
Received February 25, 2021, accepted March 22, 2021, date of publication March 26, 2021, date of current version April 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069114

Evaluation of Algorithms for Randomizing
Key Item Locations in Game Worlds
CALEB H. JOHNSON, JERRY L. TRAHAN , (Member, IEEE),
TAO LU, AND LU PENG , (Senior Member, IEEE)
Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

Corresponding author: Lu Peng (lpeng@lsu.edu)

ABSTRACT In the past few years, game randomizers have become increasingly popular. In general, a game
randomizer takes some aspect of a game that is usually static and shuffles it somehow. In particular, in this
paper we will discuss the type of randomizer that shuffles the locations of items in a game where certain key
items are needed to traverse the game world and access some of these locations. Examples of these types of
games include series such as The Legend of Zelda andMetroid. In order to accomplish this shuffling in such
a way that the player is able to reach the end of the game, some novel algorithms in graph theory must be
utilized, where the game world and its item locations are represented as a graph and each edge on the graph
has some rule for which items are required to traverse it. In this paper, we define these algorithms formally
and evaluate them with different metrics that can guide a developer’s decision about which algorithm works
best for their game.

INDEX TERMS Game analysis, game randomization, graph theory.

I. INTRODUCTION
A game randomizer is, in general, a modification of a game
that randomizes some aspect of the game that is usually static.
Many kinds of randomizers exist, such as randomizing enemy
encounters, level up rewards, cosmetics, and item locations.
In some types of games, usually belonging to the Adventure
or Metroidvania genres, the player is required to find some
items, abilities, or keys that allow them to move through the
game world and access more locations where items can be
found. Therefore, when randomizing the locations of items
in a game like this, there must be some consideration for
reachability.

The end goal of randomizing item locations in a game such
as this is to ensure that the end of the game is reachable so that
the player is able to complete it. For example, let’s say there
is a hammer item that is able to smash rocks that block the
player’s path, and the final area of the game is guarded by a
rock the player must smash to proceed. If the hammer item is
placed hidden underneath a rock, then the player will not be
able to access the hammer and thus be unable to complete the
game. Furthermore, let’s say a different item is hidden under

The associate editor coordinating the review of this manuscript and

approving it for publication was Rupak Kharel .

that rock, and that item is required to access the hammer. The
result is the same: the game will be uncompletable.

To accomplish our task of creating a completable place-
ment of items within the game world, the world will be
abstracted to a graph representation. Each node on the
graph represents a location at which an item may be
found, and each edge between a pair of nodes defines
some rule that is required to traverse that edge. Utiliz-
ing this graph representation and the list of items cur-
rently in the player’s inventory, a reachability graph can be
calculated.

For the implementation, it will be useful to consider two
kinds of nodes on the graph for organizational purposes:
regions and locations. A region represents some space within
the game world, such as the interior of a building. A loca-
tion represents a single point within a region at which an
item can be acquired. In the graph, regions connect to loca-
tions contained within them and to other regions that are
directly accessible. Fig. 1 shows this distinction, with regions
and locations as separate nodes on the left and the com-
pressed view on the right, where a circular node denotes a
location and a square node denotes a region. An important
note is that edges between region nodes are not necessarily
bi-directional. An edge could be one way, and oppositely
directed edges can have different rules.

48286 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4160-0013
https://orcid.org/0000-0003-3545-286X
https://orcid.org/0000-0002-8632-7439

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

FIGURE 1. Detailed view of region and location graph nodes (left), compressed view showing locations as within regions (right).

FIGURE 2. An example world graph with original item placements.

We describe three algorithms that utilize this reachability
graph to fill empty item locations in such a way that will
produce a completable result: Random Fill, Forward Fill, and
Assumed Fill. Each algorithm has advantages and disadvan-
tages, which will be evaluated in this paper.

Fig. 2 shows an example of a small game world graph that
we designed to be similar to a real game world. Item place-
ments shown here are the ‘‘original’’ placements, designed
to be placed how items would be in a real game world, with
key items highlighted in different colors. Refer to Fig. 1
to understand the meaning of elements of the graph. For
example, to travel from Forest toWaterfall requires the sword
item, and location Chest in Waterfall requires the sling. The
player would start in Forest, in the top right, and eventually

make their way to Arena (second to the left from the bot-
tom right) where the goal item is located. One can hand-
trace a path through this world to eventually complete the
game, travelling from region to region and collecting avail-
able item locations. Fig. 3 shows this same world but with
the item locations randomized by Assumed Fill. One can
still trace a path through this graph from the starting region
to eventually be able to reach the goal and complete the
game.

While wewill use the term ‘‘item’’ for anything in the game
that can be relocated and ‘‘key item’’ for an item that can be
used to access new locations, within the game itself the item
could be any number of things: a key, an ability, an upgrade,
a tool, etc.

VOLUME 9, 2021 48287

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

FIGURE 3. The same example world graph as Fig. 2 with item placements randomized by assumed fill.

Currently, most game randomizers exist as unofficial
ROMHacks (modifications made to a compiled game exe-
cutable which is distributed on Read Only Memory) of exist-
ing games. A recent game, Bloodstained: Ritual of the Night,
includes a built-in randomizer. An older game, Axiom Verge,
recently added a randomizer mode that started as a fan-made
modification. As their popularity grows, more games that
explore a world unlocking paths by collecting items could
begin to incorporate randomizers as optional modes or even
the main mode.

Game players can enjoy randomizers for several reasons.
They are somewhat of a mid-point between adventure games,
which typically have low randomization, and games where
the entire world is randomized each playthrough. It ensures
that every playthrough is unique, while at the same time
allowing the player to have prior knowledge of the world’s
layout and rules and where to look to make progress. They
are popular both among casual players who simply want to
replay a familiar game with a new experience, and racers
or speedrunners who want to play the game repeatedly to
beat it as fast as possible and desire a new experience each
time. When one plays a randomizer for the first time, there is
usually something of a shock factor that brings joy, such as
finding an endgame item very early or a legendary item in an
unassuming location.

Our motivation for this work, besides defining the algo-
rithms used for key item placement randomization so that
one can implement them, is to assess these algorithms with

different metrics in order to show some properties of their
behavior and provide some guidelines on which algorithm
works best for the game the randomizer is designed for.
However, our work could potentially have application outside
of computer games in other areas which utilize randomized
or changing graphs such as networking, machine learning,
or blockchain.

The layout of the rest of this work is as follows. Section II
reviews some related work. Section III describes the three
fill/item placement algorithms and several search algorithms
in depth and formally defines them using pseudocode.
Section IV describes our method to measure the complexity
of a world and our method for generating world graphs.
Section V defines the metrics that will be used to evaluate
the algorithms, including the interestingness measure and
its components. Section VI analyzes the results of these
metrics based on the algorithm and world complexity used.
Section VII discusses our work critically and mentions some
possible future work. Finally, section VIII provides some
concluding remarks.

II. RELATED WORK
Ours is the first work researching algorithms for use in gen-
erating randomized item placement in game worlds, but we
do have some related work to review.

Dormans and Bakkes [1] propose a somewhat similar work
which represents a playable game area as a flowchart rather
than a graph. A pair of actions such as finding a key and then

48288 VOLUME 9, 2021

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

using that key to open a door are represented as finding the
key being a step in the flowchart before the step of opening a
door. In that sense this work also considers key items which
must be acquired before accessing certain locations. However
this paper is more focused on sequences of actions and gener-
ating such sequences to dynamically create enjoyablemission
experiences in games and does not have consideration for
changing the order of actions in a world which has already
been created. Their mention of placing items where they will
be needed soon also inspired the idea of the satisfyingness
metric, one of the components of interestingness.

