
ATT: A Fault-Tolerant ReRAM Accelerator for
Attention-based Neural Networks
Haoqiang Guo, Lu Peng, Jian Zhang, Qing Chen, Travis D LeCompte

School of Electrical Engineering and Computer Science
Louisiana State University

Baton Rouge, LA, 70803, USA
{ghaoqi1, lpeng, jz, qchen11, tlecom3}@lsu.edu

Abstract—Crossbar-based resistive RAM has been widely used
in deep learning accelerator designs because it largely eliminates
weight movement between memory and processing units. The
high-density storage and low leakage power make it a good fit
for edge/IoT devices. However, existing ReRAM designs for tra-
ditional neural networks cannot support Attention-based Neural
Networks, which are stacked with encoders and decoders instead
of convolutional layers or fully connected layers. In addition to
matrix-matrix multiplications in traditional neural networks, an
encoder or a decoder also includes the attention mechanism, the
layer normalization and the gaussian error linear unit. These
new characteristics make the data flow far more complicated
than that of a convolutional layer. Faulty ReRAM devices are
additional obstacles when mapping weights that severely degrade
computation accuracy. Existing hardware redundancy strategies
that are unaware of application characteristics usually result in
inefficient designs.

In this work, we analyze the data flow of these attention-
based neural networks and propose a ReRAM-based accelerator
with a dedicated pipeline design for Attention-based Neural
Networks. When considering cells with hard faults in crossbars,
we further propose NuXG, a non-uniform redundancy strategy,
to meet accuracy requirements and save energy consumption
by decreasing the redundancy ratio. Finally, we evaluate results
and demonstrate that the proposed can achieve more than two
times improved performance over existing redundancy schemes
in both power efficiency and throughput for Attention-based
Neural Networks. Moreover, it also significantly outperforms an
NVIDIA GPU.

Index Terms—Attention Neural Networks, Fault tolerance,
ReRAM accelerator

I. INTRODUCTION

Processing-in-Memory (PIM) platforms are more and more
popular in accelerating neural network applications due to
fewer data movements compared to FPGA and ASIC imple-
mentations [1]–[3]. Essentially, computations in both convolu-
tional layers and fully-connected layers can be transformed to
matrix-matrix and matrix-vector multiplications. These linear
algebra operations can be mapped to crossbars to achieve
excellent performance [4], [5]. Weight pruning on PIM is sel-
dom studied because mapping irregular computation patterns
to crossbars is challenging.

Attention-based Neural Networks (AttNNs) have been
proven to significantly outperform convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) in the
wide variety of Natural Language Processing (NLP) tasks [6]–
[9]. In general, it is impractical to deploy a deep learning

network to an accelerator designed for a different network.
Specifically for AttNNs, the gaussian error linear unit (gelu)
activation function [10] is unsupported on pre-existing plat-
forms. Additionally, it includes the multiplication between
intermediate matrices, shortcut-based layer normalization and
vector concatenation. Instead of simply concentrating on the
attention module [11], we analyze the AttNNs by identifying
the performance bottlenecks and then comprehensively design-
ing a hardware accelerator for AttNNs. We propose an archi-
tecture (ATT) for AttNNs which explores intra-layer pipelining
to fully utilize the on-chip hardware. Our pipeline design
addresses hardware hazards and includes modules for AttNN-
specific operations including attention-based mechanisms and
gelu. Resistive RAM (ReRAM) crossbars are leveraged to
implement weight stationary data flow (the multiplication
between the neuron matrix and the weight matrix). ATT goes
a step beyond previous in-situ computation works by taking
hard faults into consideration.

Hard faults in crossbars that are caused by current immature
fabrication and process variation have become a issue for
ReRAM accelerators. The most common hard faults are Stuck-
At-Faults (SAF) [12], which include Stuck-At-Zero (SA0)
and Stuck-At-One (SA1). Once a cell is identified as SAF,
its resistance cannot be changed. Hence, weights cannot be
programmed into the cell. A crossbar with the incomplete
matrix will definitely leads to accuracy degradation because
the inference accuracy is sensitive to the number of defective
memristors [13]. Some existing works have attempted to
recover the application accuracy through various methods:
software solutions [14] either explore re-training models or
other techniques to make the inference reliable; hardware
solutions [14] attempt to search for a trade-off between the
hardware overhead and accuracy requirements. While the
hardware solutions have better performance compared with
software approaches, they are still not efficient enough since
they do not consider characteristics of algorithms. In this
work, we design a heuristic hardware redundancy algorithm
to improve fault-tolerance of ATT by taking the algorithm’s
properties into account.

The contributions of this work can be listed as follows:
• A pipelined accelerator ATT for AttNNs is proposed.

Hardware hazards and AttNN-specific module designs
have been considered.

q

k

v

!
!"#"

!"#"$ %&&'(&)*(+',-./'01' 2,3'0.4*05.6
789786

!"#"

input
seq.

softmax(f Mask,
q ! kT

d
k

"

#
$$

%

&
''
)

2,3'0.4*05.9

(a) An encoder

q

k

v
Encoder
Output

softmax(f Mask,
q ! kT

d
k

"

#
$$

%

&
''
)

E
n
c
o
d
e
r

!
!"#"

!"#"$

%&&'(&)*(+

,'-.+/'01'

2-3'0+4*05

,'-.+/'01'%&&'(&)*(!"#"$ 2-3'0+4*05
&-01'&+6'78

)(
9
:
&+6'

7
8

;<=

;<>

2-3'0+4*05

(b) A decoder

Fig. 1: The data-flow of attention-based blocks

• We design a heuristic redundancy algorithm that takes
layer-wise sparsity into account and makes ATT fault
tolerant.

• We evaluate the performance and the power efficiency of
ATT and compare it to GPU and other redundancy work.

