 

arbiter, the end arbiter, and extra DRAM interfaces. As a 

result of both arbiters, the cost of dispatching requests 

without buffering them should be negligible. Furthermore, 

the cost of the additional DRAM interface is inexpensive. 

The estimated net area of a typical DRAM interface from 

Opencore [1] is 5,134 µm
2
 in 45 nm technology. This esti-

mation is conducted by the Encounter RTL Compiler [2] 

with the NanGate Open Cell Library [3]. No more than 

three additional buses in total are used in our experiment 

thus creating a maximum hardware overhead less than 

0.00015 cm
2
 which is significantly less than the typical 1 

cm
2
 die area. 

3.5 Address Mapping 

Data accesses interleave at the page level via different bus-

es exploiting the benefit of memory-level parallelism while 

maintaining a high row buffer hit ratio. Interleaving at the 

block level considerably decreases the row buffer hit ratio 

resulting in longer off-chip latency per request and extend-

ed queue delay. To reduce row-buffer conflicts, we employ 

XOR banking indexing which could effectively reduce 

bank conflicts resulting from resource-contention-induced 

traffic and write-backs. This permutation distributes the 

blocks stored in the last level cache into different banks as 
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Figure 5. Spice models for signal integrity simulation  

 

 

Figure 6(a). DQ Read in multi-bus mode  
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Figure 6(b). DQ Write in multi-bus mode 
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Figure 6(c). DQ Read in single-bus mode  
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Figure 6(d). DQ write in single bus mode  
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opposed to possibly including tags of physical addresses 

containing the same bank index. 

3.6 Signal Integrity 

Signal integrity is analyzed to demonstrate feasibility in the 

single-bus and the multi-bus modes. We simulate SPICE 

models of our accessory circuit as well as PCB transmis-

sion lines, bond wire inductance, and driver capacitance 

associated with the device package in the AMS packages of 

Mentor Graphic as shown in Figure 5. The parameters are 

derived from previous works [21][23]. Signal integrity 

challenges are alleviated since the DDR3 command signal 

is unidirectional and its speed is no more than that of the 

data signals [21]. In this study, we only analyze the effect 

of our accessory circuit on the data signals which could be 

viewed as the worst case for all the signals.  

In Figure 6(a-d), the eye patterns of writing data (control-

ler to device) and reading data (device to controller) in the 

two modes are derived from the corresponding SPICE 

models in Figure 5(a-d) respectively. They have clear eyes 

since the signal-to-power switch alleviates the effect of the 

parasitic capacitance of the power switches. Furthermore, 

the signal switches as well as signal buffers alleviate the 

signal reflections caused by discontinuities. Thus, the re-

sults indicate our accessory circuit could maintain the sig-

nal quality in the two modes.  

3.7 Power Delivery Simulation 

In this section, we assess the repercussions experienced by 

the power delivery network (PDN) when the switchable 

pins are shifted from single-bus mode to multi-bus mode. 

The PDN is depicted in Figure 7(a). The power delivery 

path is modeled with RL components (i.e. resistors and 

inductors) connected in series across the PCB, the package, 

and the silicon die. Decoupling capacitors are introduced 

between each individual PDN to control any voltage fluctu-

ations. The on-chip power grids and processor circuits on 

the silicon die are modeled separately as RL components 

with an ideal current source. Figure 7(b) illustrates the RL 

model of the Controlled Collapse Chip Connection (C4) 

pads [12] in which the resistance of the on-state power 

switches is taken into consideration. Table 2 lists the pa-

rameter values obtained from prior work [16]. 

PDN simulations are performed in PSPICE to evaluate 

the impact of Pin Switching. Due to resistance along the 

power delivery path, an IR drop exists between the supply 

voltage and load voltage as current flows through the PDN. 

We assume a normalized IR drop should be upper-bounded 

by 5% as prior work dictates [18][19]. This implies that the 

maximum currents are 125A, 104A, 80A, and 56A for the 

baseline and then for Pin Switching mechanisms with one, 

two, and four borrowed buses respectively. In other words, 

the three Pin Switching diagrams switch 125, 250, and 375 

power pins to signal pins providing 16.8%, 36.0%, and 

55.2% less current with 19.9%, 39.8% and 59.7% less 

power pins respectively. The percentage of current decrease 

is less than that of proportional power pin quantity decrease 

because the IR drop depends on the resistance in the PCB 

and power grids. 