Cook and Raad [2] abstract actions that must be performed
within a game to complete a level into a graph. However there
are no edge rules in this graph which lock certain edges, and
no consideration for reachability. The authors of this work
find it useful to group some nodes together into hypernodes,
similar to our method of grouping item location nodes into
region nodes which are connected to each other.

Karavolos et al. [3] also abstract a game world as a graph,
where nodes represent rooms, edges represent doorways
between rooms, and a the value on a node represents what
type of room it is in order to model dungeons in games.
However, this work’s focus is on generating graphs to make
interesting dungeons to explore without consideration for
locked edges and reachability. This paper instead had a much
bigger influence on our work by their method of measure
interestingness in a generated graph. While our methods of
measuring interestingness are very different form theirs, their
overall methodology of scoring different aspects and aggre-
gating these scores for a final output greatly influenced our
interestingness metric.

Liapis et al. [4] aim to generate interesting explorable
spaces and mentions in their future work section the pos-
sibility of using directed graphs with lock and key mecha-
nisms traversed with Breadth First Search. Their discussion
of explorable spaces where backtracking is undesirable also
influenced the mechanism for which our boredom metric,
a component of interestingness, is measured.

Nugraha et al. [5] is a paper which creates a method
to automatically place items in maps for First Person
Shooter games using Convolutional Neural Networks. How-
ever, this paper is concerned with strategic and interesting
placement of items that give the player an advantage for
action-oriented purposes rather than logical placement for
world
traversal.

Several other papers inspired the creation of our inter-
estingness metric and its individual components. Peder-
son et al. [6] gave the basic idea for our fun, challenge,
and boredommetrics, especially their definition of fun where
constant progress is being made by the player. Lehman and
Stanley [7], mentioning novelty as a metric of evaluating
interestingness of a game, gave the idea to incorporate bias
into interestingness as more biased results for randomized
worlds are more predictable. Roberts and Lucas [8] mention
of desiring a challenge which is not too hard or too easy to

measure interestingness influenced our own challenge mea-
surement where we desire a rate of finding key items which
is not too often or too rarely.

While the fill and search algorithms (besides Playthrough
Search) existed before the writing of this paper, they have
not been formally defined anywhere, being discussed mainly
in the comments of open source code files and online
chat services used by randomizer developers [9], [10]. Per-
haps the best source at the time of writing is a panel by
randomizer developers where they discuss, among other
topics related to randomizer development, the placement
algorithms [11].

III. ALGORITHM DESCRIPTIONS
Here we will formally define the algorithms used in generat-
ing and evaluating randomized world graphs. Subsection II.A
describes algorithms used to fill the world graph with item
placements while subsection II.B describes algorithms used
to search a graph during and after it has been filled.

A. FILL ALGORITHMS
Also called item placement algorithms, these are the algo-
rithms that are used to fill a given world graph using a
given item set in order to create a completable result. These
algorithms utilize the search algorithms given in the next
subsection. Each of these algorithms is given an input graph
G,which includes every location in theworld at which an item
can be found. A node in G initially has a null value, indicating
that it is empty. When an item is placed in that node, that item
is written to the node’s value. Edges in G may require certain
key items to traverse. Some other common variables used in
these algorithms include:

• R: Graph of reachable locations, a subset of G.
• I: Set of key items currently owned, determines R.
• I’: Set of key items not owned, the complement of I, also
called the item pool.

• Start: The starting node of G, search begins from this
point.

• Goal: The ‘‘end’’ node of G, reaching this node signifies
completing the game. If Goal is within R, then the game
is completable.

There are different kinds of items within a game. Our
implementation considers the following types, in order of
decreasing importance:

• Goal Item: This is the item contained at the goal node
that signifies completion of the game when collected.

• Key (or Major) Item: This is an item that can allow
the player to traverse an edge and is thus the main
consideration for the fill algorithms.

• Helpful Item: This is an item that is helpful to the player
but does not help them toward the goal of completing
a game as far as graph traversal is concerned. This can
include items such as more powerful weapons or HP
(Hit Point) improvements which allow the player to take
more damage before losing.

VOLUME 9, 2021 48289

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

• Junk Item: This is an item that is either not helpful or
only temporarily helpful. This can include items such
as currency or ammo refills. Although our implementa-
tion differentiates between helpful item and junk items,
the algorithms do not utilize this distinction. Sometimes,
helpful items and junk items are collectively referred to
as minor items.

1) RANDOM FILL
Here is the first and most basic fill algorithm. It works simply
by placing each item in a random location in the world until
all items have been placed. After distributing the items, a
check is done to see if the game is completable. If not,
the algorithm is repeated until a completable placement has
been generated. It can be surmised that in a complex world
it could take multiple thousands of attempts to complete.
Algorithm 1 describes Random Fill. Lines 1 and 3-6 are
just for initialization before the loop and on repeat attempts.
The second while loop beginning on line 7 is where the item
placement occurs. After that, R is computed to check if it
contains the goal. If not the world graph and item pool are
reset and the placement is attempted again.

Usually when Forward Fill or Assumed Fill are utilized
they are used on only the key items and then Random Fill
is used to place helpful and junk items that do not affect
completability.

We will now discuss the time complexity. For the fill
algorithms, n equals the number of key items to distribute.
Sphere Search is an algorithm that will be discussed more
in-depth in subsection III.B.3, but for now know that it is an
algorithm to check completability of an item distribution.

A single iteration of Random Fill takes O(n(|V|+ |E|)) time
for Sphere Search and O(n) time for the remainder, since
it must loop once for each item to place in the world. The
best case is only one iteration to compute a correct result.
We must consider the expected performance, however. If the
world graph contains |V| vertices, then the number of pos-
sible orders for filling those locations is |V|!. The number of
completable placements depends on the exact world graph. A
more complex world will generally have fewer completable
placements, which is verified in Section VI. If the number
of completable placements is constant, then the expected
time for Random Fill to compute a completable result is
O(|V|!(n(|V| + |E|))).

2) FORWARD FILL
Next we consider Forward Fill. This is the first of two algo-
rithms that fill the world intelligently by considering the rule
on each edge, however, it is still fairly simple to understand
and implement. It initializes R to be the set of reachable
locations from the beginning of the game. It then chooses a
random item from the item pool I’ (line 5) and places it in a
random location within R (line 6), also adding that item to I
(line 7). This location is then removed from consideration and
all locations that become reachable are added to R through the
generalized search algorithm. This process is repeated until

Algorithm 1: Random Fill
Input : Empty world graph G, item pool I’, Goal
Output: Completable world graph G

1 I = Empty;
2 while R does not contain Goal do
3 G.Reset();
4 I’.Add(I);
5 I’.Shuffle();
6 I = Empty;
7 while (G has nodes with null value) and (I’ is not

empty) do
8 g = Random null node in G;
9 i = I’.Pop();
10 g.Value = i;
11 I.Add(i);
12 end
13 R = SphereSearch(G, Start);
14 end
15 return G;

Algorithm 2: Forward Fill
Input : Empty world graph G, item pool I’, Goal
Output: Completable world graph R

1 I = Empty;
2 I’.Shuffle();
3 while (R has nodes with null value) and (I’ is not

empty) do
4 r = Random null node in R;
5 i = I’.Pop();
6 r.Value = i;
7 I.Add(i);
8 R = Search(G, I, Start);
9 end
10 Return R;

all items have been placed. Algorithm 2 describes Forward
Fill.

Like in Random Fill, the while loop iterates for each item
given, and for our time complexity consideration n equals the
number of key items to distribute. However each iteration
must also perform the search algorithm, which itself has a
complexity of O(|V| + |E|) as it is a modification of Breadth
First Search (see Section III.B). Therefore the time complex-
ity of Forward Fill is O(n(|V| + |E|)).