II. BACKGROUND

A. AttNN Algorithms

Deep neural networks are characterized by stacked layers,
including convolutional and fully connected layers. AttNNs
are stacked with two types of basic blocks: the encoder and
the decoder. They are briefly illustrated in Fig.1. Roughly, both
the encoder and the decoder consist of five sections: the Q-
K-V, the Attention, the Head Merge, the Layer Normalization
and the Fully Connected Layer sections.

qihd = W qi
hd
× xi−1

kihd = W ki
hd
× xi−1

vihd = W vi
hd
× xi−1

(1)

The Q-K-V section computes q,k,v vectors for each head
according to trained model weight matrices W qi

hd
, W ki

hd
and

W vi
hd

, where hd ∈ (1, D) and D is a hyper parameter that
represents the number of heads. The specific computation is
in equation (1). The computation of q,k,v vectors in one head
and across different heads are independent. In this notation,
xi−1 denotes the inputs of the (i-1)-th Xcoder 1, while qihd , kihd
and vihd denote the q,k,v vectors of the hd-th head belonging
to the i-th Xcoder.

The Attention section scores each word of the input sentence
against other words in the same sentence. The scores are
computed by softmax normalizing the dot products of the q
vectors and the k vectors, then the scores are multiplied by
the v vectors. As can be seen in equation (2), the matrices

1We use the Xcoder to denote the encoder or the decoder in following
sections.

involved in this step are intermediate results, which is one of
the different computation patterns from previous basic blocks.

V inihd = Softmax(
qihd × (kihd)T
√
D

)× vihd (2)

The Head Merge section first concatenates output vectors
from different heads. Next, the concatenation vector is multi-
plied by a trained weight matrix W i

hm. Equation (3) defines
the operations in this step.

Xini = (V inih1
, V inih2

, · · · , V inihD)×W i
hm (3)

The Fully connected layer is the same as previous SOTA
networks. There is one hidden layer in this step, so two
weight matrices W i

1 and W i
2 are required as shown in equation

(4). Here i denotes the i-th Xcoder. We should note that the
activation function is the gelu function [10], instead of the
sigmoid or ReLU functions used in traditional neural networks.
The gelu function is defined in equation (5).

xi = f(W i
2 × f(W i

1 ×Xini + bi1) + bi2) (4)

gelu(x) =
x

2
(1 +

e
√

2
π (x+0.044715x3) − e

√
2
π (x+0.044715x3)

e
√

2
π (x+0.044715x3) + e

√
2
π (x+0.044715x3)

)

(5)
.

As shown in equation (6), the Layer Norm performs layer
normalization on each elements of the matrix. For a 3D
matrix (batch size×seq length×model size), layer normal-
ization performs

y =
x− E[x]√
V ar[x] + ε

β + γ (6)

Popular AttNNs such as Transformer [6], Bert [7], XLNet
[8], XLM [9] and GPT2 are stacked with Xcoders. Trans-
former is composed of encoder layers and decoder layers,
while Bert, XLNet and XLM include only encoder layers.
GPT2 only contains decoder layers.

B. In-ReRAM Computation and Hard Faults

A ReRAM array consists of interconnected filamentary
ReRAM cells whose states can be switched between a High
Resistant State (HRS or OFF-state) and Low Resistant State
(LRS or ON-state) by the peripheral read/write circuit. Since
the state value can be seen as a matrix element, a matrix can
easily programmed into the ReRAM array. An input vector
(each component is 16 bits) can be converted to analog signals
bit by bit via 1-bit Digital-to-Analog Converters (DACs). The
voltage signals are applied to each word line, then the current
of each bit line can be regarded as the dot-product between
the voltage vector and the resistance vector. The current is
converted to digital signals by Analog-to-Digital Converters
(ADCs), then shifted and accumulated in the Shift&Add unit
to get the the final dot-product. For simplification, we use
a single crossbar model [15] to demonstrate the proposed
redundancy algorithm in this work. ReRAM can be designed

as either a crossbar architecture or a grid architecture. Our
work focuses on the former, because it can overcome the sneak
current issue when a dedicated selector is inserted in each cell.

Limited by current immature fabrication and process varia-
tion, faulty devices and cells frequently appear. A filamentary
ReRAM cell structure is essentially a metal–insulator–metal
(MIM) structure, which is simply an oxide material sand-
wiched between two metal electrodes. Immature fabrication
causes variations in the oxide thickness of cells. Cells are
then initialized by applying a high voltage for a certain period
of time, known as forming. Over Forming (OF) defects or
reset failures lead to the Stuck-At-Zero (SA0) fault, whose
resistance is fixed at LRS. Stuck-At-One (SA1) faults instead
have the resistance fixed at HRS. However, it is important to
note that faulty cells with SAFs are still readable.

Q-K-V Engine

!"#!$%&'()*+()%#!$,&-!

Head-Merge Engine

LayerNorm Engine

Fully Connected Engine
Mask
Cache

Buffer1

Mask Issuer

./0

Buffer2 Buffer3 Buffer4

Z

[
!

"

#

$

%

&

'
LayerNorm Engine

Atten. Engine

12

11

13
14

Buffer5 Buffer6 Buffer7 Buffer8

Fig. 2: Overall architecture

III. ATT ARCHITECTURE DESIGN

A series of words (a sentence) are first converted to a matrix
(this process is called embedding in the machine learning
community) on the CPU. Each word in the sentence accounts
for a row (each component is 16 bits), whose length depends
on the embedding algorithm. Hence, the width of the matrix is
the embedding size, while the height equals the length of the
sentence. For a batch of sentences, we can get a tensor with
three dimensions of which the third dimension is the batch
size. This tensor is stored in main memory, and our accelerator
takes it as input and outputs the results to main memory. The
CPU then translates the outputs to the objective sentence.

A. Pipeline Architecture

Fig.2 illustrates the architecture of the accelerator, which
fetches data from main memory through an external I/O
interface. The accelerator is equipped with eight on-chip
buffers to speed-up the access to different types of data from
different pipeline stages. These buffers are divided into two
sets (Buffer1∼4 and Buffer5∼8). The buffers in each set are
read and written in a round-robin manner to enable the pipeline
to avoid stalls incurred by buffer access conflict.

