Efficient Search-Space Pruning for Integrated
Fusion and Tiling Transformations

Xiaoyang Gao!, Sriram Krishnamoorthy!, Swarup Kumar Sahoo!, Chi-Chung
Lam!, Gerald Baumgartner?, J. Ramanujam?, and P. Sadayappan’

! Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210, USA
{gaox ,krishnsr,sahoo,clam, saday}@cse .ohio-state.edu
2 Department of Computer Science
Louisiana State University, Baton Rouge, LA 70803, USA
gb@csc.lsu.edu
% Department of Electrical and Computer Engineering and
Center for Computation and Technology
Louisiana State University, Baton Rouge, LA 70803, USA

jxrQ@ece.lsu.edu

Abstract. Compile-time optimizations involve a number of transfor-
mations such as loop permutation, fusion, tiling, array contraction, etc.
Determination of the choice of these transformations that minimizes the
execution time is a challenging task. We address this problem in the con-
text of tensor contraction expressions involving arrays too large to fit in
main memory. Domain-specific features of the computation are exploited
to develop an integrated framework that facilitates the exploration of the
entire search space of optimizations. In this paper, we discuss the explo-
ration of the space of loop fusion and tiling transformations in order
to minimize the disk I/O cost. These two transformations are integrated
and pruning strategies are presented that significantly reduce the number
of loop structures to be evaluated for subsequent transformations. The
evaluation of the framework using representative contraction expressions
from quantum chemistry shows a dramatic reduction in the size of the
search space using the strategies presented.

1 Introduction

Optimizing compilers incorporate a number of loop transformations such as per-
mutation, tiling, fusion, etc. Considerable work has been done on improving
locality and/or parallelism by loop fusion [8-11,18]. Fusion often creates im-
perfectly nested loops, which are more complex to tile effectively than perfectly
nested loops. Several works have addressed the tiling of imperfectly nested loops
[2,19]. Although there has been much progress in developing unified frameworks
for modeling a variety of loop transformations [1, 2, 15], their use has so far been
restricted to optimization of indirect performance metrics such as reuse distance,
degree of parallelism, etc.

The development of model-driven optimization strategies that target direct
performance metrics, remains a difficult task. In this paper, we address the
problem in the specific domain of tensor contractions involving tensors too large
to fit into physical memory. We use certain properties of the computations in this
domain to integrate various transformations and investigate pruning strategies
to reduce the search space to be explored.

The large sizes of the tensors involved require the development of out-of-core
implementations that orchestrate the movement of data between disk and main
memory. In this paper, we discuss the integration of loop fusion and tiling trans-
formations with the objective of minimizing disk I/O cost. We first divide the
input program into several independent loop nests, then enumerate the set of fu-
sion structures of each loop nest. A generalized tiling approach is presented that
significantly reduces the number of loop structures to be explored. It also en-
ables subsequent optimizations of I/O placements and loop permutations. This
approach enables an exploration of the entire search space using a realistic per-
formance model, without the need to resort to heuristics and search of a limited
subspace of the search space to limit search time.

The rest of this paper is organized as follows. In the next section, we elab-
orate on the computational context of interest and introduce some preliminary
concepts; in addition, an overview of the program synthesis system and the
overall approach are given. Section 3 describes a tree partitioning algorithm.
In Section 4, we propose a loop structure enumeration algorithm and prove its
completeness. The reductions in the space of loop structures to be explored is
shown for representative computations in Section 5. Conclusions are provided in
Section 6.

2 Background

The work presented in this paper is being developed in the context of the Tensor
Contraction Engine (TCE) program synthesis tool [3-6, 13]. The TCE takes as
input a high-level specification of a computation expressed as a set of tensor con-
traction expressions, and transforms it into efficient parallel code. The current
prototype of the TCE incorporates several compile-time optimizations which are
treated in a decoupled manner, with the transformations being performed in a
pre-determined sequence. In [12], we presented an integrated approach to deter-
mine the tile sizes and I/O placements for a fixed loop structure. Techniques to
prune the search space of possible I/O placements, orderings, loop permutations
and tiling for given a choice of fusion of tensor contractions were presented in
[17]. In this paper, we present a technique to enumerate the various fusion struc-
tures and develop an algorithm to significantly reduce the number of loop nests
to be evaluated for each fusion structure.

