
Software Thread Level Speculation for the Java
Language and Virtual Machine Environment

Christopher J.F. Pickett Clark Verbrugge

School of Computer Science, McGill University
Montréal, Qúebec, Canada H3A 2A7

{cpicke,clump }@sable.mcgill.ca

Abstract. Thread level speculation (TLS) has shown great promise as a strategy
for fine to medium grain automatic parallelisation, and in a hardware contexttech-
niques to ensure correct TLS behaviour are now well established. Software and
virtual machine TLS designs, however, require adherence to high level language
semantics, and this can impose many additional constraints on TLS behaviour, as
well as open up new opportunities to exploit language-specific information. We
present a detailed design for a Java-specific, software TLS system that operates
at the bytecode level, and fully addresses the problems and requirements imposed
by the Java language and VM environment. Using SableSpMT, our research TLS
framework, we provide experimental data on the corresponding costsand bene-
fits; we find that exceptions, GC, and dynamic class loading have only a small
impact, but that concurrency, native methods, and memory model concerns do play
an important role, as does an appropriate, language-specific runtime TLS support
system. Full consideration of language and execution semantics is criticalto cor-
rect and efficient execution of high level TLS designs, and our work here provides
a baseline for future Java or Java virtual machine implementations.

1 Introduction
Thread level speculation (TLS), also known as speculative multithreading (SpMT), is a
technique for automatic program parallelisation that has been investigated from a hard-
ware perspective for several years, and current systems arecapable of showing good
speedups in simulation based studies [1, 2]. As a hardware problem, the issues of ensuring
correctness under speculative execution have been well defined, and different rollback or
synchronization approaches are sufficient to guarantee overall correct program behaviour.
Software approaches to TLS, however, need to take into account the full source language
semantics and behaviour to ensure correct and efficient execution, and in general this is
not trivially ensured by low level hardware mechanisms.

In this paper we provide a detailed description of the requirements and performance
impact of various high level aspects of Java TLS execution. We consider the full Java
semantics, including all bytecode instructions, garbage collection (GC), synchronization,
exceptions, native methods, dynamic class loading, and thenew Java memory model [3].
These requirements are often dismissed or ignored in existing Java TLS work, but in fact
are crucial to correct execution and can significantly affect performance.

Language and VM level speculation also produce design constraints due to efficiency
concerns; for instance, Java programs tend to have frequentheap accesses, object allo-
cations, and method calls. Our runtime TLS support system accomodates this behaviour,
and we evaluate the relative importance of dependence buffering, stack buffering, return
value prediction, speculative allocation, and priority queueing.

General purpose software and intermediate, VM level implementations of TLS are
difficult goals, but have significant potential advantages,including the use of high level
program information and the ability to run on existing multiprocessor hardware. Rather
than describe a series of optimisations to eliminate previously characterized thread over-
heads [4], our work here is intended to provide a thorough Java TLS design and an
understanding of the requirements and relative impact of high level language semantics.

1.1 Contributions
We make the following specific contributions:
• We provide a complete design for TLS at the level of Java bytecode. We modify

existing instructions for speculative safety and introduce only two new bytecodes,
SPMTFORKandSPMTJOIN . We also present software implementations of various
runtime support components suitable for the Java virtual machine environment.

• We provide a detailed exposition of how high level Java language constructs and se-
mantics affect TLS design. This includes object allocation, garbage collection, native
methods, exceptions, synchronization, and the new Java memory model.

• We analyse the impact of high level safety considerations and the benefits derived
from our runtime support components using an implementation of this design, the
SableSpMT analysis framework [4].

In the following section we present related work on TLS and Java designs in that
context. Then we describe our basic TLS threading model and provide an overview of
SableSpMT in Section 3. Details of our design for Java TLS aredescribed in Section 4,
and intricacies of the Java language are considered in Section 5. Experimental analyses
of both the impact of safety constraints and mechanisms thatsupport Java TLS execution
are given in Section 6. Finally, we conclude and discuss future work in Section 7.

2 Related Work
Thread level speculation has been the subject of hardware investigations for over a decade,
and a variety of general purpose machines have been proposedand simulated [5–7].
These have also been tailored to specific speculation strategies; loop levelspeculation
focusses on loop iterations [8], whereasmethod levelspeculation orspeculative method
level parallelism(SMLP) [9] speculates over method calls. SMLP has been identified
as particularly appropriate for Java, given the relativelyhigh density of method calls in
Java programs, and simulation studies have shown quite goodpotential speedup [9]. The
impact of frequent method calls was further explored and optimised by Huet al. in their
study of return value prediction [10].

Most current hardware designs could in fact be classified as hybrid hardware/soft-
ware approaches since they rely to various extents on software assistance. Most com-
monly, compiler or runtime processing is required to help identify threads and insert
appropriate TLS directives for the hardware [11, 12]. Jrpm makes further use of several
code optimisations that reduce variable dependencies [1],and other recent designs such
as STAMPede [2] and Mitosis [13] are based to a large degree oncooperative compiler
and software help.

Speculative hardware, even with software support, largelyobviates the considera-
tion of high level language semantics: correct machine codeexecution implies correct
program behaviour. Pure software architectures based on C or FORTRAN also have rela-
tively straightforward mappings to speculative execution, and thus systems such as Soft-
spec [14], thread pipelining [15], and others [16, 17] do notrequire a deep consideration
of language semantics.

For Java stronger guarantees must be provided. In the context of designing JVM roll-
back for debugging purposes some similar semantic issues have been considered [18], but
much less so for Java TLS. As part of their software thread partitioning strategy, Chen
and Olukotun do discuss Java exceptions, GC, and synchronization requirements [1].
However, they do not consider class loading, native methods, or copying GC behaviour,
and nor does their handling of speculative synchronizationby simply ignoring it correctly
enforce Java semantics. Pure Java source studies, such as the partially or fully hand-done
examinations by Yoshizoeet al. [19] and Kazi and Lilja [20], focus on small execution

traces in a limited environment or rely on human input respectively. In the former case
the environment is too constrained for Java language issuesto arise. In the latter, excep-
tions, polymorphism, and GC are discussed, though not analysed, and assumptions about
ahead-of-time whole program availability are contrary to Java’s dynamic linking model.
These are nota priori clearly insignificant differences; the effect of dynamic class loading
in Java, for instance, has spawned a large number of non-trivial optimisation considera-
tions [21], and despite Kazi and Lilja’s dismissal of GC as unimportant for applications
with small footprints, many Java applicationsdo have large memory requirements [22,
23]. Differences and omissions such as these make it difficult to compare Java studies,
and leave important practical implementation questions open; our work here is meant to
help rectify this situation.