Q-K-V engine. This engine employs crossbar-based
ReRAM to perform the matrix-vector multiplication intro-
duced in equation (1). Weights W qi

hd
, W ki

hd
and W vi

hd
in equation

(1) are programmed in crossbars before inference. An input
matrix is fetched from main memory by the Q-K-V engine
1©. Each row (with 16-bit components) is converted to analog
signals by Digital-to-analog converters (DAC) bit by bit. These
analog signals are applied to word lines of crossbars. The
currents flowing out from each bit line are the partial sums
of the expected inner product. Analog-to-digital converters
(ADC) convert these analog signals back to digital signals.
DACs, ADCs and Shift&Add units are integrated into the Q-
K-V engine to enable the matrix-vector multiplication to be
calculated in the analog domain. At the end of this stage, the
q,k and v vectors are forwarded to the Attention engine 2©, and
the q vectors are stored to buffers 3©. This stage is represented
as qkv in the following discussion.

Mask issuer. The Mask issuer computes masks according to
the matrix fetched by the Q-K-V engine. Two different masks
are output from this module. One is forwarded to the Attention
engine, and the other is stored in the Mask cache to filter inputs
and outputs of the Fully Connected engine. the Mask issuer
work in parallel with the Q-K-V engine, so this stage can be
seen as a parallel stage with qkv.

Attention engine. This engine performs operations shown
in equation (2). As can be seen, the matrices involved in the
computation are all intermediate results, which are generated
by the previous qkv stage: Q-K-V engine. The v vectors
received from qkv are stored in a local cache. It is time
consuming to program matrices into the crossbar to execute
matrix related multiplication during the inference process.
Additionally, the matrices involved are very small. Hence, we
tailor a matrix-matrix multiplication engine to implement it.
There are three sub-stages in this engine. The first is comput-
ing the inner-product between q vectors and the transposition
of k vectors. The second is to softmax the previous inner-
product results. The third is multiplying the softmax results by
the v vectors. We denote this stage as atten in the following
discussion. The outputs of this stage are forwarded to the
Head-Merge engine 4©. Two Attention engines are deployed
to avoid structural hazards. Details will be discussed in the
next section.

Head-Merge engine. This engine executes operations
shown in equation (3). Weight matrix W i

hm in equation (3)
is programmed into crossbars prior to inference. Each head
generates one V inihd . These V inihd vectors are forwarded to
the Head-Merge engine (4©) and concatenated as one vector
first, then the components of this vector are truncated to 16
bits. Finally, they are multiplied by W i

hm in the same way as
the Q-K-V engine. The results are forwarded to the LayerNorm
engine 5©. We call the stage in the Head-Merge engine hm
hereafter.

LayerNorm engine. There are two LayerNorm engines
embedded on the accelerator. The first one works following the
Head-Merge engine. One input to this LayerNorm engine is
the output of the Head-Merge engine 5©, and the other input is

!"# $%&'()* +,- ./- ./0 +,0

!"# $%&'()* +,- ./- ./0 +,0

!"# $11&'()* +,- ./- ./0 +,0

!"# $11&'()* +,- ./- ./0 +,0

!-2342567&8-

!023425699&80

!:23425699&8:

!;3425699&8;

567&8-2342!-

567&8<23429=>?'>-9=>?'>-23425699&8<

9=>?'>023425699&8@

9=>?'>:2342567&8A

9=>?'>;3425699&8B

!"!#$% !"!#$& !"!#$' !"!#$(!"!#$) !"!#$* !"!#$+ !"!#$,

(a) The encoder pipeline
!"# $%&'! () *+, -., -./ *+/

$00&'! *+, -., -./ *+/

$00&'! *+, -., -./ *+/

$%&'! *+, -., -./ *+/

!"#

!"#

!"#

()

()

()

!"# $%&'! () *+,

!"# $%&'! () *+,

!"# $%&'! () *+,

!"# $%&'! () *+,

(b) The decoder pipeline

Fig. 3: Pipeline analysis

the q vectors produced two stages before (qkv). The q vectors
are fetched from on-chip buffers 6©. One copy of outputs of
are forwarded to the Fully connected engine 7©. Another copy
of outputs are stored in buffers 9©. We use LN1 to denote this
first LayerNorm engine. The second LayerNorm engine carries
out the layer normalization the after fully connected layers. It
also takes in two inputs. One input is the output of the first
LayerNorm engine. This input must be loaded from buffers 11©.
The other input is the outputs of the Fully Connected engine
10©. LN2 is used to represent this step in the following sections.
Where the outputs of the second LayerNorm engine flow is
determined by whether or not there has an additional layer
next.

Fully Connected engine. There are two pipeline stages in
this engine. One stage is the fully connected layer correspond-
ing to the weight matrix W i

1 in equation (4). The other stage
is the fully connected layer characterized by weight matrix
W i

2 in equation (4). They are represented as FC1 and FC2
respectively hereafter. The engine takes in masks from the
Mask cache 8© and outputs from the LayerNorm engine 7©.
The activation function in this engine is gelu. The mechanism
of matrix-vector multiplication is the same as the Q-K-V
engine and the Head-Merge engine.

A specific pipeline of an encoder layer with four input
sentences is illustrated in Fig.3a. Fig.3b depicts a decoder layer
with four input sentences.

B. Hazard Analysis

Data hazards and structural hazards were taken into account
when we designed the pipeline. More specifically, Write after
Read hazards (WAR), the Attention engine conflict and the
LayerNorm engine conflict are considered in this section.