2.1 Computational Context

In the class of computations considered, the final result can be expressed using
a collection of multi-dimensional summations of the product of several input

arrays. For example, we consider a transformation used in quantum chemistry
to transform a set of two-electron integrals from an atomic orbital (AQ) basis
to a molecular orbital (MO) basis:

B(a,b,c,d) = Z C1(d,s) x C2(c,r) x C3(b,q) x C4(a,p) X A(p,q,r1,S5)

p,q,7,s

Here, all arrays would be initially stored on disk. The indices p, ¢, r, and
s have the same range N. The indices a, b, ¢, and d have the same range V.
Typical values for N range from 60 to 1300; the value for V is usually between
50 and 1000.

The calculation of B is done in four steps to reduce the number of floating
point operations,

T1(a,q,7,5) = > _ C4(a,p) x A(p,q,7,5)
p
T2(a7 b) T, 8) = Z 03(b7 q) X T]‘(a7 q7 T) S)

q

T3(a,b,c,s) = ZCQ(C, r) X T2(a,b,r,s)

B(a,b,c,d) = ZCl(d, s) x T'3(a,b,c,s)

The sequence of contractions in this form can be represented by a operation
tree, as shown in Fig. 1(a). The leaves correspond to the input arrays and the
root, corresponds to the output array. The intermediate arrays and output array
are produced by the tensor contraction of their immediate children. The edges
in the operation tree represent the producer-consumer relationship between con-
tractions.

Assuming that the available memory space is less than V* (which is 3TB for
V' = 800), any of the logical arrays A, T'1, T2, T3, and B is too large to entirely
fit in memory. Therefore, if the computation is implemented as a succession of
four independent steps, the intermediates T'1, T2, and T'3 have to be written
to disk after they are produced, and read from disk before they are used in the
next step. Furthermore, the amount of disk access volume could be much larger
than the total volume of the data on disk. Since none of these arrays can be
fully stored in memory, it is not possible to read each element only once from
disk. Suitable fusion of the common loops between producing and consuming
contractions can reduce the size of the intermediate array, making it feasible to
retain it in memory. Henceforth, the term intermediate node will be used to refer
to both the intermediate array produced in the corresponding interior node, and
the contraction that produces it. The reference shall be clear from the context.

Given a choice of fusion, an intermediate node not fused with its parent
divides the operation tree into two parts, both of which can be evaluated inde-
pendently. Such an intermediate node is called a cut-point. A cut-point node is

B = SUM(T3*C1)

for a,r,q,s,p
/ \ [tla,q,r,s += Ap,q,r,s * C4a,p

T3 = SUM(T2*C2) c1
for a,b,r,s,q

[tzabrs += tlaqrs *C3b,q

20,75

T2 = SUM(T1*C3)

for a,b,c,r,s
/ \ [t3a b,c,s += t2a,b,7‘,s * 026 r

T1=SUM(A*C4; C3
(Aeca) for a,b,c,d,s

/ \ [Ba,b,c,d += t3a,b,c,s * Cld,s

Operatlon tree for the four-index

transform (b) Corresponding unfused code structure

Fig. 1. Operation tree and unfused code structure for the four-index transform

assumed to be resident on disk. A connected operation tree without any interior
cut-points is called a fused sub-tree. The divided operation tree for the four-index
transform corresponding to T'1 being a cut-point is shown in Fig. 2(a). The loop
nesting tree (LNT) represents the loop structure of a fused sub-tree. Each node
in a LNT is labeled by the indices of a set of fully permutable loops appearing
together at the same level in the imperfectly nested loop structure. Loops in
the children nodes are surrounded by loops in the parent node. Fig. 2(b) shows
two possible LNT’s for the two fused subtrees in Fig. 2(a), respectively. The
corresponding code structure is shown in Fig. 2(c).