3 Background and System Overview
In our design for Java TLS we employspeculative method level parallelism(SMLP), as
depicted in Figure 1. SMLP uses method callsites as fork points: the parent thread enters
the method body, and the child thread begins execution at thefirst instruction past the
callsite. When the parent returns from the call, then if thereare no violations the child
thread is committed and non-speculative execution continues where speculation stopped,
otherwise the parent re-executes the child’s body. SMLP accommodates Java’s dense
object-oriented method invocation structure, and has previously been demonstrated as a
useful TLS paradigm for the language [1, 10].

Fig. 1. (a) Sequential execution of Java bytecode.The target method of anINVOKE<X> instruc-
tion executes before the instructions following the return point. (b)Speculative execution of Java
bytecode under speculative method level parallelism (SMLP).Upon reaching a method callsite, the
non-speculativeparent threadT1 forks a speculativechild threadT2. If the method is non-void,
a predicted return value is pushed onT2’s Java operand stack.T2 then continues past the return
point in parallel with the execution of the method body, buffering main memory accesses. WhenT1
returns from the call, it joinsT2. If the actual return value matches the predicted return value, and
there are no dependence violations between buffered reads and post-invoke values,T2’s buffered
writes are committed and non-speculative execution jumps ahead to whereT2 left off, yielding
speedup. If therearedependence violations or the prediction is incorrect,T2 is simply aborted.

An overview of the SableSpMT execution environment and JavaTLS analysis frame-
work [4] is shown in Figure 2. SableSpMT is an extension of the“switch” bytecode in-
terpreter in SableVM [24], a Free / open source software Javavirtual machine. SableVM
adheres to the JVM Specification [25], and is capable of running Eclipse and other large,
complex programs. Static analysis with Soot [26] occurs ahead-of-time, and SableSpMT
uses the results to prepare special speculativecode arraysfor Java methods from their
non-speculative equivalents in SableVM; code arrays are generated from Java bytecode,
and are contiguous sequences of word-sized instructions and instruction operands repre-
senting method bodies. SableSpMT forks and joins child threads at runtime, and these

Fig. 2. The SableSpMT thread level speculation execution environment.SableSpMT is an exten-
sion of SableVM. Soot is used to transform, analyse, and attach attributesto .class files in an
ahead-of-time step. SableVM reads in these classes during class loading, parsing attributes and
preparing method bodies. Sequential execution depends only the non-speculative code arrays, and
interacts with normal JVM support components. Speculative execution requires preparation of spe-
cial speculative code arrays, and depends on additional TLS support components. SableSpMT’s
single-threaded execution mode shares processors with non-speculative execution, whereas the
multithreaded mode splits single non-speculative threads across multiple processors.

depend on the speculative code arrays for safe out-of-orderexecution. Various TLS run-
time support facilities are needed, including priority queueing, return value prediction,
dependence buffering, and stack buffering. SableSpMT alsointeracts with SableVM’s
runtime support components, including a semi-space copying garbage collector, native
method execution, exception handling, synchronization, and the Java memory model.
Outside of thread forking and joining, speculation has negligible impact on and is largely
invisible to normal multithreaded VM execution, withs = max(n − p, 0) speculative
threads running on free processors, wheren is the number of processors andp is the
number of non-sleeping non-speculative parent Java threads.

4 Java TLS Design
We now describe the main Java TLS structures in our design forSMLP at the virtual
machine level. These can be broadly classified into speculative method preparation com-
ponents, speculative runtime support components, and speculative execution modes.

4.1 Speculative Method Preparation
The preparation of method bodies for TLS can be broken into several steps. Static analy-
sis takes place and classfile attributes are parsed, fork andjoin points are inserted, byte-
code instructions are modified, and parallel speculative code arrays are generated. Some
of these steps take place ahead of time as a matter of technical convenience, and may
overlap with each other.

The final stages of preparation occur when a method is invokedfor the first time. Once
primed for speculation, a child thread can be forked at any callsite within the method
body. Furthermore, speculation can continue across methodboundaries as long as the
methods being invoked or returned to have been similarly prepared.

Static Analysis and Attribute Parsing An advantage to language level TLS is the abil-
ity to use high level program information. In our case we incorporate information from
the Soot compiler analysis framework [26], and include two analyses for improved re-
turn value prediction [27]. The first is aparameter dependenceanalysis that determines
which method parameters will affect the return value; this is used to reduce the mem-
ory requirements and improve the accuracy of a memoization predictor. The second is a

return value useanalysis that detects return values that are unconsumed or appear only
inside boolean and branch expressions; this is used to relaxconstraints on predictor ac-
curacy. The results are encoded using Soot’s attribute generation framework [28], and
parsed by SableVM during class loading. During method preparation, the analysis data
are associated with callsites for use by the return value prediction component.

Fork and Join Insertion The SableSpMT TLS engine needs the ability to fork and join
child threads. We introduce newSPMTFORKandSPMTJOIN instructions that provide
this functionality. Under SMLP threads are forked and joined immediately before and
after method invocations, and so these instructions are inserted around callsites, repre-
sented by theINVOKE<X>instructions.

Soot is used in another AOT pass to perform the insertion. We place calls to dummy
static voidSpmt.fork() andSpmt.join() around every callsite, and during runtime
method preparation these are replaced with the appropriateSPMTFORKandSPMTJOIN
instructions. This approach has several advantages: first,transformed classfiles will run
in the absence of TLS support, the dummy methods being trivially inlined; second, in-
tegration with a static analysis to determine good fork points is facilitated; and third,
bytecode offsets are automatically adjusted.