Data hazards. There are eight buffers deployed on the
chip. These buffers can be divided into two sets. The first set
include buffer1, buffer2, buffer3 and buffer4. The remaining
four buffers belong to the second buffer set. Let’s take the
encoder pipeline in Fig.3a for example. In the first cycle,
the q vector (represented as q1 in red) is produced by the
Q-K-V engine for the first input sentence, and is stored to
buffer1 (3© in Fig.2). The q vector will be used in the fourth

cycle. The size of the q vectors depends on models and is
proportional to the batch size, so deploying another three
buffers (buffer2, buffer3 and buffer4) for the following three
input sentences can eliminate overwrite issues. The q vectors
produced in the second, the third and the fourth cycle are
stored to buffer2, buffer3 and buffer4 respectively. In the fourth
cycle, the LayerNorm engine reads q1 from buffer1 (6© in
Fig.2), and writes its results (represented as fc in 1 in red) to
buffer5 (9© in Fig.2). In the fifth cycle, the q vector produced
by the Q-K-V engine for the fifth input sentence is able to
be written to buffer1 because there are no WAR hazards in
buffer1. Similarly, the second set of buffers (buffer5∼8) work
in the same way with the first buffer set.

To make the above idea work, data are arranged as a First-
In-First-Out (FIFO) queue in each buffer. For buffers in the
same set, they are accessed in a round-robin manner.

Structural hazards. Structural hazards appeared when
more than one encoder layers or decoder layers are stacked to a
network. Bubbling the pipeline once can not address this issue.
Deploying too many hardware modules is energy inefficient.
Through analysis, we find that two LayerNorm engines (one
for LN1 and the other for LN2) and two Attention engines
are good enough to eliminate structural hazards if we insert
a few stall cycles, such as 15 stall cycles for Transformer (6
encoders and 6 decoders).

C. Module Designs

For the Q-K-V engine, the Head-Merge engine and the Fully
connected engine, we feed crossbars one bit at a time for the
16-bit truncated input neurons. A 1-bit DAC is equipped to
each row of crossbars to transform digital signals to analog
signals. Each crossbar cell is four bits wide, so two adjacent
bit lines are used to represent weight values. The current in
each bit line is transformed back to digital signals by an 8-bit
ADC, then shifted and accumulated in Shift&Add units to get
the final dot product.

The layer normalization in equation (6) is applied to all the
elements of the sum matrix of the two input matrices. First, the
mean value E[x] and the variance V ar[x] is calculated along
the sentence axis (which means the mean and the variance are
different across sentences). The computation of the mean value
E[x] is essentially a sum reduction, and the variance V ar[x]
can be computed according to V ar[x] = E[x2]− (E[x])2. A
sum reduction tree is implemented in this unit. Partial sums are
accumulated in a register file. E[x2] and E[x] are computed
in in the same way. When both the mean and the variance
are ready, we can then perform the normalization for each
element. A set of parallel subtractors and dividers perform
normalization after the mean computation and the variance
computation.

From the equation (5),
√

2
π is a constant, so the basic

component in the gelu circuit is the exponent generator, which
we adapt from existing literature [16].

The softmax function is

softmax(xi) =
exi

Σj=0exj
(7)

A sum reduction tree is implemented to compute the denom-
inator, and a set of dividers work in parallel afterwards. To
meet accuracy requirements, we use the following formula

exi

Σj=0exj
=

exi−xMAX

Σj=0exj−xMAX
(8)

to compute the softmax results. This idea is borrowed from
existing hardware literature [39].

IV. FAULT TOLERANT STRATEGY FOR RERAM ENGINES

Fig. 4: For simplicity, we use 8 bits to represent input neurons
in this example. The last cell in the 2nd bit-line of X1 can be
set to an extremely low conductance.

The Q-K-V engine, the Head-Merge engine and the Fully
Connected engine each play key roles in ATT. Accuracy
loss within these engines is significant if ATT does not
consider hard faults in ReRAM. However, vanilla redundancy
algorithms lead to energy-inefficient performance. This section
aims to propose a heuristic redundancy strategy: Non-uniform
Xbar Grouping algorithm (NuXG).

A. Preliminaries and Subroutines

As accuracy is limited by resistance precision, typically
more than one cell is used to store a weight. The cell resolution
of the ReRAM we utilized is 4 bits, the same as with PRIME
[1]. Hence, two adjacent cells on the same word line are
leveraged to store high 4 bits and low 4 bits of a 8-bit weight.
These cells can only be used to store weights if they are both
fault free. Without loss of generality, we use 4×4 crossbars
(X1∼X5, black dots represent faulty cells) in Fig.4.

Three terms need to be defined first. Virtual crossbar (Vc):
it refers to a virtual crossbar, which is made up of cells at the
best condition in that position, for a group of crossbars. For
example, the virtual crossbar of {X1, X3} is Y1. Similarly,
Y2 is the virtual crossbar of {X2, X5}. Storage capacity
(Sc): it refers to the maximum number of weights a crossbar
or a group of crossbars can store. As presented in Fig.4, the
storage capacity of X5 is 4, because at most four weights
can be stored in it. For {X2, X5}, the storage capacity of
this crossbar group equals that of its virtual crossbar, which
is 7 for Y2. Subgroup: it refers to a group of physical
crossbars corresponding to a Vc. For {{X1, X3}, {X2, X5}},
both {X1, X3} and {X2, X5} are subgroups.

With the constraint of accuracy requirements, the weight
sparsity differs across layers (a layer is an Xcoder in AttNNs).
Weights of AttNNs refers to weight matrices (W qi

hd
,W ki

hd
,W vi

hd
in equation(1), W i

hm in equation(3) and W i
1, W i

2 in equation
(4)) in an Xcoder, instead of weights between two neighboring
layers. If these weight matrices of an Xcoder are sparse, it is
unnecessary for the crossbars that store them to have large
storage capacity. On the other hand, for layers with dense
weight matrices, larger storage capacity results in less accu-
racy loss. For simplicity, we group layers according to their
sparsity. The Low group includes layers having low sparsity,
which means they are more sensitive to pruning than other
layers. Layers of which most weights can be pruned without
degrading the accuracy are grouped into the High group.

