
1

Parallelization of Utility Programs
Based on Behavior Phase Analysis

Xipeng Shen Chen Ding

Department of Computer Science
University of Rochester

2

Motivation

 Multi-core is coming to personal computers
 Many programs, especially those run on

past personal computers, are sequential
programs

 Automatic parallelization is the path of
least resistance

3

Utility Programs
 A class of dynamic programs which take

a group of requests and serve them one
by one

 Examples
 Compilers, interpreters, compressions,

transcoding utilities, ...
 GNU C compiler (Gcc)
 The compilation of a function is a phase

4

 Dynamic data (access)
 Dynamically allocated data structures
 One or more levels of indirections

 Complex control flow
 Input-dependent execution paths
 Many (recursive) function calls

 More difficult to analyze and parallelize
than scientific programs

Challenges

5

Opportunities

 Different phase instances operate on
different data, thus have few data
dependences between them

 Recently we found a way to detect the
phase boundaries

 Can we automatically parallelize those
programs at the phase level?

6

Overview
 Objective: to preliminarily check the feasibility

of parallelizing utility programs at phase level
without special hardware support

 Technology
 Phase detection
 Dependence detection
 Program transformation

 Evaluation
 Summary

7

Behavior Phase Detection

 Key idea: active profiling
 Use regular input to trigger repetitive

behavior
 Filtering dynamic basic block trace based

on frequency and recurring distance
 Use real input to verify phase boundaries

*Refer to “Shen et. al., TR 848, CS, U of Rochester, 2004”

8

Phase-based Parallelization

 Process-based parallelization
 Separate address space

 Each process executes one or a group
of phase instances

9

Phase-Dependence Detection

 Trace memory accesses in profiling runs
 Detect different kinds of dependences

 anti- and output dependences can be
ignored because of separate address space

 Classify flow dependences into removable
and non-removable types

10

Flow Dependence

 Removable flow dependence
 Memory reuses
 Implicit initialization
 Byte operations

11

Memory Reuses

 Two objects are allocated to the same
memory location in different part of the
execution.

12

Implicit Initialization

 NODE* xlevel(NODE* expr){
if (++xltrace<TDEPTH){
...

}
- - xltrace;

}

*code fragments from SPEC2K/LI

13

Byte Operation
 char * buf;
 ...

buf[i] = 0; // byte operation

*code fragments from SPEC2K/Parser

lda s4, -28416(gp) // load array base address
addq s4, s0, s4 // shift to the target array element
ldq u v0, 0(s4) // load a quadword from the current element
mskbl v0, s4, v0 // set the target byte to 0 by masking
stq u v0, 0(s4) // store the new quadword to the array

14

Program Transformation
 We parallelize programs by hand at phase

boundaries based on the information
provided by the automatic tool

 A fully automatic tool would include
automatic parallelization with run-time
support to guarantee correctness and rollback
when necessary
 Currently being studied

15

Evaluation (4-CPU Xeon 2GHz)

-0.5

0

0.5

1

1.5

1 2 4 8

Process Number

S
p
e
e
d
u
p
 t

im
e
s

Gzip Parser

16

Evaluation (16-CPU Sunfire
Sparc V9 1.2 GHz)

0
2
4
6
8

10
12
14

1 2 4 8 16 32

Process Number

S
p
e
e
d
u
p
 t

im
e
s

Gzip Parser

17

Summary

 A preliminary exploration on the coarse-
grain parallelization of utility programs
based on behavior phases

 Fully automatic system remains our
future work

18

The End

Thanks!