Table 1. Java bytecode instructions modified to support speculation.Each instruction is marked
according to its behaviours that require special attention during speculative execution. These be-
haviours are marked “once”, “maybe”, or “yes” according to their probabilities of occurring within
the instruction. “Forces stop” indicates whether the instruction may force termination of a spec-
ulative child thread, but does not necessarily imply abortion and failure.Not shown are branch
instructions; these are trivially fixed to support jumping to the rightpc .

instruction reads writes locks unlocks allocates throws enters loads orders forces
global global object object object exception native codeclass(es)memory stop

GETFIELD yes maybe once maybe maybe
GETSTATIC yes once maybe maybe
<X>ALOAD yes maybe maybe
PUTFIELD yes maybe once maybe maybe

PUTSTATIC yes once maybe maybe
<X>ASTORE yes maybe maybe

(I|L)(DIV|REM) maybe maybe
ARRAYLENGTH maybe maybe

CHECKCAST maybe once maybe
ATHROW yes yes

INSTANCEOF once maybe
RET maybe

MONITORENTER yes yes yes maybe yes yes
MONITOREXIT yes yes yes maybe yes yes

INVOKE<X> maybe maybe maybe maybe maybe once maybe maybe
<X>RETURN maybe maybe maybe maybe maybe once maybe maybe

NEW yes yes maybe once maybe
NEWARRAY yes yes maybe maybe

ANEWARRAY yes yes maybe once maybe
MULTIANEWARRAY yes yes maybe once maybe

LDC STRING once once

Bytecode Instruction Modification The majority of Java’s 201 bytecode instructions
can be used verbatim for speculative execution; however, roughly 25% need modifica-
tion to protect against potentially dangerous behaviours,as shown in Table 1. If these
instructions were modified in place, the overhead of extra runtime conditionals would
impact on the speed of non-speculative execution. Instead,modification takes place in
a duplicate copy of the code array created especially for speculative execution. Indeed,
the only significant change to non-speculative bytecode is the insertion of fork and join
points. Problematic operations include:

• Global memory access. Reads from and writes to main memory require buffering,
and so the<X>A(LOAD|STORE) and(GET|PUT)(FIELD|STATIC) instructions are
modified to read and write their data using a dependence buffer, as described in Sec-
tion 4.2. If final or volatile field access flags are set, these instructions may require a
memory barrier, as described in Section 5, in which case speculation must also stop.

• Exceptions. In unsafe situations, many instructions must throw exceptions to ensure
the safety of bytecode execution [25], including(I|L)(DIV|REM) that throw Ar-
ithmeticExceptions upon division by zero, and others that throw NullPointerExcep-
tions, ArrayIndexOutOfBoundsExceptions, and ClassCastExceptions. Application or
library code may also throw explicit exceptions usingATHROW. In both cases, specu-
lation rolls back to the beginning of the instruction and stops immediately; however,
the decision to abort or commit is deferred until the parent joins the child. Excep-
tions must also be handled safely if thrown by non-speculative parent threads with
speculative children, as discussed in Section 5.

• Detecting object references.The INSTANCEOFinstruction computes type assigna-
bility between a pre-specified class and an object referenceon the stack. Normally,
bytecode verification promises that the stack value is always a valid reference to the
start of an object instance on the heap, but speculative execution cannot depend on
this guarantee. Accordingly, speculation must stop if the reference does not lie within
heap bounds, or if it does not point to an object header; currently we insert a magic
word into all object headers, although a bitmap of heap wordsto object headers would
be more accurate and space-efficient.

• Subroutines.JSR (jump to subroutine) is always safe to execute because the target ad-
dress is hardcoded into the code array. However, the return address used by its partner
RET is read from a local variable, and must point to a valid instruction. Furthermore,
for a given subroutine, if theJSR occurs speculatively and theRETnon-speculatively,
or vice versa, the return address must be adjusted to use the right code array. Thus a
modifiednon-speculativeRET is also needed.

• Synchronization.The INVOKE<X> and <X>RETURNinstructions may lock and un-
lock object monitors, andMONITOR(ENTER|EXIT) will always lock or unlock ob-
ject monitors; they furthermore require memory barriers and are strongly ordering.
These instructions are also marked as reading from and writing to global variables,
as lockwords are stored in object headers. Speculative locking and unlocking is not
currently supported, and always forces children to stop.

• Method entry.Speculatively,INVOKE<X> are prevented from entering unprepared
methods and triggering class loading and method preparation. Furthermore, at non-
static callsites, the receiver is checked to be a valid object instance, the target is
checked to have the right stack effect, and the type of the target’s class is checked
for assignability to the receiver’s type. Invokes are also prevented from entering na-
tive code or attempting to execute abstract methods.

• Method exit.After the synchronization check, the<X>RETURNinstructions require
three additional safety operations: 1) potential buffering of the non-speculative stack
frame from the parent thread, as described in Section 4.2; 2)verifying that the caller is
not executing apreparation sequence, a special group of instructions used in SableVM
to replace slow instructions with faster versions [24]; and3) ensuring that speculation
does not leave bytecode execution entirely, which would mean Java thread death, VM
death, or a return to native code.

• Object allocation. Barring an exception being thrown or GC being triggered, theNEW
and ((MULTI|)A|)NEWARRAY instructions are safe to execute. TheLDC STRING
specialisation ofLDCallocates a constantString object upon its first execution, the

address of which is patched into both non-speculative and speculative code arrays,
and forces speculation to stop only once. Allocation and GC are discussed in greater
detail in Section 5.

To the best of our knowledge, Table 1 is comprehensive. The outlined modifications
are enough to support TLS for the SPECjvm98 benchmarks and are consistent with our
understanding of the JVM Specification [25].

Fig. 3.Parallel code arrays.(a) non-speculative code array prepared for methodbar() ; (b) spec-
ulative version of the same code array with modified instructions.

