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Motivation

 Multi-core is coming to personal computers
 Many programs, especially those run on

past personal computers, are sequential
programs

 Automatic parallelization is the path of
least resistance
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Utility Programs
 A class of dynamic programs which take

a group of requests and serve them one
by one

 Examples
 Compilers, interpreters, compressions,

transcoding utilities, ...
 GNU C compiler (Gcc)
  The compilation of a function is a phase



4

 Dynamic data (access)
 Dynamically allocated data structures
 One or more levels of indirections

 Complex control flow
 Input-dependent execution paths
 Many (recursive) function calls

 More difficult to analyze and parallelize
than scientific programs

Challenges
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Opportunities

 Different phase instances operate on
different data, thus have few data
dependences between them

 Recently we found a way to detect the
phase boundaries

 Can we automatically parallelize those
programs at the phase level?
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Overview
 Objective: to preliminarily check the feasibility

of parallelizing utility programs at phase level
without special hardware support

 Technology
 Phase detection
 Dependence detection
 Program transformation

 Evaluation
 Summary
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Behavior Phase Detection

 Key idea: active profiling
 Use regular input to trigger repetitive

behavior
 Filtering dynamic basic block trace based

on frequency and recurring distance
 Use real input to verify phase boundaries

*Refer to “Shen et. al., TR 848, CS, U of Rochester, 2004”
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Phase-based Parallelization

 Process-based parallelization
 Separate address space

 Each process executes one or a group
of phase instances
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Phase-Dependence Detection

 Trace memory accesses in profiling runs
 Detect different kinds of dependences

 anti- and output dependences can be
ignored because of separate address space

 Classify flow dependences into removable
and non-removable types
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Flow Dependence

 Removable flow dependence
 Memory reuses
 Implicit initialization
 Byte operations
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Memory Reuses

   Two objects are allocated to the same
memory location in different part of the
execution.
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Implicit Initialization

  NODE* xlevel(NODE* expr){
if (++xltrace<TDEPTH){
...

}
- - xltrace;

}

*code fragments from SPEC2K/LI



13

Byte Operation
  char * buf;
   ...

buf[i] = 0; // byte operation

*code fragments from SPEC2K/Parser

lda s4, -28416(gp) //  load array base address
addq s4, s0, s4 // shift to the target array element
ldq u v0, 0(s4) //  load a quadword from the current element  
mskbl v0, s4, v0 // set the target byte to 0 by masking
stq u v0, 0(s4) // store the new quadword to the array
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Program Transformation
 We parallelize programs by hand at phase

boundaries based on the information
provided by the automatic tool

 A fully automatic tool would include
automatic parallelization with run-time
support to guarantee correctness and rollback
when necessary
 Currently being studied
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Evaluation (4-CPU Xeon 2GHz)
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Evaluation (16-CPU Sunfire
Sparc V9 1.2 GHz)
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Summary

 A preliminary exploration on the coarse-
grain parallelization of utility programs
based on behavior phases

 Fully automatic system remains our
future work
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The     End

Thanks!