3) ASSUMED FILL
Finally we will consider Assumed Fill. This is the most
complex algorithm to understand and implement, as well as
having the highest time complexity for a single iteration.
Assumed Fill begins by assuming the player initially has
access to all items, meaning reachable locations R is equal to
the entire world graph G (line 4). In the inverse of the other
two algorithms, I is thus initialized to the set of all items and I’
is set to be empty (lines 1-3). A random item is removed from
I in line 6, meaning that R will shrink (rather than expand

48290 VOLUME 9, 2021

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

Algorithm 3: Assumed Fill
Input : Empty world graph G, item pool I’, Goal
Output: Completable world graph R

1 I = I’;
2 I.Shuffle();
3 I’ = empty;
4 R = G;
5 while (R has nodes with null value) and (I is not

empty) do
6 i = I.Pop();
7 R = AssumedSearch(G, I, Start);
8 r = Random null node in R;
9 r.Value = i;
10 I’.Add(i);
11 end
12 Return R;

as it does in Forward Fill). A random empty location that is
still reachable is then selected and the item is placed there
(lines 8 and 9). The way this algorithm begins by assuming
the player has all items and removes them can be thought of as
the opposite of Forward Fill. Algorithm 3 describes Assumed
Fill.

Assumed Fill does comewith a special consideration for its
search function, as to work fully it must account for the case
where an item is removed from I but is still within R. This will
be looked at more closely in the following subsection where
we define the search algorithms.

Like Forward Fill, the while loop iterates once per each
key item and each iteration must perform the search function.
However, Assumed Fill’s modified search executes multiple
search iterations (see Section III.B), up to the same number of
key items given, adding another degree onto Assumed Fill’s
time complexity, which is thus O(n2(|V| + |E|)).

B. SEARCH ALGORITHMS
Now we will consider the search algorithms that the fill
algorithms use and that we use to analyze the resulting filled
game worlds. The first three are utilized when generating a
filled world graph and checking the result and function as an
algorithmic search is expected to work. The last is meant to be
an approximation of a player moving through the game world
in order to calculate some information about how a generated
world would feel to play.

1) GENERALIZED REACHABILITY SEARCH
First we consider our generalized search algorithm which
computes a reachability graph given an input world graph,
set of items currently owned, and the starting node. This
algorithm is basically a modification of Breadth First Search
that checks if an edge is traversable before adding to the queue
the node to which that edge leads on line 10. Edges that are
traversable and nodes which are reachable are added to an
initially empty graph in order to construct a full reachability

Algorithm 4: Search
Input : World graph G, owned items I, Start
Output: Reachability graph R

1 R = Empty;
2 Queue = Empty;
3 Queue.Enqueue(Start);
4 Visited = empty;
5 Visited.Add(Start);
6 while Queue is not empty do
7 r = Queue.Dequeue();
8 for edge in r do
9 target = node edge leads to;

10 if RequirementsMet(edge, I) and (Visited
does not contain target) then

11 Queue.Enqueue(target);
12 Visited.Add(target);
13 else if not RequirementsMet(edge, I) then
14 r.Remove(edge);
15 end
16 end
17 R.Add(r)
18 end
19 Return R;

Algorithm 5: Assumed Search
Input : World graph G, owned items I, Start
Output: Reachability graph R

1 while NewItems is not empty do
2 R = Search(G, I, Start);
3 NewItems = R.GetItems() − I;
4 I.Add(NewItems);
5 end
6 Return R;

graph, which is then returned. Algorithm 4 shows this reach-
ability search.

As this algorithm is a modification of Breadth First Search,
it has the same time complexity of O(|V|+ |E|), assuming the
lookup time of visited nodes is equal to O(1). This could be
accomplished with an array of Booleans indicating whether
each node has been visited.

2) ASSUMED SEARCH
Assumed Fill utilizes a slight modification of the generalized
search algorithm as it must consider the casewhen an item has
been removed from I but is still within R. Therefore it utilizes
the generalized search algorithm to find a reachability graph,
takes any items found within, then runs the search again (loop
starting line 1). Further iterations of finding items within
R may expand R more, meaning Assumed Search could
potentially run as many times as there are key items placed
within it, so the complexity of this algorithm is the number of
items n multiplied by the complexity of the general search
algorithm, O(n(|V| + |E|). Algorithm 5 shows Assumed
Search.

VOLUME 9, 2021 48291

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

3) SPHERE SEARCH
Now we will discuss sphere search. This algorithm is given
a world that has already been filled and an initially empty
item set I. The goal of this algorithm is to produce a list of
reachability graphs, called spheres, which iteratively discover
reachable locations. This list is called S. This task is accom-
plished, somewhat similar to Assumed Fill, by performing the
generalized search, adding all new items from that search,
and repeating this process until an iteration is performed in
which no new locations are discovered. This indicates the
search has either reached a dead end or all locations have
become reachable (including the goal node). Algorithm 6
shows Sphere Search.

There are two main purposes for this algorithm. The first
is simply to check whether a world placement is completable
by checking if the goal node is contained within the last
sphere in the list. While the goal node could be discovered
before the last sphere, each sphere is a subset of the following
sphere, so if it’s discovered at all it will be in the final sphere.
The second is to produce a list of progress locations that the
player can access in the same order to complete the game,
something of a guide for how they can complete the game if
they get stuck, though it will rarely be the most efficient path
through the game.

The following text is an example of a sphere search tracing
an output to the end of the game world shown in Fig. 3.
While each sphere contains all location-item pairs from the
previous spheres, sphere lists are usually printed such that
only location-item pairs that are new in each sphere are
displayed.

Sphere 0:
Field_Hidden A: Bow
Valley_Hidden A: Bombs
City_Quest: GrapplingHook

Sphere 1:
Field_Hidden B: Sword
River_Hidden A: Key

Sphere 2:
Waterfall_Quest: Sling

Sphere 3:
Waterfall_Chest: GateKey

Sphere 4:
Dungeon_Chest: Magic

Sphere 5:
Lake_Quest: Key

Sphere 6:
Arena_Boss: Goal

As sphere searchmust iterate potentially once for each item
and each iteration performs the general search algorithm, its

Algorithm 6: Sphere Search
Input : World graph G, Start
Output: List of spheres (graphs) S

1 S = Empty;
2 I = Empty;
3 while new locations discovered do
4 s = Search(G, I, Start);
5 NewItems = s.GetItems() − I;
6 I.Add(NewItems);
7 S.Add(s);
8 end
9 Return S;

time complexity equals O(n(|V| + |E|)). This is the same as
assumed search. Assumed search and sphere search have very
similar functionality, but produce different results.

4) PLAYTHROUGH SEARCH
The final search algorithm we will consider is Playthrough
Search. This algorithm is not utilized within the fill algo-
rithms but is instead used to extract some metrics about
how a playthrough of a certain world graph may look in
order to determine how interesting that placement of items
is. Playthrough Search thus attempts to act as a player would
when traversing the game world.

It was mentioned in the introduction that we consider two
types of nodes on the graph, regions and locations. A region
is a space within the game world, such as a room or a
town, while a location is a single point within that space
that contains an item. The previous algorithms were agnostic
to this distinction, considering only locations. However, for
a playthrough, this differentiation is useful. The player will
exist within a certain region, collect all locations available to
them within that region, and then move to the next region and
collect all locations there. In order to decide which region the
player should move to next, a heuristic is used. We will first
consider the algorithm with a generic heuristic. Algorithm 7
shows Playthrough Search. Each iteration of the while loop
is one traversal. Items are collected during this traversal and
the heuristic is used to determine which region the player will
occupy on the next traversal (lines 5 and 6).