Parallel Code Array Generation The goal of this extensive bytecode modification is
to prepare parallel code arrays for speculative execution,as shown in Figure 3. The non-
speculative array is duplicated, branch targets are adjusted, and modified instructions
replace ordinary non-speculative versions where necessary. Additionally,SPMTFORKand
SPMTJOIN surround everyINVOKE<X> in both code arrays. Transitions between non-
speculative and speculative execution are facilitated by identical instruction offsets in
each array.

4.2 Speculative Runtime Support
In addition to preparing method bodies for speculative execution, the speculation en-
gine provides various support components that interact with bytecode and allow for child
thread startup, queueing, execution, and death to take place while ensuring correct exe-
cution through appropriate dependence buffering.

Thread Forking Speculative child threads are forked by non-speculative parents and
also by speculative children atSPMTFORKinstructions. Speculating at every fork point
is not necessarily optimal, and in the context of SMLP various heuristics for optimising
fork decisions have been investigated [12]. SableSpMT permits relatively arbitrary fork
heuristics; however, we limit ourselves to a simple “alwaysfork” strategy in this paper
as a more generally useful baseline measurement.

Having made the decision to fork a child, several steps are required. First, those vari-
ables of the parent thread environment (JNIEnv) that can be accessed speculatively are
copied to a childJNIEnv struct; in this fashion, the child assumes the identity of its
parent. Second, a child stack buffer is initialized and the parent stack frame is copied
to the child, giving it an execution context. Third, a dependence buffer is initialized;
this protects main memory from speculative execution, and allows for child validation
upon joining. Fourth, the operand stack height of the child is adjusted to account for the
stack effect of the invoke following the fork point, and thepc of the child is set to the
first instruction past the invoke. Fifth, a return value is predicted for non-void methods;
technically, any arbitrary value can be used as a “prediction”, although the chance of
speculation success is greatly reduced by doing so. In the above steps, memory reuse
is critical in reducing the overhead of thread environment,dependence buffer, and stack
buffer allocation.

Priority Queueing In the default multithreaded speculative execution mode, children
are enqueued at fork points on a globalO(1) concurrent priority queue; higher priority

threads are those that are expected to do more useful work. The queue consists of an array
of doubly-linked lists, one for each priority from 0–10, andsupportsenqueue , dequeue ,
and delete operations. Helper OS threads compete to dequeue and run children on
separate processors. There is a single test-and-test-and-set (TATAS) lock protecting
the queue, and queue synchronization is a small but non-negligible source of overhead.
Priorities 0–10 are computed asmin(l × r/1000, 10), wherel is the average bytecode
sequence length andr is the success rate. We find that this function gives acceptable
distributions, if somewhat biased towards lower priorities.

Shavitet al. considered scalable concurrent priority queues [29], and found that for
a small number of priorities and processors that this designis optimal, except that syn-
chronizing per-priority and using MCS [30] queue locks instead of TATAS spinlocks may
afford some improvements. Closely related CLH locks [31] are available in SableSpMT;
we find that although they distribute queue access much more evenly amongst competing
threads, no speedup over TATAS locks is achieved.

Return Value Prediction Speculative children forked at non-void callsites need their
operand stack height adjusted to account for the return value, and must be aborted if
an incorrect value is used. Accurate return value prediction (RVP) can significantly im-
prove the performance of Java SMLP [10], and we previously reported on our aggressive
RVP implementation in SableSpMT [32], the use of two compiler analyses for extracting
further accuracy [27], and the integration of RVP analysis into our framework [4].

Return value predictors are associated with individual callsites, and can use context,
memoization, and hybrid strategies, amongst others. Additionally, attributes generated
by the compiler analyses are parsed during method preparation, and can be used to relax
predictor correctness requirements and reduce memory consumption. Accurate RVP can
incur significant overheads [4], and it is likely that not synchronizing on dynamically
expanding predictor hashtables and disabling sub-optimalpredictors on a per-callsite
basis can help to minimize the cost.

Fig. 4. Dependence buffering.When a specu-
lative global load instruction is executed, first
the write buffer is searched, and if it does not
contain the address of the desired value then
the read buffer is searched. If the value address
is still not found, the value at that address is
loaded from main memory. When a speculative
global write instruction is executed, the write
buffer is searched, and if no entry is found a
new mapping is created.

Fig. 5. Stack buffering. f1throughf6 are stack
frames corresponding to Java methods. A spec-
ulative child is forked atf4 in the parent, and
in turn a second-generation grandchild thread
is forked atf5 in the child. Stack frames are
buffered on forking, and additionally when
children return from methods;f2 in the grand-
child is buffered from the non-speculative par-
ent, as its immediate ancestor never descended
belowf3.

Dependence Buffering Most TLS designs propose a mechanism for buffering reads
from and writes to main memory by speculative threads in order to prevent against po-
tential dependence violations. In Java, main memory consists of object instances and
arrays on the garbage-collected heap, and static fields in class loader memory.

In hardware, dependence buffers can be built as table based structures similar to
caches [2], and we propose a similar design for software TLS,as shown in Figure 4.
Buffer objects are attached to speculative threads on startup, and internally consist of
nine read and nine write sub-buffers, specialised for the eight primitive types and also
for object references. Use of type-specific sub-buffers is an optimisation possible in high
level TLS environments, and helps reduce buffer space requirements. The sub-buffers are
implemented as open addressing hashtables; values are stored using the value address as
a key, and fast lookup is provided by double hashing. A backing linked list allows for fast
iteration during validation and committal.

Stack Buffering As well as heap and static data, speculative threads may alsoaccess lo-
cal variables and data stored on the Java operand stack. It follows that stack accesses must
be buffered to protect the parent stack in the event of failure, as shown in Figure 5. The
simplest mechanism for doing so is to copy stack frames from parent threads to separate
child stacks both on forking children and on exiting methodsspeculatively. Additionally,
children must create new stack frames for any methods they enter.