We assume the processor employs a dynamic voltage and 

frequency scaling (DVFS) mechanism supporting 4 voltage 

and frequency operating points. The frequency can be 

scaled down from 4.0GHz to 1.2GHz. Correspondingly, the 

voltage will be decreased from 1.0V to 0.64V. According 

to McPAT [19], the baseline design can work at a frequen-

cy of 4.0GHz given the power delivery information. How-

ever, the processor frequency must be decreased individual-

ly to 3.2GHz, 2.4GHz, and 1.2GHz when the power pins 

for one, two, and three sets of memory channel pins are 

Table 2. Power network model parameters 

Resistance Value Inductance Value 

RPCB 0.015 mΩ LPCB 0.1 nH 

RPKG, C 0.2 mΩ LPKG,C 1 pH 

RLOAD,C 0.4 mΩ LLOAD,C 1 fH 

RGRID 0.01 mΩ LGRID 0.8 fH 

RC4, SINGLE 40 mΩ LC4, SINGLE 72 pH 

RSWITCH,ON 1.8 mΩ   

Capacitance 

CPKG,C 250 µF CLOAD,C 500 nF 
 

Table 3. Processor power and frequency parameters for 

different number of buses  

BUS 1 2 3 4 

Current (A) 125 104 80 56 

Voltage (V) 1 0.88 0.76 0.64 

Power (W) 125 92 61 36 

Frequency (GHz) 4 3.2 2.4 1.2 
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Figure 7. RLC power delivery model 



 

 

borrowed as I/O pins respectively. The results shown in 

Table 3 are used in the following evaluation.  

3.8 Runtime Switch Conditions 

Designing a predictor to choose the most beneficial mode 

for the next interval is non-trivial for multi-program work-

loads. Simply switching based on the amount of consumed 

off-chip bandwidth is not sophisticated enough to improve 

the overall performance of a system in which only some of 

the programs that suffer from long off-chip access latency 

are likely to benefit from multi-bus mode. To identify in-

tervals that will benefit from Pin Switching it is necessary 

to estimate both the performance change of each program 

and the overall benefit of switching for the following inter-

val based on the current performance before a switching 

occurs. We introduce a metric called the switching benefit 

        to help identify the most beneficial mode for each 1 

millisecond interval, where         represents the estimated 

reward for running the interval following time    in mode   
instead of mode  . Based on the history of the switching 

benefit, we predict  ̃       as the switching benefit for the 

following interval using  ̃        ∑           
   

          , where                     represents the 

switching benefits detailed in equation (1) and can be 

measured from the N intervals ago and N is the length of 

the history to consider which were carefully chosen to be 2 

for our experiment. If the predicted switching benefit is 

negative, the system will stay in mode  , otherwise, it will 

switch to mode  .  
The switching benefit is calculated using the following 

equation: 
        ∑           

 
   -                                                           ( 1 ) 

where           and           stand for the estimated 

weighted speedups for program k at time    in mode i and 

mode j respectively, while p represents the number of sim-

ultaneously executing programs which is equal to 4 in our 

experiment. The weighted speedup of each program in 

mode i during the interval can be estimated based on the 

information derived from hardware counters and off-line 

profiling, since the system is running in mode   during the 

current interval. The weighted speedup is calculated as fol-

lows: 

                                            

                                                                 

where                 stands for the execution time of the 

same instructions running without interfernce from co-

runners and                 denotes the execution time of a 

fraction of program k running with others during the 

current interval which is equal to the length of an interval 

(1 milisecond). Furthermore,                              

stands for the number of committed instructions during the 

interval following    of program k, directly derived from a 

hardware counter since it should be identical to the number 

when program k shares the main memory system with oth-

ers. Averge IPS obtained from off-line profiling  denotes 

the average number of executed Instructions Per Second 

(IPS) when program k running alone. These values are used 

to approximate                 based on the assumption that 

the IPS of each program is relatively steady when it runs 

alone, since an accurate estimation of                 is 

challenging [24].  

