
Loop Selection for Thread-Level Speculation

Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula,
Antonia Zhai, Pen-Chung Yew

Department of Computer Science
University of Minnesota

{shengyue, dai, kiran, zhai, yew}@cs.umn.edu

Abstract. Thread-level speculation (TLS) allows potentially dependent threads to
speculatively execute in parallel, thus making it easier for the compiler to extract
parallel threads. However, the high cost associated with unbalanced load, failed
speculation, and inter-thread value communication makes it difficult to obtain the
desired performance unless the speculative threads are carefully chosen.

In this paper, we focus on extracting parallel threads from loops in general-
purpose applications because loops, with their regular structures and significant
coverage on execution time, are ideal candidates for extracting parallel threads.
General-purpose applications, however, usually contain a large number of nested
loops with unpredictable parallel performance and dynamic behavior, thus making
it difficult to decide which set of loops should be parallelized to improve overall
program performance. Our proposed loop selection algorithm addresses all these
difficulties. We have found that (i) with the aid of profiling information, compiler
analyses can achieve a reasonably accurate estimation of the performance of paral-
lel execution, and that (ii) different invocations of a loop may behave differently,
and exploiting this dynamic behavior can further improve performance. With a ju-
dicious choice of loops, we can improve the overall program performance of
SPEC2000 integer benchmarks by as much as 20%.

1 Introduction

Microprocessors that support multiple threads of execution are becoming increas-
ingly common [1, 13, 14]. Yet how to make the most effective use of such processors
is still unclear. One attractive method of fully utilizing such resources is to automati-
cally extract parallel threads from existing programs. However, automatic paralleliza-
tion [4, 10] for general-purpose applications (e.g., compilers, spreadsheets, games,
etc.) is difficult because of pointer aliasing, irregular array accesses, and complex
control flow. Thread-level speculation (TLS) [3, 6, 9, 11, 16, 22, 24, 26] facilitates
the parallelization of such applications by allowing potentially dependent threads to
execute in parallel while maintaining the original sequential semantics of the pro-
grams through runtime checking. Although researchers have proposed numerous
techniques for providing the proper hardware [17, 18, 23, 25] and compiler [27-29]
support for improving the efficiency of TLS, how to provide adequate compiler sup-
port for decomposing sequential programs into parallel threads that can deliver the
desired performance has not yet been explored with the proper depth. In this paper,

we present a detailed investigation of extracting speculative threads from loops for
general-purpose applications.

Loops are attractive candidates for extracting thread-level parallelism, as programs
spend significant amounts of time executing instructions within loops, and the regular
structure of loops makes it relatively easy to determine (i) the beginning and the end
of a thread (i.e., each iteration corresponds to a single thread of execution) and (ii) the
inter-thread data dependences. Thus it is not surprising that most previous research on
TLS has focused on exploiting loop-level parallelism. However, general-purpose
applications typically contain a large number of potentially nested loops, and thus
deciding which loops should be parallelized for the best program performance is not
always clear. We have found 7800 loops from 11 benchmarks in the SPEC2000 inte-
ger benchmarks; among these, gcc contains more than 2600 loops. Thus it is neces-
sary to derive a systematic approach to automatically select loops to parallelize for
these applications.

It is difficult for a compiler to determine whether a loop can speed up under TLS,
as the performance of the loop depends on (i) the characteristics of the underlying
hardware, such as thread creation overhead, inter-thread value communication la-
tency, and mis-speculation penalties, and (ii) the characteristics of the parallelized
loops, such as the size of iterations, the number of iterations, and the inter-thread data
dependence. While detailed profiling information and complex estimations can poten-
tially improve the accuracy of estimation, it is not clear whether these techniques will
lead to an overall better selection of loops.

When loops are nested, we can parallelize at only one loop nest level. We say that
loop B is nested within loop A when loop B is syntactically nested within loop A or
when A invokes a procedure that contains loop B. On average, we observe that the
SPEC2000 integer benchmarks have a nesting depth of 8. Figure 1 shows that
straightforward solutions that always parallelize the innermost or the outermost loops
do not always deliver the desired performance. Therefore a judicious decision must
be made to select the proper nest level to parallelize.

-40.00%
-20.00%

0.00%
20.00%

40.00%
60.00%

80.00%
100.00%

mcf

cra
fty

tw
olf gz

ip
bz

ip2
vo

rte
x vp

r

pa
rse

r
ga

p
gc

c

pe
rlb

mk

sp
ee

du
p

Outer loop Inner loop Best

Fig. 1. Performance comparison of simple loop selection techniques

Furthermore, different invocations of the same static loop may have different be-
haviors. For instance, a parallelized loop may speed up relative to the sequential exe-
cution in some invocations but slow down in others. We refer to this behavior as
context sensitivity. Exploiting this behavior and parallelizing a loop invocation only if

that particular invocation is likely to speed up can potentially offer additional per-
formance benefit.