The heuristic is used to determine which region the player
would most strongly desire to move to next. The heuristic
function returns a list of scores for each edge leading from
the current region to a different region. The region that has
the maximum score is then set as the current region for the
next iteration of the loop.

This algorithm has a couple of uses. Like sphere search,
it can be used both to determine if a given world is com-
pletable and to extract a sequence of item collections that
will lead to the completion of the game. It could be argued
that this sequence is more useful than that given in sphere
search since it behaves closer to a player. It can also be used
to extract metrics from the playthrough that can be utilized to
determine properties of the given placement of items, mainly

48292 VOLUME 9, 2021

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

Algorithm 7: Playthrough Search
Input: World graph G, Start

1 Current = Start;
2 I = Empty;
3 while world has available locations that have not

been checked do
4 I.Add(all available locations within Current);
5 ScoreList = Heuristic(G, Current.Edges, I);
6 Current = Region led to by edge with max score;
7 end

how interesting it is. These metrics will be discussed more in
depth in Section V.

We will now define the heuristic we used for our imple-
mentation of this algorithm. This heuristic was created with
the following assumptions of the player, which are typical of
players of randomizers [12].

1) The player has complete knowledge of the game world,
so they always know where available item locations
they have not yet searched can be found.

2) The player will consider both the number of available
locations in each direction as well as proximity of these
locations when deciding to which region to travel next.

3) The player will attempt to avoid backtracking and
instead be more likely to seek out new regions or
regions that have been visited less recently.

4) The player is more likely to visit a region if it is a ‘‘dead
end’’, meaning it has only a single edge that is attached
to the current region. In terms of the game, this would
be like poking into a single-room building quickly to
grab something.

Based on these assumptions, our heuristic uses the follow-
ing rules to score every exit attached to the current region
by considering the world graph as a whole, which locations
have already been searched, and which locations are available
with the given item set. Numbers used within these rules were
fine-tuned through experimentation to give traversals that
were reasonable to player behavior and reactive to different
item placements.
• The heuristic will search each edge using Depth First
Search. Each region visited will receive an individual
score that equals the number of available, non-empty
(not yet searched) locations in that region divided by
the distance from the current region. However, this
divider maxes out at 8, so that regions far away are
not completely discounted if they contain a cluster of
many available locations. The exit’s score is then set
to the sum of these individual scores. This satisfies
assumptions 1 and 2.

• A list keeps track of every region visited. The previous
16 visited regions will receive a penalty by their score
receiving a divider (minimum 1) equal to 17 - k, when
the considered region was visited k traversals ago. This
means the most recently visited region will have its
score divided by 16, the 2nd most recently visited region

FIGURE 4. Example of our heuristic for Playthrough Search. The number
in each region shows the number of available locations in that region.

will have its score divided by 15, etc. This satisfies
assumption 3.

• Finally, if the region is a dead end, which is simply found
by checking if no other edges lead out of the region,
it will receive a 2× multiplier so that the player is more
likely to check it. This satisfies assumption 4.

For an example of this heuristic, see Fig. 4. Exit C will
be visited first as it has the highest score, then move back
to start. The scores will then be evaluated again but exit C’s
score will be 0 as all of its available locations have been
searched. Exit A will then win instead, because although the
path through exit A visits the same regions as exit B, exit A
has more locations in closer proximity. After moving through
the three regions in the upper right, the search will finally
move toward exit D and fully search all locations within this
graph.

IV. WORLD COMPLEXITY AND GENERATION
For this research, we want to not only study the properties of
the output and performance of the different fill algorithms, but
also study the effect the world itself can have on these. The
size and complexity of a game world can vary greatly, from
small games that take only a few hours to complete to games
that are expected to take 40+ hours to finish. Therefore we
must have some way to measure the complexity of a given
world graph. This section goes over how we accomplish this,
as well as our method of generating randomized worlds to use
for testing purposes.

A. INDIVIDUAL LOCATION COMPLEXITY SCORE
When normally assessing the complexity of a graph, one may
consider the number of nodes and edges. For our purposes,
complexity is less a representation of the size of the graph
and more of how difficult it is to move through the graph.
We expect a more complex world to have a higher chance
to fail to generate a completable placement for Random
Fill, as the likelihood of an acceptable placement decreases.
Therefore we must create our complexity measure so that it
considers the rules on each edge of the graph.

VOLUME 9, 2021 48293

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

To accomplish this, we observe each location within the
game world and construct what we call a total rule. A total
rule includes not only the rule on the edge between a location
and its encompassing region, but also all of the rules that are
required to reach that region. Thus, we set a total rule for each
location that incorporates the location’s individual rule AND
the rule for each path to that region. The rules along the path
from the start region to the target region are ANDed to create
a path rule, and each of these path rules are ORed.

For a location L contained within an encompassing region,
let pi = 〈ri,0, ri,1, . . . , ri,k(i)〉 denote the ith path from the
start region to the encompassing region, where ri,0 is the start
region and ri,k(i) is the encompassing region. Let q denote
the number of such paths, and let RelativeRule denote L’s
rule relative to its encompassing region. The total rule for a
location L can be represented by the following formula:

RelativeRule ∧
q−1∨
i=0

k(i)∧
j=1

rule from ri,j−1 to ri,j (1)

An example of this can be seen graphically in Fig. 5.
These paths are calculated using Depth First Search and

once the total rule is found, it is simplifiedwith Boolean state-
ment simplification methods. Each total rule is then scored
using the following criteria:
• Start with each rule having a base complexity of 1
• Each key item requirement adds 1 to the complexity
• An AND adds.5 complexity since it makes the rule
harder to satisfy

• An OR subtracts.5 complexity since it makes the rule
easier to satisfy

By doing this calculation on each location within the world
graph, a list of individual location scores can be obtained.
But now the question is how to calculate a final score given
this list of scores. After some thorough evaluation utilizing
the world generation, we decided to take the average of the
top 50% of individual scores to produce the final complexity
score. Using the top 50% makes it so having many easy
to reach locations near the beginning of the game world
does not obscure the true complexity of the harder to reach
areas, which is what really determines how difficult it is to
move through the game world. We decided against summing
these scores as having more locations does not necessarily
add complexity, but the score grows very quickly using this
method.

B. WORLD GENERATION
For our research we desire a method to generate world graphs
given a couple of baseline inputs. These generated worlds
were originally used to evaluate different possible metrics for
scoring complexity but their main use is for testing purposes.
We will now describe our generation process.

The world generator is passed two arguments: number
of regions to generate and number of key items. It begins
by generating a list of regions (named Region-0, Region-1,
Region-2, etc.) and a list of key items (named simply A, B,

C, etc.). The first region is designated as the start region,
the second region is generated as the hub region (a very
common practice in game design is to have a hub region)
and the final region is designated as the goal region. Each
edge and item will have a rule composed of no, one, or more
requirements.

If two regions are directly connected, then they will have
a pair of oppositely directed edges between them. For sim-
plicity, these edges’ rules will be equal. For each type of
region, we describe below the creation of certain outgoing
edges and their rules. For each such edge, Table 1 gives the
probability distribution of requirements for the rule for the
pair of incoming and outgoing edges.

The start region is generated in the following manner. It is
guaranteed to have an outgoing edge (exit) to the hub region
with no requirement, an outgoing edge to a random region
with one item requirement, and a 50% chance of an outgoing
edge to a third region with a 50% chance between having no
requirement or requiring a single item. It is also generated
containing three item locations with no requirement and a
50% chance of a fourth location with one requirement.