The estimation of the weighted speedup of each program 

in currently unused mode j is more difficult compared to 

that in current mode i, since we can only estimate the per-

formance of mode j according to the information collected 

in mode i. The weighted speedup is calculated as follows: 
                                          

                                                    

where                is identical to               ) and 

                represents the execution time of program k 

running with others in mode j. It can be divided into two 

parts based on whether the execution times vary with core 

frequency:                  denotes the portion of the 

execution time spent inside the core which is inversely 

proportional to core frequency, while                    

expresses the portion of execution time incurred by activity 

outside the core. We estimate                  based on the 

corresponding time                  in mode i using:  

                                  
       

       
⁄  

where         and         are the freqencies in mode i and 

mode j respectively. We estimate                  with the 

same breakdown using 

                                              

                                              

where              is the execution time incurred in the 

shared last level cache (LLC) in mode i, which is estimated 

using the number of the accesses to LLC, and               
denotes the execution time incurred by activity in the 

DRAM controller in mode i.               is the cumula-

tive time spent when there is at least one in-flight read re-

quests in the DRAM controller, since it can avoid the over-

estimation due to the overlap of multiple in-flight read re-

quests for single thread [26]. 

On the other hand,                   is mainly affected by 

the number of buses between different modes since the 

queue delay inside the DRAM controller is typically de-

creased as more off-chip buses are added. We cacluate the 

time using:   
                                                        

                      

                                            
                

                
⁄  



 

 

where                      and                      denote 

the execution time incurred inside the queue of the DRAM 

controller in modes i and j respectively, while 

                and                  stand for the average 

number of waiting requests per incoming read requests 

which have to wait until they have been completed in 

modes i and j.                      can be estimated by the 

time when there is at least one read request in the queue of 

DRAM controller.                      can be estimated by 

sampling the number of waiting requests in different modes  

3.9 Switching Overhead 

Any runtime overhead incurred by switching comes from 

the DVFS and IR drop fluctuations caused by the pin 

switch. The overhead for DVFS is 20µs [20] and the time 

for the IR drop to re-stabilize is also bounded by 20µs ac-

cording to our power delivery simulation. Because both of 

these delays overlap each other, the estimated total over-

head is 20µs and is taken into consideration. Therefore, the 

penalty is 40µs when a phase is incorrectly identified. 

However, the overall switching overhead is still negligible 

since the average length of the identified phases shown is 

much longer than the overhead in our workloads. Since 

most programs only switch a few times during execution, 

nearly all the program phase transitions have been identi-

fied by the predictor.  

4. Experimental Setup  

To evaluate the benefit of our design, we simulate the x86 

system documented in Table 4 using the Gem5 simulator 

[10]. We modify the DRAM model integrated in Gem5 to 

accurately simulate the proposed method. Throughout the 

experiments, multi-bus mode will utilize all available buses 

with the corresponding core frequency shown in Table 3. 

The buses are partially unutilized with a high core frequen-

cy between multi-bus and single-bus modes. We employ 

off-chip DVFS to maintain the same frequency on all 4 

cores at any given time. 

4.1 Performance and Energy Efficiency Metrics 

We use weighted speedup [29] lists as follows to represent 

the throughput of our system shown in the following equa-

tion.  

Table 5. The selected memory-intensive and compute-

intensive workloads 

workload  

Memory-intensive programs 

M1 lbm milc soplex libquantum 

M2 lbm milc leslie3d libquantum 

M3 lbm milc soplex leslie3d 

M4 lbm soplex libquantum leslie3d 

M5 milc soplex libquantum leslie3d 

M6 mcf mcf mcf mcf 

M7 mcf mcf astar astar 

M8 astar astar astar astar 

Mixed programs 

MIX1 lbm milc bzip2 bzip2 

MIX2 lbm milc omnetpp omnetpp 

MIX3 lbm  soplex omnetpp omnetpp 

MIX4 milc soplex omnetpp omnetpp 

MIX5 lbm milc omnetpp bzip2 

MIX6 milc soplex omnetpp bzip2 

Compute-intensive programs 

C1 bzip2 bzip2 bzip2 bzip2 

C2 hmmer hmmer hmmer hmmer 

C3 gromacs bzip2 omnetpp h264ref 

C4 gromacs bzip2 sjeng h264ref 

C5 gromacs omnetpp sjeng h264ref 

C6 bzip2 omnetpp sjeng h264ref 

 

Table 4. The configuration of the simulated system 

Processor 4 X86 OoO cores with issue width 4 

L1 I cache Private 32KB, 8 way, 64B cache line, 2 cycles 

L1 D cache Private 32KB, 8 way, 64B cache line, 2 cycles 

L2 Cache Shared 8MB, 8 way, 64B cache line, 20 cycles 

Memory control-

ler 
FR-FCFS scheduling, open row policy 

Channel 1 

Bus per channel 2 /3/4 (additional buses 1/2/3) 