This paper makes the following contributions. First, we propose a loop selection
algorithm that decides which loops should be parallelized to improve overall per-
formance for a program with a large number of nested loops. Second, we find that
compiler analyses can achieve a reasonably accurate performance prediction of paral-
lel execution. And third, we observe that exploiting dynamic loop behavior can fur-
ther improve this performance. Overall, by making a judicious choice in selecting
loops, we can improve the performance of SPEC2000 integer benchmarks by 20%.

The rest of this paper is organized as follows. In Section 2, we describe a loop se-
lection algorithm that selects the optimal set of loops if the parallel performance of a
loop can be accurately predicted. In Section 3, we describe our experimental frame-
work. Three performance estimation techniques are discussed and evaluated in Sec-
tion 4. We investigate the impact of context sensitivity in Section 5. We discuss re-
lated work in Section 6 and present our conclusions in Section 7.

2 Loop Selection Algorithm

In this section, we present a loop selection algorithm that chooses a set of loops to
parallelize while maximizing overall program performance. The algorithm takes as
input the speedup and coverage of all the loops in a program and outputs an optimal
set of loops for parallelization.

2.1 Loop Graph

Fig. 2. Examples of loop graph and loop tree

The main constraint in loop selection is that there should be no nesting relation be-
tween any two selected loops. To capture the nesting relation between loops, we
construct a directed acyclic graph (DAG) called a loop graph. As shown in Figure
2(b), each node in the graph represents a static loop in the original program, and a
directed edge represents the nesting relation between two loops. Loops could have a
direct nesting relation or an indirect nesting relation through procedure calls. In this

main_for1

main_for2

goo_for1

foo_for1

(b) Loop graph

main() {
 for (i = 0; i < 10; i++) {
 for (j = 0; j < 10; j++) {
 foo();
 goo();
 }
 }
}
foo() {
 for (i = 0; i < 10; i++) {
 goo();
 }
}
goo() {
 for (i = 0; i < 10; i++) {
 }
}
 (a) Source code

main_for1

main_for2

foo_for1

goo_for1_A goo_for1_B

(c) Loop tree

example, the edge from main_for1 to main_for2 indicates direct nesting, while the
edge from main_for2 to foo_for1 indicates indirect nesting.

A recursive call introduces a cycle in the loop graph that violates the acyclic prop-
erty. But cycles can be broken if we can identify backward edges. An edge from node
s to node t is a backward edge if every path that reaches s from the root passes
through t. All backward edges are removed once they are detected. If no backward
edge is detected, we arbitrarily select an edge and remove it to break the cycle.

A loop graph, like a call graph, can be constructed through runtime profiling or
compiler static inter-procedure analysis. In this study, it is built upon efficiently col-
lected runtime profiles.

2.2 Selection Criterion

We cannot simultaneously select any two loops that have nesting relations. To decide
which loop to select, we use a criterion called benefit that considers both speedup and
coverage of a loop. It is defined as follows:

benefit = coverage × (1 – 1 / speedup) (1)
The benefit value indicates the overall performance gain that can be obtained by

parallelizing that loop. A loop with a larger benefit value is more likely to be selected.
The benefit value is additive, as there is no nesting relationship between the selected
loops. The speedup for the whole program can be computed directly from the benefit
value as follows:

program speedup = 1 / (1 – benefit) (2)

2.3 Loop Selection Problem

The general loop selection problem can be stated as follows: given a loop graph with
benefit value attached to each node, find a set of nodes that maximizes the overall
benefits such that there is no path between any two selected nodes.

We transform this loop selection problem into a well-known NP-complete prob-
lem, weighted maximum independent set problem [8], by computing the transitive
closure of the loop graph. A set of nodes is called an independent set if there is no
edge between any two of them.

2.4 Graph Pruning

The general loop selection problem is NP-complete, so that an exhaustive search
algorithm only works for a graph with few nodes. For a graph with hundreds or thou-
sands of nodes, which is common for most of the benchmarks that we are studying, a
more efficient heuristic has to be used. Because a heuristic-based algorithm only
gives a sub-optimal solution, we must use it wisely. By applying a technique called
graph pruning, we can find a reasonable approximation more efficiently. Graph prun-
ing simplifies the loop graph by eliminating those loops that will not be selected as
speculative threads. These would include such loops as: (i) loops that have less than
100 dynamic instructions on average, as they are more appropriate for instruction-
level parallelism (ILP); (ii) loops that have no more than 2 iterations on average, as

they are more likely to underutilize multiple processor resources; and (iii) loops that
are predicted to slow down the program execution if parallelized.