Algorithm 1: SeedSearch Subroutine

1 while exist Gi s.t. |Gi| < gi do
2 if the Sc of Gi’s last subgroup ≥ ri then
3 select the Xbar X∗ with the largest Sc from

Res, and append to Gi as the last subgroup;
4 remove X∗ from Res;
5 update the Vc of Gi;

6 update St by computing capacities between each Vc
and each Xbar in Res

The rest of the layers are grouped into the Medium group.
There are two things that should be noted here. First, the
sparsity value thresholds (or split points) for these groups are
configured manually. The configuration of thresholds affects
layer group results. Second, the configuration of split points
can be different from networks. One can view each individual
layer as a group. However, this strategy brings no accuracy
improvement and increases the complexity of the proposed
grouping algorithm. We have shown that three groups are
enough to meet the accuracy budget.

The redundancy process can be modeled as maximum-
weight matching in a bipartite graph. Suppose we have five
crossbars in Fig.4, namely X1,X2,X3,X4,and X5. If we need to
find redundancy crossbars for X1 and X2 respectively, a score
table (St) is constructed first. The content of the table denotes
the Sc when the corresponding two crossbars are combined
one group. For example, the first row of the score table in
Fig.4 stands for the Sc (8,7 and 6) when X3,X4 and X5 is
selected as the redundancy for X1 in a line. The objective is
to maximize Σscore(Xi,Xj) (i ∈ {1, 2} and j ∈ {3, 4, 5}),
where Xj can only appear once. Next, the problem is converted
to find the maximum sum of elements in different rows and
different columns in the score table. X1, X2 can be seen as
a set of points, and X3, X4, x5 is another set of points. The
capacity value in the score table represents the edge weight
between the two corresponding points in the above two sets.
Fortunately, this problem can be addressed using a Hungarian
matching algorithm (the Kuhn-Munkres algorithm) [18]. In
Fig.4, the outputs of Hungarian matching algorithm are edges
(X1,X3) and (X2,X5), so the redundancy pairing results are

as follows: X3 acts as the redundancy for X1, and X5 acts as
the redundancy for X2. NuXG in the next section iteratively
call this subroutine to find an optimized grouping solution.
This subroutine is marked as MaximumWeightMatchings()
in line 7 of algorithm 2.

Another subroutine that will be used is SeedSearch(). The
example in Fig.4 can also be used to illustrate when this
subroutine is needed. After the above MaximumWeight-
Matchings(), two groups are identified: G1 = {{X1, X3}},
G2 = {{X2, X5}}, and the crossbar X4 is left. The capacity
of each subgroup is 8 and 7 respectively. Assuming G2 needs
another crossbar or crossbar group with Sc larger than 6, we
are supposed to add X4 to G2 and find redundancy crossbars
for X4 till they can meet the capacity requirement (larger than
6). This process is demonstrated in algorithm 1. Line 1 finds

Algorithm 2: NuXG algorithm
Input: Xbar matrices: X = {X1, X2, · · · , XN};

{(g1, r1), (g2, r2), · · · , (gM, rM)}, gi refers
to the required # for the Vc of the i-th group,
and ri is the minimum Sc of the Vc in the i-th
group

Output: Xbar-group sets: G = {G1, · · · , GM}
1 Res = X;
2 Sort crossbar matrices in X by the Sc;
3 Add crossbars with the Sc ≥ ri to Gi;
4 call SeedSearch();
5 while |Res| > 0 & ∃ |Gk| < gk do
6 /*Tp = {tp1, · · · , tpr}, tpi = (VGi ,X

i), Xi ∈ Res*/
7 Tp = MaximumWeightMatchings(St[][]);
8 for each tpi ∈ Tp do
9 Add Xi into the last subgroup of Gk ;

10 remove Xi from Res;
11 update the Vc of Gk;

12 call SeedSearch();

13 return: G;

that G2 requires an additional crossbar or crossbar group. Line
2 finds the Sc of {X2, X5} is larger than 6, so a new subgroup
will be built for G2. Line 3 is to make sure the current choice
is at least locally optimal. Line 4 updates Res, which is the
set of crossbars that have not been grouped.

B. Heuristic Redundancy Algorithm: NuXG

Given a set of M group specifications
{(g1, r1), (g2, r2), · · · , (gM, rM)} and a collection of physi-
cal crossbars X = {X1, X2, · · · , XN}, find a subset of X with
minimum cardinality (minimum number of physical crossbars)
and construct a set of virtual crossbars using the physical
ones in this subset to meet the M group specifications. Each
physical crossbar in this subset will be used in exactly one
constructed virtual crossbar.

Algorithm 2 takes in the required # for the Vc and the
minimum Sc of the Vc in each group. Given a set of crossbar
matrices X = {X1, X2, ..., XN}, algorithm 2 first sorts

TABLE I: ATT Configuration

ATT # Area(mmˆ2) Power(W)

Q-K-V
Engine

Crossbar 3456 0.0864 1.0368
ADC 3456 4.1472 6.912
DAC 3456 0.07344 1.728

Atten.
Engine

MM engine
(C L1 F) 2 1.527 0.0006

Softmax 2 0.388 0.00068

Head
Merge

Crossbar 864 0.0216 0.2592
ADC 864 1.0368 1.728
DAC 864 0.01836 0.432

L.N. LayerNorm 2 0.0065 0.0124

Fully
Connected

Engine

Crossbar 6912 0.1728 2.0736
ADC 6912 8.2944 13.824
DAC 6912 0.14688 3.456
gelu 2 0.015 0.0001

Mask Cache (8k) 1 0.0074 0.011
Buffer(64k) 8 0.835 0.249

eDRAM Bus 1 0.09 0.007
External I/O Interface 1 15.7 0.013

Total 32.57 31.74

TABLE II: Benchmark Configurations

Benchmarks
b s d m d i d k n h n l s l

Transformer [6] 64 512 2048 64 8 6 20∼40
Bert(base) [7] 8 768 3072 64 12 12 128
XLNet [8] 8 768 3072 64 12 12 128
XLM [9] 8 1024 4096 128 8 6 128

them according to their capacities in descending order in
line 2. Then, line 3 and 4 call SeedSearch() to initialize
the score table and virtual crossbars for each group. Lines
5∼12 are the main part of the proposed algorithm, which
terminates when no residual crossbars are left or each group
of G meets the corresponding required #. Line 6 calls Maxi-
mumWeightMatchings() to find the local optimal grouping
strategy according to the current score table. Lines 8∼11
update the set of remaining crossbars and current grouping
results G. Line 11 updates the Vc for each group. The final
step of each iteration is to update the score table St in line 12
(inside SeedSeach()).