2.2 Overall approach

The program synthesis system takes an operation tree representing a set of tensor
contractions as input, and generates an efficient loop structure with explicit disk
I/O statements to implement the computation. The optimization process may
be viewed in terms of the following steps:

1. Operation Tree Partitioning: In this step, we divide the original operation
tree into several fused subtrees by identifying cut-points. The optimal loop
structures for the subtrees are independent of each other, and are determined
separately.

2. Loop Structures Enumeration: For each fused subtree, we enumerate candi-
date loop structures to be evaluated, as a set of LNT’s.

3. Intra-Tile Loop Placements: For a given LNT, we tile all loops at each node
and propagate intra-tile loops to all the nodes below it.

4. Disk I/O Placements and Orderings: We then explore various possible place-
ments and orderings of disk I/O statements for each disk array in a tiled loop

T1 = SUM(A*C4)

/N

o a,rng,s,t(T1)

A

B = SUM(T3*C1)

/N

a,b

loopNestl :
for a,r,q,s,p
[tla,q,r,s += Ap,q,r,s * C4a,p

loopNest2 :
for a,b
[for r,s
for ¢

T3 = SUM(T2*C2) c1

£\

T2 = SUM(T1*C3)

/\

) Divided operatlon trees

[£2),s += tlagrs * C3bq
for c
[3c,s += 124 % C2,»
for c¢,d,s
L [Ba,b,c,d += t3c,s * C]-d,s

| r,s | |c,d,s(B)|

c2

lam2)| |c3|

(b) Loop nesting trees

(c) Corresponding code
structure

Fig. 2. Representations involved in generation of a fused code structure.

structure with a pruning strategy to determine the best placement and or-
dering.

. Tile Size Selection: For each combination of loop transformations and I/O
placements, the I/O cost is formulated as a non-linear optimization problem
in terms of the tile sizes. The tile sizes that minimize the disk I/O cost are
determined using a general-purpose non-linear optimization solver.

. Code Generation: We calculate the disk access cost for each solution ob-
tained, and generate code for the one with the minimal disk I/O cost.

The possible choices of fused subtrees are first enumerated. This is explained
in Section 3. Given a fused sub-tree, the optimal loop structure and the cor-
responding cost can be determined by the following steps: 1) enumerating all
candidate loop structures; 2) enumerating placements and ordering of disk I/O
statments; 3) determining the tile size to minimize the disk I/O cost for each com-
bination; 4) selecting the program structure with the minimal disk I/O cost. The
algorithm for enumerating candidate loop structures is discussed in Section 4.
The search space of disk I/O placements and orderings, loop permutations and
tile sizes is pruned and modeled as a non-linear optimization problem in [17],
which is then solved to determine the disk I/O cost. In this paper, we focus
on determination of the fused sub-trees and the enumeration of candidate loop
nesting trees to be evaluated.

3 Tree Partitioning

In this section, we discuss the procedure to enumerate the set of all fused subtrees
to be evaluated. In general, fusing a loop between the producer of an intermediate

array and its consumer eliminates the corresponding dimension of the array and
reduces the array size. If the array fits in memory after fusion, no disk I/0
is required for that array. On the other hand, if the array does not fit in the
physical memory after fusion, the disk I/O cost will remain the same and there
is not improvement in locality. Therefore, fusion of any loops corresponding to
an intermediate node is assumed to cause the resulting intermediate to reside
in memory. Alternatively, an intermediate node not fused with its parent (cut-
point) is assumed to reside in disk.

An arbitrary operation tree with M intermediate nodes theoretically has
O(2M) possible fused sub-trees, but not all of them are legal. If both the children
of an intermediate node are fused with it, then the loops corresponding to the
summation indices in the given node must be the outermost loops; and it can
not be fused with its parent anymore. Thus, either the node itself or one of its
children must be a cut-point.