Graph pruning reduces the size of a loop graph by eliminating unsuitable loops.
After we delete unnecessary nodes, one single connected graph is split into multiple
small disjointed sub-graphs. Then we can apply selection algorithm to each sub-graph
independently. It is efficient to use exhaustive searching algorithm for small sub-
graphs. For larger sub-graphs, heuristic-based searching algorithm usually gives a
reasonable approximation.

2.5 Exhaustive Searching Algorithm

In this simple algorithm, we exhaustively try every set of independent loops to find
the one that provides the maximum benefit. For each computed independent loop set,
we track all loops that have nesting relations to any loop within this independent set
and record them in a vector called a conflict vector. By using a conflict vector, it is
easy to find a new independent loop to add into the current independent set. After a
new loop is added, the conflict vector is updated as well.

An exhaustive searching algorithm gives an accurate solution for the loop selection
problem, but is very inefficient. Graph pruning creates smaller sub-graphs that are
suitable for exhaustive searching that works efficiently for sub-graphs with fewer
than 50 nodes in our experiments.

2.6 Heuristic-based Searching Algorithm

Even after graph pruning, some sub-graphs are still very big. For those, we use a
heuristic-based algorithm. We first sort all the nodes in a sub-graph according to their
benefit values. Then we pick one node at a time and add it into the independent set
such that the node has the maximal benefit value and it does not conflict with already
selected nodes. Similarly to the exhaustive searching algorithm, we maintain a con-
flict vector for the selected independent set and update it whenever a new node is
added.

Although this simple greedy algorithm gives a sub-optimal solution, it can select a
set of independent loops from a large graph in polynomial time. In our experiments,
the size of sub-graph is less than 200 nodes after graph pruning, so the inaccuracy
introduced by this algorithm is negligible.

3 Experimental Framework

We implement the loop selection algorithm in the Code Generation phase of the ORC
compiler [2], which is an industrial-strength open-source compiler based on the Pro64
compiler and targeting on Intel’s Itanium Processor Family (IPF).

For each selected loop, the compiler inserts special instructions to mark the begin-
ning and the end of parallel loops. Fork instruction is inserted at the beginning of the
loop body. We optimize inter-thread value communication using the techniques de-
scribed in [28, 29]. The compiler synchronizes all inter-thread register dependences
and memory dependences with a probability greater than 20%. Both intra-thread

control and data speculation are used for more aggressive instruction scheduling so as
to increase the overlap between threads.

Our execution-driven simulator is built upon Pin [15]. The configuration of our
simulated machine model is listed in Table 1. We simulate four single-issue in-order
processors. Each of them has a private L1 data cache, a write buffer, an address
buffer, and a communication buffer. The write buffer holds the speculatively modi-
fied data within a thread. The address buffer keeps all memory addresses accessed by
a speculative thread. The communication buffer stores data forwarded by the previous
thread. All four processors share a L2 data cache.

Table 1. Machine configuration. Table 2. Benchmark statistics.

Issue Width 1
L1-D Cache 32K, 2-way, 1 cycle
L2-D Cache 2M, 4-way, 10 cycles
Write Buffer 32K, 2-way, 1 cycle
Address Buffer 32K, 2-way, 1 cycle
Communication Buffer 128 entries, 1 cycle
Communication Delay 10 cycles
Thread Spawning Overhead 10 cycles
Thread Squashing Overhead 10 cycles
Main Memory 50 cycles

3.1 Benchmarks

We study all the SPEC2000 integer benchmarks except for eon, which is written in
C++. The statistics for each benchmark are listed in Table 2. The average loop itera-
tion size is measured by using the ref input set and counting dynamic instructions.
Most of the benchmarks have a large set of loops with complex loop nesting, which
makes it difficult, if not impossible, to select loops without a systematic approach.

3.2 Simulation Methodology

All simulation is performed using the ref input set. To save simulation time, we paral-
lelize and simulate each loop once. After applying a selection technique, we directly
use the simulation result to calculate the overall program performance. In this way,
we avoid simulating the same loop multiple times if it is selected by different tech-
niques.