The hub region also has special rules for generation. It will
always generate with six outgoing edges, three of which
have no requirement (one of these leads to the start region)
and three which have a single requirement. It also generates
with two item locations with no requirement, one with one
requirement, and one with two requirements.

The final region has no special rules for number of outgo-
ing edges but each incoming edge will require every key item
in the world to traverse. While a game may not necessarily
require every key item to reach the end, typically most if not
all are required. The final region will also contain a single
item location, which contains the goal item, the collection of
which signifies completion of the game.

Other regions are generated in the following manner. Each
will generate one or two outgoing edges (50% chance of each)
with a random rule according to Table 1 and will allow a
maximum of four outgoing edges including edges generated
by other regions. (Note: When a region generates an outgoing
edge to a random destination region, it considers only regions
with fewer than four connections as possible destinations.)
Each region will generate two, three, or four (each equally
likely) item locations with a randomly generated rule.

Rules are randomly generated in the following manner.
A one requirement rule will simply choose a single key
item from the item list that will be the requirement. A two
requirement rule will choose two key items (not the same
one) and have a 50% chance each for them to be joined with
AND or OR. A three requirement rule just generates a two
requirement rule and a one requirement rule (making sure the
item in the one requirement rule is not redundant with the two
requirement rule) and again randomly joins them with either
AND or OR.

There is also a chance to generate a complex requirement.
A complex requirement will generate two or three (50%
chance each) clauses, where a clause has a 20% chance to

48294 VOLUME 9, 2021

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

FIGURE 5. Example of formula for a total rule.

TABLE 1. Chance of generating each type of rule for item locations and
edges.

be a single requirement, and a 40% chance each to require
two or three items joined by a random selection of AND or
OR.

The distribution of requirement probabilities for item loca-
tions and edges is shown in Table 1. We decided that edges
should be more generous since an exit (outgoing edge) is
often simply an open doorway the player can freely walk
through.

After all of the previous steps, two finalizing steps are
performed. First, we make sure the graph is connected by
checking if all regions have a path to them from the start
region. If not, more edges are added to make the graph
connected. Next, a number of junk or helpful items (50%
chance of each) equal to the number of generated locations
minus the number of key items are generated and added to the
item list. This ensures that there is a possible item for every
location in the game world. We believe our method produces
worlds which are comparable to real game worlds [1].

C. WORLDS GENERATED FOR ALGORITHM EVALUATION
Using our world generationmethod, we generated fiveworlds
of increasing complexity to use in testing. Table 2 shows some
properties of these worlds. Keep in mind that the region count
and item count were input parameters to the generation, while
the number of item locations and the final complexity score
were a result of the generation. These input parameters were
chosen to give increasing complexity in a desirable manner.

TABLE 2. Testing world properties.

To ensure these worlds were not outliers, 100 worlds with
the same input parameters were generated and their average
complexity calculated. The worlds used here had complexity
within 10% of these average values.

V. DESCRIPTION OF ALGORITHM EVALUATION METRICS
In this section we will define the different metrics by which
we evaluate the algorithms’ performance and results.

A. FAILURE RATE
Defining failure as generating a world that is not completable,
all of our item placement algorithms have a chance of fail-
ure. Random Fill can fail many times before producing a
successful result. Forward and Assumed Fill, on the other
hand, should almost never fail, although they can in certain
situations. Fig. 6 shows an example of a situation where
Forward Fill may be very likely to fail. Since the start region
leads from a single edge locked by Item A and has only three
available locations, if Item A is not one of the first three
items selected to be placed, then the algorithm would fail.
In a situation like this, a randomizer developer may choose to
hard-code it such that Item A is placed before any other items
to avoid failure.

While we expect the failure rate for Forward and Assumed
Fill to be very small to the point of being almost negligible,
we expect the failure rate of Random Fill to grow quickly as
the complexity of the graph increases, which is supported by
our results in Section VI.

VOLUME 9, 2021 48295

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

FIGURE 6. Example of a graph where forward fill is likely to fail.

B. EXECUTION TIME
For each iteration of each algorithm on each test world we
will measure the execution time to complete that iteration.
We expect that for a single iteration, the increasing order
of execution time will be Random, Forward, then Assumed
Fill. We also expect the execution time to increase as world
complexity increases.

For the fill algorithms, however, we have another consid-
eration for execution time, that is the failure rate. Especially
for Random Fill, the time of a single iteration does not tell the
whole story if the algorithm must potentially be run multiple
times to produce a completable result. Therefore we will
also compute an expected execution time that multiplies the
execution time for a single iteration by the reciprocal of the
success rate, which is simply 1 minus the failure rate. This
gives the expected time to produce a completableworld place-
ment. For example, if an algorithm has a 50% failure rate,
then it is expected that it will have to be run twice to generate
a successful placement, so we multiply the execution time for
a single iteration by 2. We expect that the adjusted execution
time will go in increasing order of Forward, Assumed, then
Random Fill. However, for the less complex worlds there is
possibly a chance that Random Fill could still be faster than
the others.

C. BIAS
Bias is the propensity of a fill algorithm to cluster more key
items together, in terms of progress through the game world,
typically toward the beginning of the game. Basically, in an
algorithm such as Forward Fill, the first several spheres of a
sphere search are likely to contain a disproportionately high
number of key items.

The calculation of bias is fairly simple. After a successful
world placement is generated, a sphere search is performed.
(This could be done on an unsuccessful placement as well,
but this would not be a very relevant or helpful metric.)
Each sphere subtracts the fraction of new locations within
that sphere (relative to the total number of locations in the
game world) from the fraction of new key items in that sphere
(relative to the total number of key items). The absolute value
of this number is added to a sum for each sphere. (If absolute
value was not taken, the sum would always equal 0 by the
end.) This sum is then divided by the number of spheres

for normalization. This value then gives a good general idea
for how clustered together the key items are in the overall
progression.

We will also measure a bias direction, by keeping separate
sums before and after the middle sphere that do not take the
absolute value of each sphere’s individual bias. By checking
which sum (the sum before or after the middle) is higher,
it can be determined if the bias is more toward the beginning
or more toward the end of the game progression. We expect
it to almost always be toward the beginning, especially for
Forward Fill.

Bias is a metric that has been discussed by randomizer
developers before the writing of this paper as a reasoning
to use one algorithm over another. It is also a very objective
measure compared to interestingness and its other metrics as
it does not utilize the somewhat subjective PlaythroughSearch
to calculate its result. However, ours is the first work to
quantitatively measure bias as a function of the algorithm
used and complexity of the world graph used.

D. INTERESTINGNESS
Interestingness is a metric that attempts to capture the overall
quality of a placement by a numeric score from a generated
world graph. Interestingness includes five considerations,
each a floating point number in the range [0, 1] and weighted
at 20% to produce a final value:

• Bias (Lower is better)
• Fun (Higher is better)
• Challenge (Higher is better)
• Satisfyingness (Higher is better)
• Boredom (Lower is better)

Therefore the formula for interestingness is equal to 0.2[(1
– bias)+ fun+ challenge+ satisfyingness+ (1 – boredom)].

Bias has already been discussed in the previous subsection.
The decision to include bias in interestingness, considering
more biased worlds result in more predictability, was influ-
enced by Lehman and Stanley [7]. We will now discuss the
other four metrics in depth. Each of these four measures
is based on information extracted from Playthrough Search
on the given world graph. Numbers used for the calculation
of these metrics were fine-tuned through experimentation

48296 VOLUME 9, 2021

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

to give results within a reasonable range and that varied
depending on the generation.

The overall idea of utilizing different individual interest-
ingness metrics and aggregating them to create a final score
was influenced by Karavolos et al. [3].