Pointers to child threads are stored one per stack frame, andthis allows for conve-
nientout-of-orderthread spawning [33] where each parent can have multiple immediate
children, exposing additional parallelism. Although not supported by our SableSpMT
implementation at this time, child threads can also fork their own children, which when
combined with out-of-order spawning leads to a tree of children for a single fork point.

Thread Joining Upon reaching some termination condition, a speculative child will
stop execution and leave its entire state ready for joining by its parent. The child may
stop of its own accord if it attempts some illegal behaviour as summarized in Table 1,
if it reaches anelder sibling, that is, a speculative child forked earlier on by the same
parent at a lower stack frame, or if it reaches a pre-defined speculative sequence length
limit. The parent may also signal the child to stop if it reaches the join point associated
with the child’s fork point, or if it reaches the child’s forking frame at the top of the VM
exception handler loop. SableSpMT uses a per-instruction asynchronous polling strat-
egy within speculative threads to detect parent signals. Optimising poll points to occur
only at backward branches may offer improvements in the speed of speculative bytecode
interpretation, at the expense of longer wait times for the parent.

The join process involves verifying the safety of child execution and committing
results. First, a full memory barrier is issued, and the child is then validated according to
four tests: 1) the predicted return value is checked againstthe actual return value for non-
void methods, according to the safety constraints of staticanalyses [27]; 2) the parent
is checked for not having had its root set garbage-collectedsince forking the child; 3)
the dependence buffers are checked for overflow or corruption; and 4) values in the read
dependence buffer are checked against main memory for violations.

If the child passes all four tests, then the speculation is safe; all values in the write
buffer are flushed to main memory, buffered stack frames entered by the child are copied
to the parent, and non-speculative execution resumes with thepc and operand stack size
set as the child left them. Otherwise, execution continues non-speculatively at the first
instruction past theSPMTJOIN . Regardless of success or failure, the child’s memory is
recycled for use at future fork points. Note that buffer commits may result in a reordering
of the speculative thread’s write operations, which must inturn respect the requirements
imposed by the new Java memory model, as discussed in Section5.

4.3 Speculative Execution
SableSpMT supports two speculative execution modes, a single-threaded mode where
bytecode interpretation alternates between non-speculative and speculative execution in
a single thread, and a truly multithreaded mode that dependson multiple processors for
parallelisation. Both modes allow for non-speculative Java threads to coexist with the
speculative sytem. The former mode has previously been described as appropriate for
debugging, testing, porting, and limit analyses [4], and sohere we focus on multithreaded
execution.

In the multithreaded mode, children are assigned priorities at fork points based on
speculation histories, and enqueued on theO(1) priority queue. A minimal amount of
initialization is done to limit the impact of fork overhead on non-speculative threads.
There is a pool of helper OS threads running, one per free processor, and these dequeue
and execute children according to priority.

If the parent thread joins a child that it previously enqueued, and that child did not
get removed by a helper OS thread, the child is deleted by simply unlinking it from the
list for that priority, and its memory is recycled. Otherwise, if the child has started, the
parent signals it to stop, and then begins the usual validation procedure. If successful, the
parent jumps ahead, otherwise the parent simply continues.

5 Java Language Considerations
Several traps await the unsuspecting implementor that tries to enhance a JVM to support
thread level speculation. These traps are actually core features of the Java language —
object allocation, garbage collection, native method execution, exception handling, syn-
chronization, and the Java memory model — and a Java TLS implementation must handle
them all safely in order to be considered fully general. The impact of these features is
measured in Section 6.

Object Allocation Object allocation occurs frequently in many Java programs,and per-
mitting speculative allocation significantly increases maximum child thread lengths. Ad-
ditionally, it is unnecessary to buffer accesses to objectsallocated speculatively. Spec-
ulative threads can either allocate without synchronization from a thread-local heap,
or compete with non-speculative threads to acquire a globalheap mutex. Normally,
speculation must stop if the object to be allocated has a non-trivial finalizer, i.e. not
Object.finalize() , for it would be incorrect to finalize objects allocated by aborted
children; however, in SableVM, finalization is disabled altogether, as permitted by the
JVM Specification [25]. Allocation also forces speculationto stop if either GC or an Out-
OfMemoryError would be triggered as a result. Object references only become visible
to non-speculative Java threads upon successful thread validation and committal; aborted
children will have their allocated objects reclaimed in thenext collection. Although this
does increase collector pressure, we did not observe any difference in GC counts at the
default heap size when speculative allocation was enabled.

Garbage Collection All objects in Java are allocated on the garbage-collected Java heap.
This is one of the main attractions of the language, and as such, any serious proposal to
extend it must consider this feature; indeed, many Java programs will simply run out of
memory without GC. SableVM uses a stop-the-world semi-space copying collector by
default [24], and every object reference changes upon everycollection; thus, any spec-
ulative thread started before GC must be invalidated after GC. Speculative threads are
invisible to the rest of the VM, and are not stopped or traced during collection; however,
heap accesses are buffered, and so speculation can safely continue during GC. Threads
are invalidated if the collection count of the parent threadincreases between the fork and
join points. The default collector in SableVM is invoked relatively infrequently, and we

find that GC is responsible for a negligible amount of speculative invalidations. Other GC
algorithms are trickier to negotiate with, and may require either pinning of speculatively
accessed objects or updating of dependence buffer entries.

Native Methods Java provides access to native code through the Java Native Interface
(JNI), and native methods are used in class libraries, application code, and the VM itself
for low-level operations such as thread management, timing, and I/O. Speculation must
stop upon encountering native methods, as these cannot be executed in a buffered envi-
ronment without significant further analysis. However, non-speculative threads can safely
execute native code while their speculative children execute pure bytecode continuations.

Exceptions Implicit or explicit exceptions simply force speculation to stop. Speculative
exception handling is not supported in SableSpMT for three reasons: 1) exceptions are
rarely encountered, even for “exception-heavy” applications like jack [32]; 2) writing
a speculative exception handler is somewhat complicated; and 3) exceptions in specu-
lative threads are often the result of incorrect computation, and thus further progress is
likely to be wasted effort. In Java source code,try {} catch() {} andtry {} catch()
{} finally {} may be compiled to use exception handlers withJSR andRET instruc-
tions [25]. The speculative safety of these instructions isdiscussion in Section 4.1, and
does not depend on their usage for exception handling.