Moreover, we use a simple sampling method to further speed up the simulation.
For each loop, we select the first 50 invocations for simulation. For each invocation,
we simulate the first 50 iterations. This simple sampling method allows us to simulate
up to 6 billion dynamic instructions while covering all loops.

4 Loop Speedup Estimation

Our goal in loop selection is to maximize the overall program performance, which is
represented as the benefit value of the selected loops. In order to calculate the benefit

Program Number of
Loops

Average Loop
Iteration Size

Maximal
Nest Depth

mcf 51 29,605 4
crafty 420 59,775 10
twolf 899 12,437 7
gzip 178 206,755 6

bzip2 163 109,227 9
vortex 212 45,179 7

vpr 401 1,500 5
parser 532 8,820 10

gap 1,655 53,721 10
gcc 2,619 5,394 10

perlbmk 729 2,826 10

value for each loop, we have to estimate both the coverage and speedup of each loop.
Coverage can be estimated using a runtime profile. To estimate speedup, we have to
estimate both sequential and parallel execution time.

We assume that each processor executes one instruction per cycle, i.e., each in-
struction takes one cycle to finish. It is relatively easy to estimate sequential execu-
tion time Tseq of a loop. We can determine the average size of a thread (average num-
ber of instructions executed per iteration) and the average number of parallel threads
(average number of times a loop iterates) by using a profile. Tseq can be approximated
by using equation (3), where S is the average thread size and N is the average number
of threads.

Tseq = S × N (3)

Fig. 3. Impact of delay D assuming 4 processors

On the other hand, the parallel execution time depends on other factors such as the
thread creation overhead, the cost of inter-thread value communication, and the cost
of mis-speculation. We simplify the calculation by dividing the total parallel execu-
tion time Tpar into two parts: perfect execution time Tperfect and mis-speculation time
Tmisspec. Tperfect is the parallel execution time on p processors assuming that there is no
mis-speculation. Tmisspec is the wasted execution time due to mis-speculation.

Tpar = Tperfect + Tmisspec (4)
We also define delay D as the delay between two consecutive threads caused by

inter-thread value communication Tcomm and thread creation overhead O.
D = max(Tcomm, O) (5)

Depending on the delay D, we use different equations to estimate Tperfect. If D ≤ S /
p, we can have a perfect pipelined execution of threads, as shown in Figure 3(a), and
use equation (6) for estimation.

Tperfect = ((N – 1) / p + 1) × S + ((N – 1) mod p) × D (6)
If D > S / p, delay D causes bubbles in the pipelined execution of threads and has a

higher impact on the overall execution time, as shown in Figure 3(b). In this case, we
use equation (7) for estimation.

T1
T2

T3
T4

T5
T6

T7
T8

S D×4 T1

T2

T4T5

T8

S

D×4

T6

T7

T3

(a) (b)

Tperfect = (N – 1) × D + S (7)
The key to accurately predicting speedup is how to estimate Tcomm and Tmisspec.

Tcomm is caused by the synchronization of frequently occurring data dependences,
while Tmisspec is caused by the mis-speculation of unlikely occurring data depend-
ences. We describe techniques to estimate Tmisspec and Tcomm in the following sections.

4.1 Tmisspec Estimation

When a mis-speculation is detected, the violating thread will be squashed and all the
work done by this thread becomes useless. We use the amount of work thrown away
in a mis-speculation to quantify the impact of the mis-speculation on the overall par-
allel execution. The amount of work wasted depends on when a mis-speculation is
detected. For instance, if a thread starts at cycle c1 and mis-speculation is detected at
cycle c2, we have (c2 – c1) wasted cycles.

In our machine model, a mis-speculation in the current thread is detected at the end
of the previous thread, so we could waste (S – D) cycles for a mis-speculation. The
overall execution time wasted due to mis-speculation is calculated in equation (8),
where Pmisspec is the probability that a thread will violate inter-thread dependences and
is obtained through a profile.

Tmisspec = (S – D) × Pmisspec (8)

4.2 Tcomm Estimation I

One way to estimate the amount of time that parallel threads spend on value commu-
nication is to identify all the instructions that are either the producers or the consum-
ers of inter-thread data dependences and estimate the cost of value communication as
the total cost of executing all such instructions.

Although this estimation technique is simple, it assumes that the value required by
a consumer instruction is immediately available when it is needed. Unfortunately, this
assumption is not always realistic, since it is often the case that the instruction that
consumes the value is issued earlier than the instruction that produces the value, as
shown in Figure 4(a). Thus the consumer thread T2 has to stall and wait until the
producer thread T1 is able to forward it the correct value, as shown in Figure 4(b).
The flow of the value between the two threads serializes the parallel execution, so we
refer to it as a critical forwarding path.