Based on this property, we can restrict the number of top sub-trees to O(M?).
The algorithm to enumerate the fused sub-trees rooted at a given node is shown
in Algorithm 1. It proceeds in a bottom-up fashion, constructing all fused sub-
trees rooted at a given node from those of its children. Given a node ¢ with two
children left and right, we can extend a fused sub-tree from either left or right
to include the given node. These sub-trees can further be extended to include the
given node’s parent. Besides, the given node can be considered as a cut-point.
In this scenario, all possible pairs of left and right fused sub-trees may form a
valid fused sub-tree for the given node. The field t.TreeSet represents the set of
fused sub-trees which can be extended to include the parent of ¢.

4 Loop Structure Enumeration

In this section, we first present an algorithm that can generate a set of loop
structures for a fused sub-tree. Then, we present the result that for any loop
structure S of the fused sub-tree, we can find a corresponding loop structure S’
in the generated set, so that S’ can be transformed to S by use of a multi-level
tiling strategy.

4.1 Enumeration Algorithm

In the previous section, we showed that a fused sub-tree must be in one of these
two forms:

— All contractions form a chain, called a contraction chain. For instance, Fig. 1
is such an operation tree, in which the contraction chain is 7'1,72,7T3, B.

— The contractions form two chains joining at the root node. In this case,
the contraction chain is connected by these two chains. An example of
such an operation tree is shown in Fig. 3, in which the contraction chain
isT1,7T2,B,T3,T4

Algorithm 1 EnumerateFusedSubtrees(t: the root of a subtree) returns TreeSet

t1 = the left child of ¢#; ¢» = the right child of t; TreeSet = empty
//Only one subtree
if both ¢; and t2 are input nodes then
Create a new Tree T'r with Tr.CutpointSet = ()
Insert T'r into TreeSet
end if
//Extending subtrees from the child not an input
if ¢; is an input node and ¢» is an intermediate node then
childSet = t2.TreeSet
Create a new Tree T'r with Tr.CutpointSet = {t2}
Insert T'r into TreeSet
end if
if t2 is an input node, and ¢; is an intermediate node then
childSet = t1.TreeSet
Create a new Tree T'r with Tr.CutpointSet = {¢t1}
Insert T'r into TreeSet
end if
for each subtree st in childSet do
Create a new Tree Tr with Tr.CutpointSet = st.CutpointSet
Insert T'r into TreeSet
end for
t.TreeSet = TreeSet
//Entending subtrees from either child, and cutting another child off
if both ¢t and ¢2 are intermediate nodes then
childSetl = t;.TreeSet
for each subtree st in childSetl do
Create a new Tree T'r with T'r.CutpointSet = {st.CutpointSet,t2}
Insert T'r into TreeSet
end for
childSet2 = ty. TreeSet
for each subtree st in childSet2 do
Create a new Tree T'r with Tr.CutpointSet = {st.CutpointSet,t1}
Insert T'r into TreeSet
end for
Create a new Tree T'r with Tr.CutpointSet = {¢1,t2}
Insert T'r into TreeSet
t.TreeSet = TreeSet
//Merging subtrees from both children, and extending the result
for each pair of subtrees stl in childSetl and st2 in childSet2 do
Create a new Tree T'r
Tr.CutpointSet = {st1.CutpointSet, st2.CutpointSet}
Insert T'r into TreeSet
end for
end if

B = SUM(T2*T3)

/N

T2 = SUM(T1*C3) T3 = SUM(C2*T4)
T1 = SUM(A*C4) c3 c2 T4 = SUM(D*C1)