1) FUN
Fun is a metric meant to represent the player consistently
making progress by discovering item locations. Hopefully at
least one location is discovered for every traversal to keep up
consistent progress. From Playthrough Search, we extract a
list of how many new locations are searched per traversal.

Fun is then calculated in the followingmanner. A loop goes
through this list and maintains a rolling average of the last
five traversals. If this average is greater than or equal to 1, a
true value is added to a list of Booleans. If it is less than 1,
a false value is added. This rolling average gives a better
representation for how many items the player is currently
finding, even if they go one or two traversals without finding
any during a high rate of searching, or occasionally find one
or two during a low rate. The final score for fun then equals
the fraction of true values within this list.

The idea for measuring fun by the player making constant
progress was inspired by Pederson et al. [6].

2) CHALLENGE
Challenge is a metric to represent the rate at which the player
obtains key items (thus unlocking more of the world) being
not too often or too rarely. Playthrough Search gives us a list
of how many traversals the search did between finding each
key item.

Challenge is then calculated as follows. We first get an
optimal traversal value by dividing the number of locations
in the world by the number of key items so that our range is
relative to the number of locations in the world. The lower
threshold is then set to the floor of 50% of this number,
while the upper threshold is set to the ceiling of 150% of
this number. Similarly to the fun calculation, we then iterate
through the list and find the fraction of values in the list within
this desirable range (inclusive) using a slightly tighter rolling
average of the last three values. The final challenge score is
then this fraction.

The idea for challenge being represented by the rate
at which key items were found was inspired by Peder-
son et al. [6] and the idea that a desirable rate should be within
a range that is not too low or high was given by Roberts and
Lucas [8].

3) SATISFYINGNESS
Nowwe discuss satisfyingness. This metric is meant to repre-
sent, once the player acquires a new key item, how satisfying
is it to find this. We define satisfying as how immediately
useful the item is, as it feels good for the player if they find
something that unlocks a large chunk of the world at the same
time. From Playthrough Search we extract a list of how many
new item locations are unlocked every time a key item is
found.

Satisfyingness is then calculated in the following manner.
Unlike fun and challenge, it does not use a rolling average.
Like fun and challenge, we set a threshold and look for the
fraction of values in the list that are greater than or equal
to this threshold. We set the threshold to the floor of the
number of locations in the world (disregarding those that are
immediately available, since these should not factor into how
satisfying it is to unlock new locations) divided by the number
of key items.

Satisfyingness being measured as how immediately useful
a key item is at the time it is found was inspired by Dormans
and Bakkes [1].

4) BOREDOM
The final metric for interestingness is boredom. Like bias,
lower boredom is better. Boredom measures regions that are
visited more often than usual throughout the playthrough.
Our heuristic for Playthrough Search was constructed to try
to avoid backtracking, but more backtracking is inevitable
as world complexity increases. From Playthrough Search we
have a list of how many times each region was visited.

Like the other interestingness metrics besides bias,
we inspect each value in this list and set boredom equal to
the fraction of these values greater than (rather than greater
than or equal to, to be slightly more generous) a threshold.
Here the threshold is set as the ceiling of the average number
of traversals per region.

The idea to incorporate a boredom metric was given by
Pederson et al. [6] and measuring it as the amount of back-
tracking the player must do to complete the game was influ-
enced by Liapis et al. [4].

VI. EXPERIMENTAL RESULTS
In this section we will describe the setup and results of our
experimentation to evaluate the performance and output of
each algorithm relative to each other and to the complexity of
the input world graph.

A. EXPERIMENTAL SETUP
Our implementation was coded in C# and run on a Windows
machine with an AMD Ryzen 9 3900x processor and 32GB
of DDR4 RAM. Each algorithm was performed on each of
the 5 input worlds 100,000 times (for a total of 1.5 million
trials). On each trial, the following information was recorded
within a SQLite database:

• Which algorithm was used
• Which world was used
• Execution time (of the fill algorithm only)
• Whether the result was completable
• Bias score
• Bias direction
• Interestingness score
• Fun score
• Challenge score
• Satisfyingness score
• Boredom score

VOLUME 9, 2021 48297

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

TABLE 3. Failure rate per algorithm per world (% failed).

TABLE 4. Single-iteration execution time per algorithm per world (ms).

FIGURE 7. Average execution time per algorithm per world (ms). Lower is
better.

Randomness is provided by C#’s default random class,
which utilizes Donald E. Knuth’s subtractive random number
generator algorithm. The implementation can be viewed on
GitHub [13].

B. RESULTS AND EVALUATION
Results for the failure rate are shown in Table 3. It can be
seen that the failure rate for Random Fill increases as the
complexity of the world increases, except for the change from
World 4 to World 5, where the failure rate actually decreases.
On the other hand, Forward Fill and Assumed Fill have a 0%
failure rate up until World 5, where they both have a very
small percentage of failures, with Forward Fill having more
than Assumed Fill.

Upon inspection of World 5, it was found that the goal
region was placed connected to the hub region. (While this
may seem strange, this is actually not uncommon game
design.) Perhaps having that early edge locked with a very
difficult lock made it so Forward Fill was more likely to get
stuck early on when generating item placements. Random
Fill, on the other hand, seemingly benefits from having the
final region close to the start of the game.

Next is the execution time, shown in Table 4 and Fig. 7.
It can be seen that while the time in World 1 is fairly sim-
ilar for all three algorithms, Assumed Fill quickly grows in
execution time faster than Forward Fill which grows faster
than Random Fill. This is due to Assumed Search requiring

TABLE 5. Expected execution time per algorithm per world considering
failure rate (ms).

FIGURE 8. Expected execution time accounting for failure rate per
algorithm per world (ms). Lower is better.

FIGURE 9. Average bias per algorithm per world. Lower is better.

multiple searching per fill iteration, shown in the Assumed
Search pseudocode.

Now we will consider the expected execution time, shown
in Table 5 and Fig. 8. When an expected execution time is
calculated by considering the failure rate, Random Fill is still
actually the lowest time expectancy for World 1. In Worlds
2 and 3, Random Fill’s expected time is larger than either of
the other two, but still not obscenely so. World 4 is where
the failure rate grows so large that it is hardly comparable
to the other two, taking 1356.6ms compared to Assumed
Fill’s 26.8ms, an increase of over 50 times. Because of the
lower failure rate for World 5, the expected execution time
for Random Fill in World 5 is actually less than in World 4,
but is still over 10 times that of Assumed Fill.

For the following metrics, only successful placements of
items within a world are considered.

First we will look at the bias, shown in Fig. 9. Random
and Assumed Fill both having fairly low and close together
bias while Forward Fill having consistently higher bias is
expected. What is somewhat unexpected is that in each case,

48298 VOLUME 9, 2021

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

FIGURE 10. Percentage of time bias was toward the end of the game
rather than toward the beginning per algorithm per world.

Assumed Fill actually gives slightly lower bias than Random
Fill. This is a bit unintuitive, but an explanation is that while
Assumed Fill is actively more likely to place key items in
the later regions of the game (due to the entire world being
placeable at the beginning and assumed search ensuring the
reachability graph does not shrink too quickly), Random Fill
has no such propensity, so whenever considering successful
results only perhaps Random Fill is more likely to produce a
successful result when it happens that more items are placed
earlier compared to Assumed Fill. (If not considering suc-
cessful results only, Random Fill’s bias is almost 0, but this
is not a useful statistic.) It is also shown that, as the world
becomes more complex, bias decreases across the board,
likely due to having more opportunities to place items in the
later regions of the game.