Non-speculatively, if exceptions are thrown out of a methodin search of an appropri-
ate exception handler, any speculative children encountered as stack frames are popped
must be aborted. In order to guarantee a maximum of one child per stack frame, chil-
drenmustbe aborted at thetopof the VM exception handler loop, before jumping to the
handlerpc . This prevents speculative children from being forked inside eithercatch or
finally blocks while another speculative child is executing in the same stack frame.

Synchronization Object access is synchronized either explicitly by theMONITORENTER
andMONITOREXITinstructions, or implicitly via synchronized method entryand exit.
Different groups have explored speculative locking [34, 35], in which reads and writes to
global object locks are buffered, and this will be interesting to consider in future work. In
the absence of such strategies, speculative synchronization is prohibited and must force
children to stop; somewhat surprisingly, synchronizationhas been unsafely ignored by
Java TLS studies in the past [1, 10]. Non-speculatively, synchronization always remains
safe, and it is even possible to fork and join speculative threads inside critical sections.
Thus code which is traditionally considered a parallelism bottleneck can be parallelised,
and this encourages coarse-grained locking, desirable from a software engineering per-
spective for its easier programmability.

The Java Memory Model Existing proofs on the safety of load and store reordering un-
der TLS are correct for single-threaded programs [36], but the new Java memory model
(JMM) [3] imposes additional constraints on multithreadedexecution; in turn, the JSR-
133 Cookbook specifies the insertion of memory barriers at various places in order to
meet these constraints [37]. Speculative execution can only continue past a memory bar-
rier if the dependence buffer records an exact interleavingof memory accesses and the
relevant barrier operations; that we reuse entries for value addresses already in the buffer
and do not record memory barriers precludes doing so in our current design.

The orderings required for various API calls, including non-speculative thread cre-
ation and joining, are provided by our design due to their implementations as native
methods, which already force speculation to stop. For object synchronization several
rules apply; most critically, a memory barrier is required before unlock operations to
guarantee that writes in the critical section are visible tofuture threads entering the same
monitor. By disabling speculative locking entirely we provide a much stronger guarantee
than required; future work on speculative locking will needa finer grained approach.

Loads and stores of volatile fields also require memory barriers, to ensure interpro-
cessor visibility between operations. Similarly, the loads and stores of final fields require
barriers, except that onx86 andx86 64 these are no-ops [37]. However, speculatively,
we must stop on final field stores, which appear only in constructors, to ensure that a
final field is not used before the object reference has been made visible, a situation that is
made possible by reordering writes during commit operations. Our conservative solution
is to stop speculation on all volatile loads and stores and also all final stores.

In Java, finalizers are executed after object collection, typically by a separate finalizer
thread. However, aggressive code optimisations can drastically shorten object lifetimes,
such that an object finalizer might even run before initialization has completed [38], and
accordingly, the new JMM specifies that finalization can onlyoccur after the constructor
has exited. This can be problematic for Java TLS if successful speculation past the con-
structor ends up deleting the object reference, and unordered commits allow the finalizer
to run before all of the constructor’s writes are flushed. We could conservatively disallow
speculative threads to be joined if the parent encounters a non-trivial finalizer after fork-
ing; again, a further simplification is afforded by SableVM in that finalizers are not run
at all. Avoiding finalizers is in general part of good Java programming practice.

6 Experimental Analysis
In this section we employ the SableSpMT framework to analysethe impact of both specu-
lation support components and Java language features on TLSexecution. All experiments
were performed on a 1.8 GHz 4-way SMP AMD Opteron machine running Linux 2.6.7,
with all free processors running speculative threads. We use the SPECjvm98 benchmark
suite at size 100 (S100), and a speculative child thread is forked at every callsite. Nested
speculation is disabled, but out-of-order spawning does take place. Althoughraytrace
is technically not part of SPECjvm98 and therefore excludedfrom geometric means, we
include results for purposes of comparison; it is the single-threaded equivalent ofmtrt .

Table 2.Child thread termination.
termination reason comp db jack javac jess mpeg mtrt rt

class resolution and loading2.14K 1.76K 94.8K 487K 3.80K 14.7K 4.79K 5.64K
failed object allocation 1 3 23 17 39 0 28 40
invalid object reference 563 553K 342K 280K 431K 485 407K 278K

finals and volatiles 842 1.45M 2.17M 1.11M 1.95M 888 115K 68.8K
synchronization 4.30K 26.8M 6.95M 17.0M 4.89M 10.4K 658K 351K

unsafe method entry or exit 2.66K 1.55K 16.0K 622K 2.62K 1.65K 3.60K 3.00K
implicit non-ATHROWexception 989K 828K 9.57K 572K 78.6K 2.00K 31.2K 20.8K

explicit ATHROWexception 0 0 187K 82 0 0 0 0
native code entry 332 28.2K 1.02M 1.02M 2.63M 527K 259K 260K

elder sibling reached 1.24M 3.81M 5.06M 16.1M 5.62M 14.1M 4.03M 4.23M
deleted from queue 348K 686 559K 3.13M 2.55M 4.48M 34.2M 1.57M
signalled by parent 202M 92.6M 20.1M 42.1M 56.3M 80.8M 122M 124M

TOTAL CHILD COUNT 204M 127M 36.5M 82.4M 74.5M 99.9M 162M 131M

In Table 2, total counts are given for all child thread termination reasons. In all cases,
the majority of children are signalled by their parent thread to stop speculation. Signif-
icant numbers of child threads are deleted from the queue, and elder siblings are fre-
quently reached. We looked at the average thread lengths forspeculative children, and
found them to be quite short, typically in the 0–10 instruction range. These data all in-
dicate that threads are being forked too frequently, and areconsistent with the general
understanding of Java application behaviour: there are many short leaf method calls and
the call graph is very dense [23]. Inlining methods will change the call graph structure,
and it has previously been argued that inlined Java SMLP execution benefits from coarser
granularity [10]. Introducing inlining into our system andexploring fork heuristics are
therefore part of future work. Outside of these categories,it is clear that synchroniza-

tion and the memory barrier requirements for finals and volatiles are important; enabling
speculative locking and recording barrier operations would allow threads to progress fur-
ther. Native methods can also be important, but are much harder to treat. The other safety
considerations of the Java language do not impact significantly on speculative execution;
even speculative exceptions are responsible for a minorityof thread terminations.