SN N

Fig. 3. An operation tree with two chains

Given an operation tree that has n contraction nodes t1, ta, ..., t,, let t;.indices
denote all loop indices surrounding the contraction node t;. First, we create a
contraction chain of the operation tree. It corresponds to a sequence of perfectly
nested loops. Many different choices exist for the ordering of the fusions within
this sequence of perfectly nested loop nests. Each of the perfectly nested loops
corresponding to a contraction can be considered an independent loop nesting
tree. The fusion of sub-trees producing and consuming an intermediate array
creates an imperfectly nested loop nest, in which some of the common loops are
merged. The process of construction of the loop nesting trees corresponding to
a fused sub-tree can be modeled as a paranthesization problem. Consider the
sequence of contraction nodes T1, T2, T3, and B in the operation tree shown in
Fig. 1. ((T1(T2 T3))B) corresponds to a parenthesization in which the contrac-
tions producing T3 and consuming T3 are fused first and the resulting loop nest
is fused with the contractions producing T1 and B, in that order. Fig. 4 shows
one possible parenthesization for the four-index transform and the corresponding
loop nesting tree.

We enumerate all possible parenthesizations of the contraction chain. For
each parenthesization, a maximally fused loop structure is created by a recur-
sive construction procedure. We call it mazimally fused since, in the construction
procedure, each intermediate node will have its indices fused as much as possible
with its parent. The construction procedure is shown in Algorithm 2. It takes
a parenthesization P as input, and generate a corresponding LNT. A parenthe-
sization of a contraction chain with n nodes has n — 1 pairs of parentheses. Each
pair of parentheses includes two elements, left and right element. Each element
is either a single contraction node, or a parenthesization of a sub-chain within a
pair of parentheses.

Fig. 4 illustrates this proceduce for the ((T'1(7'2 T'3)) B) parenthesization of
the four-index transform.

Algorithm 2 Construction(P)

Given a parenthesization, the algorithm map it to a maximally fused loop structure
8
in LNT

Il = Pleft
r = P.right
if [is a parenthesization then
It = Construction(left)
else if [is a contraction then
It = Create a new LNT node
lt.andices = l.indices
lt.children = null
lt.contraction =1 {1t is a leaf, which includes a contraction node in it}
end if
if r is a parenthesization then
rt = Construction(right)
else if r is a contraction then
rt = Create a new LNT node
rt.indices = r.indices
rt.children = null
rt.contraction = r {rt is a leaf, which includes a contraction node in it}
end if
comindices = lt.indices N rt.indices
It.indices = lt.indices — comindices
rt.indices = rt.indices — comindices
Int = Create a new LNT node
Int.indices = comindices
Int.children = {lt,rt}
return Int

4.2 Completeness

In this section, we state results that are useful in proving that the set of maxi-
mally fused loop structures generated by the enumeration algorithm above can
represent all loop structures of a fused subtree.

Given an arbitrary loop nesting tree Int, we can map it to a maximal fused
loop nesting tree Int’, which is generated by the enumeration algorithm above
and can be translated to Int with proper multi-level tiling strategy. The mapping
algorithm consists of two steps:

1. Take Int as input, and create a parenthesization P of the contraction chain
using the generation routine provided in Algorithm 3.

2. Apply the construction procedure in Algorithm 2 on P to generate a maxi-
mally fused loop structure Int'.

Obviously, Int' is the set of mazimally fused loop structures generated by the
enumeration algorithm. We note that Int’ can be translated to Int by sinking
indices at upper levels down.

Parenthesization LNT
(T2T3) —
a2 | [c3) |
(T1(T2T3))
a,rns
[pan] [o |
a2 | [c3 |
(T1(T273) B)
a,s
| r | |b,c,d(B)|
[pan] [b
a2 | [c3 |

Fig. 4. Construction of a maximally fused loop structure for a particular parenthesiza-
tion of the four-index transform.

Lemma 1. For any pair of contraction nodes t; and t;, let common(Int,t;,t;)
be defined as the loops shared by ¢; and t; in int. We have common(Int,t;,t;)
C common(Int', t;,t;).