When calculating a number for bias, whether the bias was
toward the beginning or end of the game is not considered:
It simply calculates a number representing the inequality
of distribution. Therefore while calculating this number we
can also perform a check to see whether this inequality is
toward the earlier or later regions of the game, with the
former being much more common in all cases. Fig. 10 shows
the percentage of time bias was toward the end rather than
toward the beginning (so, for example, if the value is 5%
then bias was toward the end 5% of the time and toward the
beginning 95% of the time). It can be seen that bias being
toward the end was a somewhat common occurrence for all
three algorithms in World 1, being roughly a 5% chance for
Forward Fill up to an almost 16% chance for Random Fill.
This rate drops hard in the following worlds, going to almost
0% for Forward Fill and up to around 3% at most for Random
andAssumed fill.World 4, in particular, has around 0% for all
three algorithms, and the overall percentage does not seem to
follow any particular pattern as complexity increases. It can
then be assumed that whether the bias is more likely to be
toward the end of the game is more a result of the design of
the world itself rather than the complexity measure. However,
it is still shown to be a less likely occurrence using Forward
Fill.

Now we will consider interestingness, shown in Fig. 11.
Note the measure on the side of the graph. All three

FIGURE 11. Average interestingness per algorithm per world. Higher is
better.

FIGURE 12. Average fun per algorithm per world. Higher is better.

algorithms are fairly close in their final interestingness score,
in general with Forward Fill producing the least interesting
result followed byAssumedwhich is very closely followed by
Random. However, in World 5 Forward Fill suddenly jumps
ahead of both of them. To understand why this happens,
we must look more closely at the individual metrics com-
posing interestingness. In general, Random Fill and Assumed
Fill produce similar results for the individual metrics, while
Forward Fill excels in different areas. Overall, interestingness
falls as the worlds become more complex, likely due to more
complex worlds meaning on average more traversals needed
and more time required to make progress, even relative to the
number of regions.

The graph for the fun metric is shown in Fig. 12.
As expected, Forward Fill’s result is higher than the other
two, while Random Fill barely edges out Assumed Fill in all
cases. Due to Forward Fill producingworld placementswhere
key items are found earlier, it is easier for the player to make
constant progress collecting item locations as they are less
likely to be held back by a low number of currently owned
items. Although the fun metric accounts for total number
of locations when computing its threshold, more complex
worlds are more likely to require the player to traverse for
longer periods without checking item locations as they move
around regions that have already been looted to get to ones
that have not.

VOLUME 9, 2021 48299

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

FIGURE 13. Average challenge per algorithm per world. Higher is better.

FIGURE 14. Average satisfyingness per algorithm per world. Higher is
better.

Next we will observe the challenge metric in Fig. 13.
Random and Assumed Fill are again very close in this metric,
with Assumed Fill barely beating out Random Fill in the
first two worlds and vice versa in the next three. However,
the final challenge score seems to mostly plateau for these
two algorithms starting at World 2. Forward Fill, on the other
hand, is overall lower and similarly plateaus at World 2,
however it has a sudden jump in challenge at World 5 that
puts it almost even with Assumed Fill. This jump is certainly
a large factor as to why Forward Fill’s final interestingness
score beat out the other two in World 5. The reason for this
jump in challenge is likely the same reason Forward Fill had
a relatively high failure rate in World 5.

Next is satisfyingness, shown in Fig. 14. All three algo-
rithms produced similar results for this metric, especially in
World 1, but in all cases with Random Fill having the best
score and Forward Fill having the worst score. The score
is also mostly similar across each world, with the differ-
ence from the lowest to highest score being only.059,.135,
and.086 for Random, Forward, and Assumed Fill respec-
tively. Assumed Fill is again closer to the results of Random
Fill than Forward Fill.

Finally we observe the results for boredom in Fig. 15. For
this metric, Random and Assumed Fill’s results are so close
together they are practically the same, besides a slight differ-
ence in World 4. Forward Fill is less boring on average, since
finding key items earlier leads to overall fewer traversals as

FIGURE 15. Average boredom per algorithm per world. Lower is better.

the player is less likely to have to revisit regions after find-
ing more items to clear them out. As complexity increases,
boredom increases as well, likely for the same reason fun
decreases: having a larger world will require more traversals
as the player travels through regions that have already been
searched to get to regions that have not yet been searched.

Overall, Forward Fill’s ability to stay ahead of the
other two algorithms in the decreasing/increasing metrics of
fun/boredom, while also having a sudden jump in challenge
and somewhat of a sudden decrease in bias for World 5,
allowed it to beat the other two in interestingness forWorld 5.
While this result is worth noting, it does not necessarily mean
that Forward Fill is the preferred algorithm for more complex
worlds. Our method of world generation is not perfectly
representative of a real game world and it is possible that a
differently designed world of similar complexity would still
have Random and Assumed Fill get a higher interestingness
score than Forward Fill.

In general, Random and Assumed Fill perform better when
considering bias, challenge, and satisfyingness, while For-
ward Fill performs better when considering fun and boredom.
While we calculated interestingness using an equal 20% share
for each metric, different weights could potentially be used.
However, for the most part all that changing these weights
would do is shift the graph to more strongly favor one of
Random/Assumed Fill or Forward Fill.

VII. DISCUSSION
Our goal was to provide generic implementations of the
algorithms that did not have game-specific considerations.
For example, while this work was inspired by the randomizer
for The Legend of Zelda: Ocarina of Time, this game’s ran-
domizer requires special considerations for the player’s age
(child or adult) which modifies both what items the player
can use and accessibility of certain edges (as the game world
is somewhat changed in the player’s adult form). Traversal is
also more complicated as the player is able to find items that
allow them to warp to certain locations that may otherwise be
inaccessible. Because of this goal of a generic implementa-
tion, we utilized randomly generated game worlds within our
study to provide a rough approximation of what a designed

48300 VOLUME 9, 2021

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

game world may look like. Results utilizing graphs of worlds
from real games could be different, although we believe our
overall findings would be consistent with real game worlds.

Another limitation, mentioned in the result evaluation sub-
section, is that our fun and boredom metrics considered for
the interestingness score naturally favor smaller worlds, even
though they account for the world size, as larger worlds are
more likely to require the player to traverse regions that have
already been searched to reach regions that have not been
searched.

The heuristic utilized in PlaythroughSearch, meant to sim-
ulate the decision making of a real player, could be improved.
High-level randomizer players don’t just play the odds by
heading toward where the most available locations are, they
do what is called ‘‘reading logic’’ where they use their mem-
orized knowledge of the game world’s graph to predict where
key items that are useful to them are likely to be located
based on the placement of other items. Creating an algorithm
to do this task would be non-trivial but would give a better
approximation of a real player. This heuristic’s parameters
(such as the 17 - k divider to avoid backtracking) could be
scaled to depend on the size of the world.

While our expected time to compute a successful item
placement using Random Fill considers if each iteration of
the algorithm is run linearly, a parallelized implementation
could be utilized to produce a result much faster, especially
if the code for the randomizer is hosted on servers.

Our desire was to have at least a few dozen successful
results from Random Fill over 100,000 iterations of the algo-
rithm on each world. Due to this, even our most complex
world’s complexity pales in comparison to the complexity
of some real game worlds, such as Ocarina of Time’s world,
which has hundreds of regions and some edge rule clauses
that are several lines long.

Although we considered implementing it outside of the
scope of this research, one could theoretically make a modi-
fied version of Forward Fill or Assumed Fill that is guaran-
teed to not fail (as long as the input is valid) by checking if
the algorithm is expected to hit a ‘‘dead end’’ and figuring
out what items need to be placed soon to avoid this dead end.
It would be trivial to check if only one available location
is left and one item can be used to open up more so the
algorithm knows that item should be placed there. However,
if multiple items are required to open more locations and
perhaps not many locations are opened up such that more
items need to be placed to open up the world than locations
that become available, the check for such situations would
become increasingly complex. We believe the performance
hit of such an algorithm would not be economical when
a failed Assumed or Forward Fill run can just be re-done
and almost certainly work the second time, but if such an
occurrence is considered unacceptable or the game world has
a high chance of failure for some reason, then these modified
algorithms could potentially be useful.