V. METHODOLOGY

Power and Area Models. We use CACTI 7.0 [19] at 32
nm to model the power and area of the SRAM buffer and
the Mask Cache. The area and power for memristor-based
crossbars are adapted from ISAAC. The area and power of
DAC and ADC units are modeled from the analysis in [21].
One 1-bit DAC is used for each word line of the 128×128
crossbar. The power and area of the Shift&Add unit are so
small that we do not list them in Table I. For the power and
area of the MM units, Softmax, and LayerNorm Engines, we
scaled the results of existing literature ([22] for MM unit
and [23] for a 16-bit truncated fixed-point multiplier and an
adder respectively) to 32nm according to a recently proposed
model [24]. We employ a Hyper Transport serial link model as
off-chip links. Roughly, the area and power breakdown of the
proposed accelerator is listed in Table I. The time consumption
of GPU implementations is measured using NVVP.

Benchmarks. The benchmarks selected from SOTA works
are shown in Table II. Note that all the parameters (except s l
of Transformer) listed in the table are independent from data
sets. In the table, b s, d m, d i, d k, n h, n l and s l denote
the batch size, the embedding size, the inner layer size of fully
connected layers, the q,k,v vector length, the number of heads,
the number of layers and the sequence length respectively.
The data set for Transformer is the WMT‘16 Multi modal
Translation Task [25]. Transformer is implemented as an open
source tool using PyTorch [26]. Other baselines come from an
open source repository implemented using PyTorch: PyTorch-
Transformers-1.1.0 [27]. The data set for Bert, XLNet and
XLM is MRPC from GLUE data [28].

Fig. 5: Sparsity across layers with inference accuracy less than
2%

Performance Models. We developed an in-house simulator
based on data from NVSim [29] to model the forward propa-
gation process of attention-based neural networks. The cycle
time in the proposed accelerator is 50.88ns, which is consistent
with many existing PIM accelerators developed from NVSim.
We compare the simulated performance result with the same
neural networks running on a real GPU. The GPU platform is
an NVIDIA GTX 1080 Ti, and we use CUDA 10.1 to compile
the benchmarks. For energy saving, the metric we use is power
efficiency (PE, the number of 16-bit operations performed per
watt, GOPs/W).

Reference Schemes. To verify the efficiency of the pro-
posed algorithm, we use two schemes as the reference: Ideal
and RX [14]. Ideal refers to crossbars without any faulty cells,
and it can be considered as the theoretical ideal case. The
RX scheme is selected for the reference due to the minimal
hardware overhead over other schemes in the paper. The
system-level redundancy ratio for the RX is 3 under 20%
SAFs because this configuration brings about the minimal
classification error.

VI. EVALUATION RESULTS

A. Benchmark Profiling

We first profile the benchmarks of SOTA AttNNs in the
community using an NVIDIA GTX 1080 Ti GPU to under-
stand the performance bottlenecks. qkv, Heads Merge and

TABLE III: Layer Grouping Configurations

High(<0.35) Medium(0.35,0.5) Low(>0.5)
Transformer 1∼4,7∼9 5,6,10,11 12
Bert base 1∼7,9 8 11∼13

XLNet 1∼9 10 11,12
XLM 1,2 3 4∼6

FC (Fully connected layers, FC1 and FC2 in Fig.1) account
for 81.5%, 75.79%, 74.2% and 83.69% of the computation
time for Transformer [6], Bert [7], XLNet [8] and XLM [9]
respectively. These modules are absolutely the bottlenecks and
need to be focused on. By contrast, the attn consumes at most
20% for XLNet and around 10% for other benchmarks.

!

!"#

$

$"#

%

%"#

&

&"#

'

'"#

()*+,-.)/0) 10)234*,0 56702 568

9:0*; <5 =((
7
.
)/

*
;>
?0
:
@(
A
).
B
C
A
D
B
2@
E
D
0
0
:
B
D

Fig. 6: Throughput improvement

Fig. 5 shows weight sparsity across layers. The horizontal
axis denotes the layers. The vertical axis represents the per-
centage of pruned weights due to sparsity. From Fig.5, we can
observe that the layers close to the inputs are less sparse than
the remaining layers. For bert and XLNet, the sparsity of the
last few layers is nearly 100%. The largest accuracy loss is
1.9% which comes from Transformer.

B. Xbar Grouping Benefits

We should note that the layer sparsity configuration of the
four benchmarks in Fig.5 may be not the optimal configura-
tion, but layer-wise sparsity of benchmarks generally exists.
Finding the optimal sparsity configuration is not the focus of
this work.

According to Fig.5, we group the layers as shown in Table
III. We use 0.35 and 0.5 as sparsity thresholds to divide the
groups. Different split points impact the following crossbar
grouping results. The class describes how high or low the
redundancy requirements are for a given group of layers. The
storage capacity we use is 0.9,0.95 and 0.99 for the Low,
Medium and High groups respectively. For example, 0.9 means
that we can meet the accuracy requirements in the Low group
only if at least 90% of cells are fault free. As expected, the
redundancy ratio for the Low group will be smaller than that
of the other two groups.