Lemma 2. If common(int,t;,t;) C common(Int',t;,t;), then we can trans-
form Int' to form Int" by sinking indices down, so that common(int,t;,t;) =
common(Int", t;,t;)

Applying the sinking operation in Lemma 2 for each pair of contraction
nodes (t;, tj), we can transform Int' to Int”, which satisfies the condition:
V(ti, t;), common(Int, t;, t;) = common(Int”,¢;,t;). After that, if a node r has
no indices in r.indices, we remove r from Int”, and put all children of r to its
parent. Then, Int" is same as Int.

Using a multi-level tiling strategy, a maximally fused loop strcuture can be
transformed into an arbitrarily fused loop structure by appropriate choice of tile

Algorithm 3 Parenthesize(Int)

//Given an LNT, the algorithm map it to a corresponding parenthesization

if Int.children # null then
P = null
for each child c in Int.children do
P’ = Parenthesize(c)
if P is null then
P=pP
else
P = new Parenthesization(P, P')
end if
end for
else
P = c.contraction {c is a leaf and includes a contraction node}
end if
return P

sizes. Multi-level tiling can transform the LNT of a loop structure as follows.
Each loop present in the root is split into two components, an inter-tile loop and
an intra-tile loop. The intra-tile loop is placed on child nodes of the root. Then
the loops present at each of the child nodes, including the intra-tile loops from the
root, are again split and intra-tile loops are placed on their respective child nodes.
This process is porformed recursively until leaf nodes are encountered. The loop
structure corresponding to the LNT can also be transformed accordingly. Fig. 5
shows the tiling of loop a in the LNT in Fig. 4 and the relationship between
different tiles, where a.range represents the range of loop a.

The sinking operation in an LNT can be modeled as a multi-level tiling in
the loop structure. If we tile a fused loop with a tile size equal to its loop range,
it leads to the same result as sinking the loop index from the original node to its
children. Let S and S’ be loop structures representd by Int and Int' respectively.
Since we can transform Int’ to Int by sinking operations, we can also transform
S’ to S by suitable multi-level tiling. We use an example to show the details of
the transformation procedure below.

An arbitrary fully fused loop structure S for the four-index transform is
shown in Fig. 6(a), and the corresponding maximally fused loop structure S’
may be seen in Fig. 6(b). After we apply multi-level tiling, S’ is translated to
the form shown in Fig. 7(a). In addition, if we set ranges of inter-tile loops as
shown below, and remove all loops with range = 1, S’ can be rewritten in the
form shown in Fig. 7(b), which is exactly the same as S. The indexing of the
intermediate arrays has been shown in a generic fashion.

als = als = sTy = sTy = sTs =rTy = q11 = 1;aT) = a.range;rl; = r.range

aTi,s

| atTz,r | | ali, b,c,d (81

aTi.range X ali.range = a.range

aTs.range X al>.range = al;.range

| al2, p,q (T1)| | aTs,b | aTs.range x als.range = al>.range

| alaq (T2) | | ab,c (T3) |

(a) Multi-level tiling loop a (b) Range of different level tiles

Fig. 5. An example of multi-level tiling in LNT

for a for a,s
[for r [for r
for q,s,p [for ¢
[tls,q += Apq,rs * Clap for p
for b,s,q [t1 += Apgrs* Chap
[£250s += tl % C3pq for b
for b,c,r,s [t2b +=1t1%C34
[t3b.cs += 25,05 % C2¢, for b,c
for b,c,d,s L [t3b,c += 12y *x C2
L [Ba,b,c,d += t3b,c,s * Cld,s for b,c,d
L [Ba,b,c,d += t3p,c * Clys

(a) Arbitrary fused loop structure: S (b) Maximally fused loop structure: S’

Fig. 6. An arbitrary loop structure and the corresponding maximally fused structure