Rank per bus 2 

Bank per rank 8 

Bank 

8*8 DDR3-1600 chips 

Parameters of DDR3-1600 from Micron 

datasheet[23] 

 
Table 6. The memory statistics of benchmarks  

Benchmark IPC LLC 

MPKI 

Row 

buffer 

hit ratio 

Bandwidth(MByte/s) 

libquantum 0.30 58.14 96% 4441.57 

milc 0.16 41.86 81% 3641.48 

leslie3d 0.62 20.72 85% 3311.84 

soplex 0.31 31.34 80% 2501.53 

lbm 0.36 23.12 87% 2151.90 

mcf 0.15 57.54 19% 2138.81 

astar 0.25 29.12 51% 1871.53 

omnetpp 1.38 0.49 83% 172.09 

gromacs 1.34 0.38 82% 129.60 

h264 1.13 0.13 32% 38.03 

bzip2 1.13 0.12 94% 35.54 

hmmer 1.95 0.00 38% 0.28 

 



 

 

                 ∑

 
  
      ⁄

 
  
     ⁄

   
     

Here,   
       and   

      denote the execution time of a single 

program running alone and the execution time running with 

other programs respectively. Because the IPC is distorted 

by the frequency change from the employed DVFS, the 

execution time is used in place of it. 

We utilize Energy per Instruction (EPI) for the evalua-

tion of energy efficiency. This metric can be obtained from 

dividing consumed energy by the number total number of 

instructions committed.  

4.2 Workloads 

Various multi-program workloads consisting of SPEC 2006 

benchmarks [28] are used for our evaluation. As listed in 

Table 5, the benchmarks are categorized into two separate 

groups based on their relative memory intensities: memory-

intensive programs and compute-intensive programs. Each 

workload consists of four programs from one of these 

groups to represent a memory-intensive workload or com-

pute-intensive workload accordingly. Memory-intensive 

workloads are used to demonstrate the benefit of multi-bus 

mode while the compute-intensive workloads demonstrate 

that there are negligible side-effects. Without losing gener-

ality, we also include six MIX workloads consisting of 

mixed memory- and compute-intensive programs which 

demonstrate moderate performance benefits. 

We select a simulated region of 200 million instructions 

for each benchmark based on their memory characteristics 

collected from Pin [7]. The regions are independently exe-

cuted to gather instructions per cycle (IPC), last-level-cache 

misses per 1,000 instructions (LLC MPKI), row buffer hit 

ratio, and the bandwidth displayed in Table 6. The band-

width and LLC MPKI numerically portray the memory 

access intensity, making them indicators of our design’s 

potential benefit. Row buffer hit ratio reveals the memory 

access locality and latency. Programs with low row buffer 

hit ratios suffer from longer bank access latency due to the 

row buffer miss penalty. Longer memory accesses increase 

the queue delay which impedes the following incoming 

requests in the buffer.  

The simulation for a workload does not end until the 

slowest program finishes its 200 million instructions. Faster 

programs continue running after committing the first 200 

million instructions. Execution time of each program is 

collected after the program finishes its instructions. The 

compute-intensive programs of MIX workloads run 600 

million instructions, which prolong the execution time 

comparable to that of memory-intensive benchmarks in the 

same group. 

5. Results 

The execution latency of a program is composed of the on-

chip and off-chip latency. The percentage of latency in the 

total execution time reveals which factor tends to be more 

influential to the overall performance of a workload. In 

 

 

Figure 9. The normalized weighted speedup of memory-

intensive workloads with 2, 3, and 4 buses against the each 

baseline 
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Figure 11. The normalized weighted speedup of memory in-

tensive workloads boosted by Static Switching and Dynamic 

Switching with 3 buses against the baseline 
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Figure 12. The increased bandwidth due to pin switching. 

The normalized bandwidth of baseline, static pin switch-

ing, and dynamic pin switching. 
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Figure 8. The normalized off-chip latencies and on-chip laten-

cies of workloads against the total execution time. 
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Figure 10. The average normalized weighted speedup of 

memory workloads in geometric mean with multi-bus mode. 

Each normalize to the same configuration with single bus 

mode 
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Figure 8 we demonstrate the off-chip and on-chip latency 

for the selected workloads in the three categories. Specifi-

cally, more than 80% of the latency of memory-intensive 

workloads comes from off-chip latency, while more than 

60% of the latency of compute-intensive workloads are 

from on-chip latency. This implies that the memory-

intensive and mixed workloads could be sped up by our Pin 

Switching.  