Table 3.Child thread success and failure.
join status comp db jack javac jess mpeg mtrt rt

exception in parent 0 0 386K 23.4K 0 0 0 0
incorrect prediction 18.0M 22.7M 2.80M 11.3M 5.80M 7.73M 4.85M 3.72M
garbage collection 4 20 119 206 470 0 90 68

buffer overflow 0 0 0 10 0 0 0 0
dependence violation1.60M 1.44K 160K 1.53M 342K 14.7M 4.14M 4.00M

TOTAL FAILED 19.6M 22.7M 3.34M 12.9M 6.14M 22.4M 9.00M 7.72M
TOTAL PASSED 184M 103M 32.6M 66.4M 65.8M 73.0M 119M 122M

Data on the number of speculative thread successes and failures, as well as a break-
down of failure reasons, are given in Table 3. Failures due toGC, buffer overflows and
exceptions are quite rare, and the majority of failures typically come from incorrect re-
turn value prediction. This again emphasizes the importance of accurate RVP in Java
SMLP, and the weak impact of exceptions and GC. Dependence violation counts are not
insignificant, and reusing predictors from the RVP framework for generalised load value
prediction should help to lower them. In general, failures are much less common than
successes, the geometric mean failure rate being 12% of all speculations. While this is
encouraging, many threads are quite short due to an abundance of method calls and there-
fore forked children, and the high overheads imposed by thread startup, so it is likely the
case that had they progressed a lot further, more violationswould have occurred.

Table 4. Impact of TLS support components on application speedup.The priority queue was dis-
abled by only enqueueing threads if a processor was free, return value prediction was disabled by
always predicting zero, and the remaining components were disabled byforcing premature thread
termination upon attempting to use them.

experiment comp db jack javac jess mpeg mtrt rt mean

forced failure baseline 1297s 931s 293s 641s 665s 669s 1017s 1530s 722s
no priority queueing 0.94x 1.22x 1.35x 1.32x 1.58x 0.97x 1.68x 2.05x 1.27x

no return value prediction 1.03x 1.17x 1.28x 1.24x 1.44x 1.03x 1.72x 1.70x 1.25x
no dependence buffering1.04x 1.22x 1.12x 1.05x 1.16x 1.02x 0.95x 0.97x 1.08x

no object allocation 0.95x 1.30x 1.39x 1.26x 1.55x 0.98x 1.13x 1.23x 1.21x
no method entry and exit 0.94x 1.02x 0.97x 0.98x 1.02x 0.95x 0.79x 0.91x 0.95x
full runtime TLS support 1.06x 1.27x 1.39x 1.37x 1.64x 1.01x 1.82x 2.08x 1.34x

Currently, thread overheads preclude actual speedup, and runtimes are within one
order of magnitude [4]. This is competitive with hardware simulations providing full ar-
chitectural and program execution detail [39], but we are also optimistic about techniques
for achieving real speedup. In order to factor out the effects of fork and join overhead,
we use a baseline execution time where speculation occurs asnormal, but failure is auto-
matically induced at every join point, calculating a mean relative speedup of 1.34x.

Table 4 shows the impact of disabling individual support components on Java TLS
execution times. We note first of all thatcompress andmpegaudio are resilient to par-
allelisation, likely due to our current, naı̈ve thread forking strategies. In some cases, dis-
abling components can even lead to slight speedup. This phenomenon occurs if overhead
costs outweigh component benefits; for example, disabling return value prediction can
mitigate the cost of committing many short threads. In general, we can provide a par-
tial ordering of support components by importance: the priority queue is least important;
method entry and exit, or stack buffering, and dependence buffering are most important;
return value prediction and speculative object allocationlie somewhere in-between.

7 Conclusions and Future Work
Language and software based thread level speculation requires non-trivial consideration
of the language semantics, and Java in particular imposes some strong TLS design con-
straints. Here we have defined a complete system for Java TLS,taking into account var-
ious aspects of high level language and virtual machine behavioural requirements. Our
implementation work and experimental analysis of Java-specific behaviour show that
while most of these concerns do not result in a significant impact on TLS performance,
conservatively correct treatment of certain aspects can reduce potential speedup, most
notably synchronization. Part of our future work is thus to investigate different forms of
speculative locking [34, 35] within a Java-specific context.

Our design focuses on defining correct Java semantics in the presence of TLS, and
demonstrating the associated cost. However, as with any speculative system, performance
and TLS overhead are also major concerns, and efforts to improve speedup in many fash-
ions are worthwhile, as suggested by previous profiling results [4]. We are confident that
overhead can be greatly reduced in our prototype implementation, through optimisation
of individual components, greater use of high level programinformation, and employ-
ment of general and Java-specific heuristics for making forking decisions and assigning
thread priorities. Further speedup is also expected by allowing speculative children to
spawn speculative children, and by supporting load value prediction, both increasing the
potential parallelism. Longer term future work includes animplementation of TLS within
the IBM Testarossa JIT and J9 VM, where we hope to incorporateand measure these and
other improvements, and research JIT-specific TLS problemsand opportunities.

Acknowledgements
We would like to thank Etienne Gagnon for his help in SableVM development. We would
also like to thank our colleagues Allan Kielstra and Mark Stoodley for constructive criti-
cism of initial drafts of this paper. This research was funded by an IBM CAS fellowship,
NSERC, FQRNT, and McGill University.