4.3 Complexity

The total number of loop structures generated by the enumeration algorithm
is the same as the number of parenthesizations of the contraction chain. For a
contraction chain with n nodes, the number of all possible parenthesizations is
called the n'" Catalan Number. It is exponential in n, and the upper bound is
O(4™/n?/?). In contrast, the number of possible loop structures is potentially
exponential in the total number of distinct loop indices in the n intermediate
nodes, a considerably larger number. The fused operation tree is not very long
for most representative computations. In most practical applications, a fused
subtree usually has no more than 5 contractions in a single chain. Note that the
nt* Catalan Number is not very large when n is small. The first six Catalan
Numbers are listed here: 1,1,2,5,14,42, ...

for aT},sTy
[for rTy ,aTs,sT>
[for qT1,rT>,aTs,sTs
for p,qli,rl>,als,sls
I:t]-aI,qI,rI,sI+ = Apqrs*Chap
for b, qli,rl>,als,sls
|:t2(l[,b,7‘I,SI+ = tla[,q[,rl,s[* C3b,q
for b, ¢, rli, als,sl>
L [t3a1,b,c,sz+ =1241,b,r1,61 ¥ C2c,r
for al,, b, ¢, d, sl
i [Ba,b,c,d+ =t3ar,b,c,s1 * Clas

for aT}
[for rT1
for p,qli,sl3
[tlal,ql,rl,sl+ =Apqrs*Clayp
for b,qli,sls
I:tzal,b,rl,sl+ = tla],q],r],s] * C3b,q
for b,c,rli,als,sl>
[t3a1b,c.8r+ = 120160761 % 2,
for b,c,d,sl;
L [Ba,b,c,d+ =1t3arb,c,s1 ¥ Clgs

(a) After inserting intra-tile loops (b) After selecting proper tile counts

Fig. 7. Translate S’ to S by multi-level tiling strategy

5 Experimental Results

The enumeration algorithm discussed in Section 4.1 generates a set of candidates
loop structures to be considered for data locality optimization. Without this
algorithm, and generalized tiling, the set of loop structures to be evaluated might
be too large, precluding their complete evaluation and necessitating the use of
heuristics.

We evaluate the effectiveness of our approach using the following tensor con-
tractions from representative computations from the quantum chemistry domain.

1. Four-index transform (4index): Introduced in Section 2.

2. CCSD: The second and the third computations are from the class of Cou-
pled Cluster (CC) equations [7, 14, 16] for ab initio electronic structure mod-
eling. The sequence of tensor contraction expressions extracted from this
computation is shown as follows:

S(j,i,b,a) = Zl,k (Al k,b,a)
X (2a Qe(B(d, ¢, 1, k) x Ci,¢)) x D(4,d)))

3. CCSDT: This is a more accurate CC model. A sub-expression from the
CCSDT theory is:

S(h3,h4,pl,p2) =3 o 16 s (y-000vvv(h8, h6, hd, p9, pl, p2) x
o (t_vo(pg, 110) x - (t-v0(p7, h8)
> ps (t-vo(p5, h6) x v_oovv(h10, h3,p7,p5)))))
We evaluated the fused subtree corresponding to the entire operation tree

without any cut-points. The number of all possible loop structures and the
number of candidate loop structures enumerated by our approach are shown

Table 1. Effectiveness of pruning of loop structures.

#Contractions #Loop structures Reduction
Total Pruned

4index 4 241 5 98%
CCSD 3 69 2 97%
CCSDT 4 182 5 98%

in Table 1. It can be seen that a very large fraction of the set of possible loop
structures, up to 98%, is pruned away using the approach developed in this

paper.

6 Conclusions

In this paper we addressed the problem of optimizing the disk access cost of
tensor contraction expressions by applying loop transformations. We discussed
approaches to partitioning of the operation tree into fused sub-trees and gen-
erating a small set of maximally-fused loop structures that cover all possible
imperfectly nested fused loop structures. The approach was evaluated on a set
of computations representative of the targeted quantum chemistry domain and
a significant reduction was demonstrated in the number of loop structures to be
evaluated.