5.1 Memory-Intensive Workloads  

Figure 9 shows the performance improvements of memory-

intensive workloads enhanced by 2, 3, and 4 buses. The 

weighted speedup of each case is normalized against its 

own baseline. The baseline is the simulated system fixed in 

the single-bus mode with the corresponding number of bus-

es and DRAM devices when the processor runs at 4.0GHz. 

Remarkably, the improvements experienced with 3 buses 

consistently surpass 2 and 4 buses in all workloads. These 

results stem from the balance between core performance 

and off-chip bandwidth that the 3 buses experience to max-

imize the throughput of the simulated system. Based on our 

specific hardware configuration and selected workloads, 

the multi-bus mode with 3 buses is the optimal choice and 

therefore referred to as the default configuration for the 

discussion of Static and Dynamic Switching that will be 

presented in later sections. Figure 10 illustrates the perfor-

mance improvement for multi-bus mode tested using vari-

ous DRAM configurations. The weighted speedup for each 

configuration is normalized against the same configuration 

in single-bus mode. As can be seen from the figure, all 

banks and ranks have weighted speedups greater than 32%. 

As the number of ranks per channel or the number of banks 

per rank increases, improvement is slightly diminished due 

to the resulting lower row buffer hit ratio causing shorter 

bank access latency. 

Figure 11 presents the benefits of Static Switching and 

Dynamic Switching with 3 buses versus the baseline of a 

simulated system that does not use the pin switch mecha-

nism on memory-intensive workloads. Both schemes are 

able to speed up the execution of all workloads by more 

than 1.3 times, while an approximately 42% performance 

improvement is observed for M2. The geometric means of 

Static Switching and Dynamic Switching are respectively 

1.34 and 1.33 due to more than 99% of the running time 

being identified as typical memory-intensive phases by 

Dynamic Switching. 

The benefit of the multi-bus mode is mainly attributed to 

the increase of consumed bandwidth as shown in Figure 12. 

The increase is similar to this of the weighted speedup in 

Figure 11. For example, M2 and M7 gain 47% and 39% 

off-chip bandwidth when switching from the single-bus 

mode to the multi-bus mode for static switching, while their 

performances are improved by 44% and 36% respectively. 

This similarity results from the fact that their execution 

latencies are largely dominated by off-chip latency. On the 

other hand, Dynamic Switching achieves a slightly smaller 

increase in bandwidth, which results in its performance 

being close to that of Static Switching. 

The throughput improvement of Dynamic Switching 

could be strengthened by using prefetchers which can uti-

lize extra bandwidth brought by additional buses in our 

design. In our experiment, we use a stride prefetcher in the 

last level cache to demonstrate the benefit. More sophisti-

cated prefetchers could be employed to further improve the 

 

Figure 13. The improved throughput of Dynamic Switching boosted by a stride prefetchers (degree = 1, 2, 4) for memory-

Intensive workloads. 
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Figure 14. The off-chip bandwidth of Dynamic Switching improved by a stride prefetcher (degree = 1, 2, 4) for memory-

Intensive workloads. 
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Figure 15. The normalized EPI of Dynamic Switching for 

memory intensive workloads with 3 buses, and the EPI from 

DVFS (running on 2.4GHz with the single bus) 
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system performance. The stride prefetcher used here has a 

prefetch degree of 1, 2, or 4, which denotes the number of 

prefetches issued on every memory reference. As illustrated 

in Figure 13, the geometric mean of the performance im-

provements of Dynamic Switching for all memory-

intensive workloads with a prefetch degree of 1, 2, and 4 

are 1.51, 1.64, and 1.79 respectively, compared with those 

of the baseline which are 1.10, 1.17, and 1.27. The gap of 

the improvements between Dynamic Switching and the 

baseline increases as the prefetch degree increases, which 

imply an aggressive stride prefetch could benefit more from 

Dynamic Switching. This observation could be demonstrat-

ed in all workloads except M6 which only gains a slight 

performance improvement from increasing the prefetch 

degree, since the stride prefetcher has a low coverage on 

mcf [14]. This performance improvement could be verified 

by the higher consumed off-chip bandwidth of Dynamic 

Switching shown in Figure 14. It implies that Dynamic 

Switching could boost the performance of the prefetch by 

providing more off-chip bandwidth. 