References
1. Chen, M.K., Olukotun, K.: The Jrpm system for dynamically parallelizing Java programs. In:

ISCA. (2003) 434–446
2. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: The STAMPede approach to thread-level

speculation. TOCS (2005) To appear.
3. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In:POPL. (2005) 378–391
4. Pickett, C.J.F., Verbrugge, C.: SableSpMT: A software framework for analysing speculative

multithreading in Java. In: PASTE. (2005)
5. Franklin, M.: The Multiscalar Architecture. PhD thesis, University of Wisconsin–Madison

(1993)
6. Figueiredo, R., Fortes, J.: Hardware support for extracting coarse-grain speculative parallelism

in distributed shared-memory multiprocessors. In: ICPP. (2001) 214–226
7. Ooi, C.L., Kim, S.W., Park, I., Eigenmann, R., Falsafi, B., Vijaykumar, T.N.: Multiplex: Uni-

fying conventional and speculative thread-level parallelism on a chip multiprocessor. In: ICS.
(2001) 368–380

8. Tsai, J.Y., Huang, J., Amlo, C., Lilja, D.J., Yew, P.C.: The superthreaded processor architecture.
TC 48 (1999) 881–902

9. Chen, M.K., Olukotun, K.: Exploiting method-level parallelism in single-threaded Java pro-
grams. In: PACT. (1998) 176–184

10. Hu, S., Bhargava, R., John, L.K.: The role of return value prediction in exploiting speculative
method-level parallelism. JILP5 (2003)

11. Bhowmik, A., Franklin, M.: A general compiler framework for speculative multithreading. In:
SPAA. (2002) 99–108

12. Whaley, J., Kozyrakis, C.: Heuristics for profile-driven method-level speculative paralleliza-
tion. In: ICPP. (2005) 147–156

13. Quĩnones, C.G., Madriles, C., Sánchez, J., Marcuello, P., González, A., Tullsen, D.M.: Mitosis
compiler: An infrastructure for speculative threading based on pre-computation slices. In:
PLDI. (2005) 269–279

14. Bruening, D., Devabhaktuni, S., Amarasinghe, S.: Softspec: Software-based speculative paral-
lelism. In: FDDO-3. (2000)

15. Kazi, I.H., Lilja, D.J.: Coarse-grained thread pipelining: A speculative parallel execution model
for shared-memory multiprocessors. TPDS12 (2001) 952–966

16. Rundberg, P., Stenström, P.: An all-software thread-level data dependence speculation system
for multiprocessors. JILP3 (2001)

17. Cintra, M., Llanos, D.R.: Toward efficient and robust softwarespeculative parallelization on
multiprocessors. In: PPoPP. (2003) 13–24

18. Cook, J.J.: Reverse execution of Java bytecode. The ComputerJournal45 (2002) 608–619
19. Yoshizoe, K., Matsumoto, T., Hiraki, K.: Speculative parallel execution on JVM. In: 1st UK

Workshop on Java for High Performance Network Computing. (1998)
20. Kazi, I.H., Lilja, D.J.: JavaSpMT: A speculative thread pipelining parallelization model for

Java programs. In: IPDPS. (2000) 559–564
21. Arnold, M., Ryder, B.G.: Thin guards: A simple and effective technique for reducing the

penalty of dynamic class loading. In: ECOOP. Volume 2374 of LNCS. (2002) 498–524
22. Dieckmann, S., Ḧolzle, U.: A study of the allocation behavior of the SPECjvm98 Java bench-

marks. In: ECOOP. Volume 1628 of LNCS. (1999) 92–115
23. Dufour, B., Driesen, K., Hendren, L., Verbrugge, C.: Dynamic metrics for Java. In: OOPSLA.

(2003) 149–168
24. Gagnon, E.M.: A Portable Research Framework for the Executionof Java Bytecode. PhD

thesis, McGill University (2002)http://www.sablevm.org .
25. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. 2ndedn. Sun Microsystems

(1999)
26. Vallée-Rai, R.: Soot: A Java bytecode optimization framework. Master’s thesis, McGill Uni-

versity (2000)http://www.sable.mcgill.ca/soot/ .
27. Pickett, C.J.F., Verbrugge, C.: Compiler analyses for improvedreturn value prediction. Tech-

nical Report SABLE-TR-2004-6, Sable Research Group, McGill University (2004)
28. Pominville, P., Qian, F., Vallée-Rai, R., Hendren, L., Verbrugge, C.: A framework for optimiz-

ing Java using attributes. In: CC. Volume 2027 of LNCS. (2001) 334–354
29. Shavit, N., Zemach, A.: Scalable concurrent priority queue algorithms. In: PODC. (1999)

113–122
30. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-

memory multiprocessors. TOCS9 (1991) 21–65
31. Magnusson, P.S., Landin, A., Hagersten, E.: Queue locks on cache coherent multiprocessors.

In: ISPP. (1994) 165–171
32. Pickett, C.J.F., Verbrugge, C.: Return value prediction in a Java virtual machine. In: VPW2.

(2004) 40–47
33. Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K., Torrellas, J.: Tasking with out-of-order spawn

in TLS chip multiprocessors: Microarchitecture and compilation. In: ICS.(2005)
34. Mart́ınez, J.F., Torrellas, J.: Speculative locks for concurrent execution of critical sections in

shared-memory multiprocessors. In: WMPI. (2001)
35. Rajwar, R., Goodman, J.R.: Speculative lock elision: Enabling highly concurrent multithreaded

execution. In: MICRO. (2001) 294–305
36. Kim, S.W., Ooi, C.L., Eigenmann, R., Falsafi, B., Vijaykumar, T.N.: Reference idempotency

analysis: A framework for optimizing speculative execution. In: PPoPP. (2001) 2–11
37. Lea, D.: The JSR-133 cookbook for compiler writers.http://gee.cs.oswego.edu/

dl/jmm/cookbook.html (2005)
38. Pugh, B.: A problematical case for finalizers.http://www.cs.umd.edu/˜pugh/

java/memoryModel/archive/1276.html (2003)
39. Krishnan, V., Torrellas, J.: A direct-execution framework for fast and accurate simulation of

superscalar processors. In: PACT. (1998) 286–293