Acknowledgments This work is supported in part by the National Science Foun-
dation through awards 0121676, 0121706, 0403342, 0508245, 0509442, 0509467,
and 0541409.

References

1. N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations for locality
enhancement of imperfectly nested loops. In Proc. of ACM Intl. Conf. on Super-
computing, 2000.

2. N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loops nests. In
Proc. of SC 2000, 2000.

3. G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C. Lam,
M. Nooijen, R. Pitzer, J. Ramanujam, and P. Sadayappan. A High-Level Approach
to Synthesis of High-Performance Codes for Quantum Chemistry. In Proc. of SC
2002, November 2002.

4. D. Cociorva, G. Baumgartner, C. Lam, J. Ramanujam P. Sadayappan, M. Nooijen,
D. Bernholdt, and R. Harrison. Space-Time Trade-Off Optimization for a Class of
Electronic Structure Calculations. In Proc. of ACM SIGPLAN PLDI 2002, pages
177-186, 2002.

5. D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sadayappan, and
J. Ramanujam. Global Communication Optimization for Tensor Contraction Ex-
pressions under Memory Constraints. In Proc. of IPDPS, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooi-
jen, D. E. Bernholdt, and R. Harrison. Towards Automatic Synthesis of High-
Performance Codes for Electronic Structure Calculations: Data Locality Optimiza-
tion. In Proc. of the Intl. Conf. on High Performance Computing, volume 2228,
pages 237-248. Springer-Verlag, 2001.

T. Crawford and H. F. Schaefer ITI. An Introduction to Coupled Cluster Theory
for Computational Chemists. In K. Lipkowitz and D. Boyd, editor, Reviews in
Computational Chemistry, volume 14, pages 33-136. John Wiley, 2000.

C. Ding and K. Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. J. Parallel Distrib. Comput., 64(1):108-134,
2004.

G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective Loop Fusion for Array
Contraction. In Proc. of the Fifth LCPC Workshop, 1992.

K. Kennedy. Fast greedy weighted fusion. In Proc. of ACM Intl. Conf. on Super-
computing, 2000.

K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Proc. of Languages and Compilers for
Parallel Computing, pages 301-320. Springer-Verlag, 1993.

S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. Lam, J. Ramanujam, P. Sa-
dayappan, and V. Choppella. Efficient synthesis of out-of-core algorithms using a
nonlinear optimization solver. In Proc. of IPDPS, page 34b, 2004.

C. Lam. Performance Optimization of a Class of Loops Implementing Multi-
Dimensional Integrals. PhD thesis, The Ohio State University, Columbus, OH,
August 1999.

T. J. Lee and G. E. Scuseria. Achieving chemical accuracy with coupled clus-
ter theory. In S. R. Langhoff, editor, Quantum Mechanical Electronic Structure
Calculations with Chemical Accuracy, pages 47-109. Kluwer Academic, 1997.

A. W. Lim and M. S. Lam. Maximizing Parallelism and Minimizing Synchroniza-
tion with Affine Partitions. Parallel Computing, 24(3-4):445-475, May 1998.

J. M. L. Martin. Benchmark Studies on Small Molecules. In P. v. R. Schleyer, P. R.
Schreiner, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, and H. F. Schaefer
II1, editors, Encyclopedia of Computational Chemistry, volume 4, pages 115-128.
John Wiley, 1998.

S. K. Sahoo, S. Krishnamoorthy, R. Panuganti, and P. Sadayappan. Integrated loop
optimizations for data locality enhancement of tensor contraction expressions. In
Proc. of Supercomputing (SC 2005), 2005.

S. Singhai and K. S. McKinley. Loop Fusion for Parallelism and Locality. In
Proc. of Mid-Atlantic States Student Workshop on Programming Languages and
Systems, 1996.

Y. Song and Z. Li. New Tiling Techniques to Improve Cache Temporal Locality.
In Proc. of ACM SIGPLAN PLDI, 1999.