The energy efficiency of the system could be also im-

proved by Dynamic Switching. Figure 15 details the energy 

efficiency improvement of the simulated system. In theory, 

the energy savings come from two sources: (1) low voltage 

and frequency scaling; and (2) the execution reduction time 

stemming from multiple buses brought by pin switching. 

We quantify the first part by setting the core frequency of 

the simulated system to 2.4 GHz (relating to the frequency 

of our multi-bus mode scheme) with the corresponding 

voltage for single bus. The results depicted as gray bars in 

Figure 15 demonstrate 40% improvement in the geometric 

mean of the EPI for all the workloads over the baseline. 

Note that the overall execution time of this setting is only 

slightly longer than that of the baseline system because all 

workloads are memory-intensive. Furthermore, the multi-

bus mode offers an average of 66% improvement in the 

geometric mean of the EPI for all the workloads over the 

baseline resulting from execution time reduction. 

5.2 Mixed Workloads 

Figure 16 shows the system performance improvement of 

mixed compute-intensive and memory-intensive workloads 

using Pin Switching. The highest benefit is achieved using 

2 buses and per-core DVFS [30], which is the configuration 

used in this experiment after we explored the configuration 

space for these workloads. The geometric means of the 

normalized weighted speedup from using Static Switching 

and Dynamic Switching are 1.10 and 1.09 respectively, 

implying that Dynamic Switching captures the most benefit 

of Pin Switching for these mixed workloads. Figure 17 

shows the co-improvement of Pin Switching and stride 

prefetching with varying degrees (1, 2, 4) compared with 

the improvement of the prefetching alone. The geometric 

means of the normalized weighted speedup of Dynamic 

Switching with prefetching degree (1, 2, 4) are 1.15, 1.16, 

1,15 respectively, while the means with prefetching alone 

are all 1.04. The co-optimization for all workloads satu-

rates, or even slightly drops as the degree increases, which 

implies aggressive prefetching wastes off-chip bandwidth 

rather than exploiting the benefit of MLP for workloads. 

This can be confirmed by observing the performance of the 

baseline using prefetching alone as the degree increases. 

5.3 Compute-Intensive Workloads  

Figure 18 depicts the Dynamic Switching efficiency of 

compute-intensive workloads in comparison to Static 

Switching at the cost of lower core frequency and the base-

line. The geometric mean of performance degradation for 

compute-intensive workloads introduced by the Static 

Switching scheme is 29%. The worst case results in a 35% 

slowdown of C5. In contrast, Dynamic Switching retains 

 

 

Figure 18. The normalized weighted speedup of Compute-

Intensive workloads with Static Switching and Dynamic 

Switching. 
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Figure 17. The improved throughput of Dynamic Switching boosted by a stride prefetchers (degree = 1, 2, 4) for mixed work-

loads. 
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Figure 16. The normalized weighted speedup of mixed work-

loads boosted by Static Switching and Dynamic Switching. 
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the same performance as the baseline during compute-

intensive workloads because our metric successfully identi-

fies non-memory-intensive phases when the rewards of the 

multi-bus mode are limited. Furthermore, Dynamic Switch-

ing surpasses the baseline for the C1 workload by identify-

ing compute-intensive and memory-intensive phases. Over-

all, Dynamic Switching exhibits no performance penalty on 

compute-intensive workloads, in contrast to Static Switch-

ing.  

The energy consumption of the Dynamic Switching 

mechanism is almost the same as the baseline since the 

processor runs at single-bus mode most of the time for 

compute-intensive programs. Therefore, we do not illus-

trate the EPI comparison figure here.  

6. Conclusion 

The limited off-chip memory bandwidth has been widely 

acknowledged as a major constraint to prevent us from ob-

taining commensurate performance benefit from the faster 

processor cores. This is especially challenging in the cur-

rent multi-core era due to a high volume of memory re-

quests coming from an increasing number of processor 

cores. To alleviate the shortage of off-chip bandwidth, we 

propose an innovative pin switching technique which dy-

namically allocates pins for power delivery or signal trans-

mission with minimal changes to the circuit. By accurately 

identifying memory-intensive phases at runtime, the pro-

posed strategy converts a portion of the pins used for power 

delivery to signal transmission mode, providing additional 

off-chip bandwidth and improving the overall performance. 

As shown by the evaluation results, along with other tech-

niques including Dynamic Switching and stride prefetch-

ing, our scheme is capable of significantly accelerating the 

program execution.  
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