One could also create a modification of Forward Fill
which, after running the algorithm, performs some post-fill

operations to further shuffle items to attempt to create more
interesting placements. The effect this has on the outcome of
the interestingness metrics could then be studied and com-
pared to Forward Fill only and the other fill algorithms.

VIII. CONCLUSION
In this paper, we have defined three algorithms for use in
randomizing key item placement within a gameworld, as well
as several search algorithms utilized either within the fill
algorithms or to determine some properties of a resulting
placement.We have definedmetrics to calculate the complex-
ity of a given game world and the bias and interestingness of
a game world whose locations have been filled with items.

We have evaluated the three fill algorithms using five
worlds of increasing complexity. We believe the results of
these experiments can provide some guidance to an aspiring
randomizer developer on which algorithm works best for the
game for which they want to create a randomizer. In particu-
lar, we give the following advice.

1) If faster, easier playthroughs where progress is con-
stantly being made are desired, utilize Forward Fill.

2) If longer, more challenging playthroughs that require
more exploration and backtracking are desired, utilize
Random Fill or Assumed Fill.
a) If the game world is small and simple enough that

the expected execution time for Random Fill to
produce a completable result is reasonable, then
Random Fill will give an overall better result for
this goal.

b) If the game world is large and complex so that
Random Fill could take unreasonable amounts
of time to produce a completable result, then
Assumed Fill gives a very close approximation of
the quality provided by Random Fill, so Assumed
Fill is a good choice in this case.

ACKNOWLEDGMENT
Caleb H. Johnson would like to thank the developers, staff,
and community of the randomizer for The Legend of Zelda:
Ocarina of Time, especially the lead developer Aharon
Turpie, for introducing him to randomizer algorithms and
their help and guidance during the creation of this work.

REFERENCES
[1] J. Dormans and S. Bakkes, ‘‘Generating missions and spaces for adaptable

play experiences,’’ IEEE Trans. Comput. Intell. AI in Games, vol. 3, no. 3,
pp. 216–228, Sep. 2011.

[2] M. Cook and A. Raad, ‘‘Hyperstate space graphs for automated game
analysis,’’ in Proc. IEEE Conf. Games (CoG), London, U.K., Aug. 2019,
pp. 1–8.

[3] D. Karavolos, A. Liapis, and G. N. Yannakakis, ‘‘Evolving missions to
create game spaces,’’ in Proc. IEEE Conf. Comput. Intell. Games (CIG),
Sep. 2016, pp. 1–8.

[4] A. Liapis, G. N. Yannakakis, and J. Togelius, ‘‘Towards a generic method
of evaluating game levels,’’ in Proc. AAAI Artif. Intell. Interact. Digit.
Entertainment Conf., Nov. 2013, pp. 1–7.

[5] A. S. Nugraha, A. Setiawan, andW.Wijanarto, ‘‘Automatic power-up items
placement on shooter game using convolutional neural network,’’ J. Appl.
Intell. Syst., vol. 5, no. 1, pp. 47–56, Dec. 2020.

VOLUME 9, 2021 48301

C. H. Johnson et al.: Evaluation of Algorithms for Randomizing Key Item Locations in Game Worlds

[6] C. Pedersen, J. Togelius, and G. N. Yannakakis, ‘‘Modeling player experi-
ence for content creation,’’ IEEE Trans. Comput. Intell. AI in Games, vol. 2,
no. 1, pp. 54–67, Mar. 2010.

[7] J. Lehman and K. O. Stanley, ‘‘Beyond open-endedness: Quantifying
impressiveness,’’ in Proc. 13th Int. Conf. Simul. Synth. Living Syst. (Artifi-
cial Life), 2012, pp. 75–82.

[8] S. A. Roberts and S. M. Lucas, ‘‘Measuring interestingness of continuous
game problems,’’ in Proc. IEEE Conf. Comput. Intell. Games (CIG),
Aug. 2013, pp. 1–8.

[9] S. Porchia. The Legend of Zelda: A Link to the Past VT Random-
izer. GitHub Repository. Accessed: Mar. 20, 2021. [Online]. Available:
https://github.com/sporchia/alttp_vt_randomizer

[10] A. Turpie. The Legend of Zelda: Ocarina of Time Randomizer. GitHub
Repository. Accessed: Mar. 20, 2021. [Online]. Available: https://github.
com/TestRunnerSRL/OoT-Randomizer

[11] G. D. Quick. Feb. 11, 2019. Making a Randomizer. Youtube Video.
[Online]. Available: https://youtu.be/vGIDzGvsrV8

[12] Anatomyz. Aug. 12, 2018. Ocarina of Time Randomizer Routing Tutorial.
Youtube Video. [Online]. Available: https://youtu.be/VpvZhm0Hx5Q

[13] C. Johnson. Randomizer Algorithms. GitHub Repository. Accessed:
Mar. 20, 2021. [Online]. Available: https://github.com/cjohnson57/
RandomizerAlgorithms/tree/v1.0.0

CALEB H. JOHNSON was born in Baton Rouge,
LA, USA, in 1998. He received the B.S. degree
in computer engineering from Louisiana State
University, Baton Rouge, in 2020, where he is
currently pursuing the M.S. degree in computer
engineering.

Since 2017, he has been working with the
Louisiana State University’s Center for Analyt-
ics and Research in Transportation Safety as a
Developer and a Computer Analyst. His research

interests include application development, website development (front-end
and back-end), and data analysis.

JERRY L. TRAHAN (Member, IEEE) received
the B.S. degree from Louisiana State University,
in 1983, and the M.S. and Ph.D. degrees from
the University of Illinois at Urbana-Champaign,
in 1986 and 1988, respectively. Since 1988, he has
been a Faculty Member with the Division of Elec-
trical & Computer Engineering, Louisiana State
University, where he is currently the Chair and the
Chevron Associate Professor of Electrical Engi-
neering. His research interests include algorithms,

models of parallel computation, theory of computation, RFID protocols, and
robot algorithms.

TAO LU received the B.S.E.E. degree from Bei-
hang University (BUAA), China, and theM.S.E.E.
degree from the University of Southern California
(USC), Los Angeles, CA, USA. He is currently
pursuing the Ph.D. degree in computer engineer-
ing with Louisiana State University (LSU). His
research interests include computer architecture,
domain-specific accelerator, and blockchain tech-
nology and applications. His article on blockchain
acceleration is published on DAC 2020. He has

done internship in Xilinx CTO Lab and works on advanced FPGA-based
blockchain acceleration projects.

LU PENG (Senior Member, IEEE) received the
bachelor’s and master’s degrees in computer sci-
ence and engineering from Shanghai Jiao Tong
University, Shanghai, China, and the Ph.D. degree
in computer engineering from the University of
Florida, Gainesville, FL, USA. He is currently
the Gerard L. ‘‘Jerry’’ Rispone Professor with
the Division of Electrical and Computer Engi-
neering, Louisiana State University, Baton Rouge,
LA, USA. His current research interests include

memory hierarchy systems, reliability, power efficiency, and other issues in
processor design. He is also a Senior Member of ACM. He was a recipient of
the ORAU Ralph E. Power Junior Faculty Enhancement Awards in 2007 and
the Best Paper Award from IEEE International Green and Sustainable Com-
puting Conference (IGSC) in 2019 and IEEE International Conference on
Computer Design (ICCD) processor architecture track in 2001.

48302 VOLUME 9, 2021