To provide a fair comparison, we set the number of cross-
bars for the Ideal and ATT schemes to be equal to the RX.
The performance improvement showed in Fig.6 verifies the
benefits of the proposed algorithm, and as such only reflect

the results from bottlenecks. The throughput for RX is only
a quarter of that of the Ideal. For the fixed crossbars, the RX
scheme can only store one copy of weight matrices, while
the ideal scheme has four times the storage capacity for all
benchmarks. Compared to RX, ATT can store around 2.5 times
the weight matrices. Therefore, ATT boosts the throughput by
about 2.5 times over RX for all benchmarks. We see the least
improvement with XLNet because its Q-K-V engine must store
an additional weight matrix that the others do not.

For the power efficiency improvement, the values for the
Ideal case are theoretical maximums. The RX achieves only
20%∼25% of the Ideal values. In contrast, ATT largely
improves the performance and reaches around 60% of the
theoretical values for all benchmarks.

Fig. 7: Energy breakdown

Fig. 8: Overall speedup

C. Overall Performance Improvement

Fig.7 compares energy consumption including a breakdown
into components. Although ADCs and DACs are still high-
energy-consuming components for all three schemes, we find
the total energy of ATT is significantly reduced compared to
RX. This is because our proposed algorithm decreases the
redundancy ratio, thus reducing the number of ADCs and
DACs. Overall, ATT consumes just around 1.5 times more

energy than the ideal case to achieve almost the same inference
accuracy for all benchmarks.

Fig. 8 provides a comparison of the speedup of both ATT
and GPU implementations to both baselines. In general, cross-
bar based accelerators perform tens of times faster than GPU.
ATT achieves better performance than the RX, but still worse
than the Ideal. The average speedup of the Ideal with respect
to the GPU is 202.78×, whereas the RX can only achieve
50.69×. This is because more than half of the crossbars are
used for redundancy purposes. The average speedup of ATT
reaches 125.28×. XLM gets the smallest speedup because it
has the largest q,k,v vector size, which imposes pressure on
the Attention and LayerNorm engines.

VII. RELATED WORK

Hardware accelerator for AttNNs has been recently studied
by researchers [11]. However, they only concentrate on the
attention module that doesn’t dominate the inference time.
Additionally, their proposed cannot adapt to the latest AttNNs,
such as XLNet, GPT and XLM. One of the reasons is that the
gelu function is not supported by the aforementioned work.

There are previous works [1]–[3], [30] developing tradi-
tional neural networks including CNNs and RNNs. The unique
characteristics of AttNNs make these accelerators cannot tai-
lored to AttNNs. Among these works, Processing-In-Memory
architectures [1]–[3] achieve better performance than FPGA
and ASIC.

Fault tolerance has been intensively investigated for soft
errors [31]–[35] and hard errors [36]–[38] in the field of
conventional processors. On the other hand, there are only
a few related studies on ReRAM accelerators. Chen et al.
[12] first propose Stuck-At-Fault issues and studies their
characteristics (percentage and distribution). Xia et al. [14]
imply that hard faults can only be solved by redundancy
in section II.B. Meanwhile, Zhang et al. [13], [41] also use
similar methods to handle this issue. Seong. [40] focus on the
SAFs of PCM, which has a different memristor cell structure
from ReRAM. Li et al. [39] tackle soft faults in ReRAM.

VIII. CONCLUSION

PIM accelerators for deep learning regardless of hard
faults result in significant accuracy loss. Hardware redun-
dancy strategies that are unaware of application characteristics
usually lead to inefficient architectures. The observation that
weight sparsity varies with layers offers us an opportunity to
design a heuristic redundancy algorithm to deploy crossbars.
The proposed algorithm can be adapted to PIM accelerators for
CNNs. In this work, we apply this algorithm to an accelerator
for AttNNs, achieving more than 60% of the theoretical peak
performance and more than two times as much throughput as a
SOTA redundancy work. Additionally, an intra-layer pipeline
is designed for the accelerator.

ACKNOWLEDGEMENT

We appreciate the insightful feedback and suggestions from
anonymous reviewers who help us finalize the paper. This

work is supported in part by NSF Grants 1422408, 1527318,
1946626, and 2020446. Travis LeCompte is supported by a
Louisiana Board of Regent Fellowship.

REFERENCES

[1] P. Chi, et al. ”PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory,”
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 27-39, 2016.

[2] A. Shafiee, et al. ”ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars,” ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pp. 14-26,
2016.

[3] Hao Yan, et al. ”CELIA: A Device and Architecture Co-Design
Framework for STT-MRAM-Based Deep Learning Acceleration,” In
Proceedings of the 2018 International Conference on Supercomputing
(ICS ’18), pp. 149–159. 2018.

[4] Haoqiang Guo, et al. ”Hardware Accelerator for Adversarial Attacks on
Deep Learning Neural Networks,” In 2019 Tenth International Green
and Sustainable Computing Conference (IGSC), pp. 1-8, 2019.

[5] Haoqiang Guo, et al. ”Fooling AI with AI: An Accelerator for Adversar-
ial Attacks on Deep Learning Visual Classification,” In 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP),Vol. 2160, pp. 136-136, 2019 Jul 15.

[6] Vaswani, Ashish, et al. ”Attention is all you need,” NeurIPS, 2017, pp.
5998-6008.

[7] Devlin J. et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding,” arXiv preprint arXiv:1810.04805. 2018 Oct
11.

[8] Z. Yang, et al. “Xlnet: Generalized auto regressive pretraining for
language understanding,” In Advances in neural information processing
systems (NeurIPS), pp. 5754–5764, 2019.

[9] G. Lample and A. Conneau, “Cross-lingual language model pretraining,”
In Advances in neural information processing systems (NeurIPS), pp.
7057-7067, 2019.

[10] Hendrycks, Dan, and Kevin Gimpel. ”Gaussian error linear units
(gelus),” arXiv:1606.08415, 2016.

[11] Ham, Tae Jun, et al. ”A3: Accelerating Attention Mechanisms in Neural
Networks with Approximation,” In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 328-341,
2020.

[12] C.Y. Chen, et al. “Rram defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Transactions on
Computers, vol. 64, no. 1, pp. 180–190, 2014.

[13] B. Zhang, et al. “Handling stuck-at-faults in memristor crossbar arrays
using matrix transformations,” In Proceedings of the 24th Asia and South
Pacific Design Automation Conference (ASP-DAC ’19), pp. 438–443,
2019.

[14] L. Xia, et al. “Stuck-at fault tolerance in rram computing systems,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol.
8, no. 1, pp. 102–115, 2018.

[15] S. N. Truong and K.-S. Min, “New memristor-based crossbar array
architecture with 50-% area reduction and 48-% power saving for
matrix-vector multiplication of analog neuromorphic computing,” JSTS:
Journal of Semiconductor Technology and Science, vol. 14,no. 3, pp.
356–363, 2014.

[16] P. Nilsson, et al. “Hardware implementation of the exponential function
using taylor series,” in 2014 NORCHIP, IEEE, pp. 1–4, 2014.

[17] G. Du, et al. “Efficient softmax hardware architecture for deep neural
networks,” GLVLSI, In Proceedings of the 2019 on Great Lakes Sym-
posium on VLSI (GLSVLSI’19), pp. 75–80, 2019.

[18] H. W. Kuhn, “Variants of the hungarian method for assignment
problems,” Naval Research Logistics Quarterly, 1956, vol. 3, no. 4,
pp.253–258.

[19] R. Balasubramonian, et al. “Cacti 7: New tools for interconnect ex-
ploration in innovative off-chip memories,” ACM Trans. Archit. Code
Optim.(TACO), vol. 14, no. 2, pp. 1–25, 2017.

[20] L. Kull, et al. “A 3.1 mw 8b1.2 gs/s single-channel asynchronous sar
adc with alternate comparators for enhanced speed in 32 nm digital
soi cmos,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp.
3049–3058, 2013.

[21] M. Saberi, et al. “Analysis of power consumption and linearity in
capacitive digital-to-analog converters used in successive approximation
adcs,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 58, no.8, pp.1736–1748, 2011.

[22] R. P. Rajput and M. S. Swamy, “Super scalar pipelined inner product
computation unit for signed unsigned number,” Perspectives in Science,
vol. 8, pp. 606–610, 2016.

[23] M. Aguirre-Hernandez and M. Linares-Aranda, “Cmos full-adders for
energy-efficient arithmetic applications,” IEEE transactions on VLSI
systems, vol. 19, no. 4, pp. 718–721, 2010.

[24] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of cmos device performance from 180 nm to 7 nm,” Integration, vol.
58, pp. 74–81, 2017.

[25] D. Elliott, et al. “Multi30k:Multilingual english-german image descrip-
tions,” 2016. pp. 70–74.

[26] https://github.com/jadore801120/attention-is-all-you-need-pytorch
[27] https://github.com/huggingface/transformers
[28] A. Wang, et al. “Glue: A multi-task benchmark and analysis platform

for natural language understanding,” arXiv:1804.07461, 2018.
[29] X. Dong, et al. “Nvsim: A circuit-level performance, energy, and

area model for emerging non volatile memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no.
7, pp. 994–1007, 2012.

[30] S. Angizi, et al. ”MRIMA: An MRAM-Based In-Memory Accelera-
tor,” in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 5, pp. 1123-1136, May 2020, doi:
10.1109/TCAD.2019.2907886.

[31] L. Duan, et al. “Versatile Prediction and Fast Estimation of Architectural
Vulnerability Factor from Processor Performance Metrics,” In Proceed-
ings of the 15th IEEE International Symposium on High-Performance
Computer Architecture (HPCA-15), Raleigh, NC, Feb. 2009.

[32] L. Duan, et al. “Universal Rules Guided Design Parameter Selection
for Soft Error Resilient Processors,” In Proceedings of The 2011 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Austin, TX, Apr. 2011.

[33] T. LeCompte, et al. “Soft Error Resilience of Big Data Kernels through
Algorithmic Approaches,” Springer Journal of Supercomputing, Vol. 73,
pp. 4739–4772, Nov. 2017.

[34] L. Duan, et al. “Comprehensive and Efficient Design Parameter Selection
for Soft Error Resilient Processors via Universal Rules,” In IEEE
Transactions on Computers, Volume 63, Issue 9, pages 2201 – 2214,
Sep. 2014.

[35] L. Duan, et al. “Predicting Architectural Vulnerability on Multi-
Threaded Processors under Resource Contention and Sharing,” In IEEE
Transactions on Dependable and Secure Computing, Vol. 10(2), pages
114-127, Mar.-Apr. 2013.

[36] Y. Zhang, et al. “Optimal Microarchitectural Design Configuration Se-
lection for Processor Hard-Error Reliability,” In Proceedings of The 13th
IEEE International Symposium on Quality Electronic Design (ISQED),
Santa Clara, CA, Mar. 2012.

[37] Y. Zhang, et al. “Design Configuration Selection for Hard-error Reliable
Processors via Statistical Rules”, In Journal of Microprocessors and
Microsystems, Volume 38, Issue 1, pages 22–30, Feb. 2014.

[38] M. Alwadi,et al. ”Phoenix: Towards Ultra-Low Overhead, Recoverable,
and Persistently Secure NVM,” in IEEE Transactions on Dependable
and Secure Computing, doi: 10.1109/TDSC.2020.3020085.

[39] W. Li, et al. ”RRAMedy: Protecting ReRAM-Based Neural Network
from Permanent and Soft Faults During Its Lifetime,” 2019 IEEE 37th
International Conference on Computer Design (ICCD), pp. 91-99, 2019.

[40] N. H. Seong, et al. “Safer: Stuck-at-fault error recovery for memories,”
in Proceeding of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 115–124, 2010.

[41] B. Zhang, et al. “Handling stuck-at-fault defects using matrix transfor-
mation for robust inference of dnns,”IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TACD), 2019.