4.3 Tcomm Estimation II

To take into consideration the impact of the critical forwarding path, we propose
estimation technique II. Assuming that load1, the consumer instruction in thread T2,
is executed at cycle c2 and that store1, the producer instruction in thread T1, is exe-
cuted at cycle c1, the cost of value communication between these two instructions is
estimated as (c1 – c2).

If the data dependence does not occur between two consecutive threads but rather
has a dependence distance of d, the impact on the execution time of a particular
thread should be averaged out over the dependence distance. Thus the impact of
communicating a value between two threads is estimated as follows:

criticalness = (c1 – c2) / d (9)
There is one more mission piece if this estimation technique is to be successful,

which is how to determine which cycle of a particular instruction should be executed.
Since it is not possible to perfectly predict the dynamic execution of a thread, we
made a simplification assuming each instruction will take one cycle to execute; thus
the start cycle is simply an instruction count of the total number of instructions be-
tween the beginning of the thread and the instruction in question. However, due to
complex control flows that are inherent to general-purpose applications, there can be
multiple execution paths, each with different path length, that reach the same instruc-
tion. Thus the start time of a particular instruction is the average path length weighted
by path taken probability, as shown in equation (10).

c = Σ pi∈all_paths(length(pi) × prob(pi)) (10)

Fig. 4. The data dependence patterns between two speculative threads

For many loops, multiple data dependences exist between two threads, as shown in
Figure 4(c). In such cases, the cost of value communication is determined by the most
costly one, since the cost of other synchronizations can be hidden.

4.4 Tcomm Estimation III

Previous work has shown that the compiler can effectively reduce the cost of syn-
chronization through instruction scheduling and that such optimizations are particu-
larly useful for improving the efficiency of communicating register-resident scalars
[28, 29]. Unfortunately, the estimation technique described in the previous section
does not take such optimization into consideration and tends to overestimate the cost
of inter-thread value communication.

It is desirable to find an estimation technique that considers the impact of instruc-
tion scheduling on reducing the critical forward path length. Thus, we use a third
technique, in which the start time of an instruction is computed from the data depend-
ence graph. When there are multiple paths that can reach an instruction in the data
dependence graph, the average start time of this instruction can be measured by equa-
tion (11), assuming that the average length of a path pi that reaches this instruction in
the data dependence graph is length(pi).

c = max(length(pi)) (11)

store1

T1 T2

(a)

load1

store1

T1 T2

(b)

load1
store2

T1 T2

(c)

load2

store1 load1

cost of com
m

.

4.5 Evaluation

The three speedup estimation techniques described above have been implemented
in our loop selection algorithm and three sets of loops are selected for parallelization
respectively. The performance improvement of the parallel execution is evaluated
against sequential execution and the results are illustrated in Figure 5. For compari-
son, we also select loops using speedup value calculated from simulation results and
use this perfect estimation as the upper bound.

We make several observations. First, for estimation I, the performance improve-
ment obtained by most benchmarks is close to the perfect performance improvement
obtained through simulation. However, for gzip, the loops selected using this estima-
tion is completely wrong and results in a 40% performance degradation. Second, the
set of loops selected using estimation II is able to achieve only a fraction of the per-
formance obtained by the set of loops selected using simulation results. This estima-
tion technique tends to be conservative in selecting loops. Third, the set of loops
selected with estimation III always performs at least as well as the set of loops se-
lected by estimation I and estimation II.

-40.00%
-20.00%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

mcf
cra

fty
tw

olf gz
ip

bz
ip2

vo
rte

x vp
r

pa
rse

r
ga

p
gc

c

pe
rlb

mk

sp
ee

du
p

Estimation I Estimation II Estimation III Perfect

Fig. 5. Performance comparison of different speedup estimation techniques

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

mcf
cra

fty
tw

olf gz
ip

bz
ip2

vo
rte

x vp
r

pa
rse

r
ga

p
gc

c

pe
rlb

mk

co
ve

ra
ge

Estimation I Estimation II Estimation III Perfect

Fig. 6. Coverage comparison of different speedup estimation techniques

Figure 6 illustrates the coverage of parallel execution on the total execution time.
We have found that although the set of loops selected using simulation results dem-
onstrate the most performance improvement, these loops do not always have the large
coverage on execution time. In mcf, the set of loops selected using estimation III has

the similar performance as the set of loops selected using simulation results, however,
the coverage of the perfect loop set is significantly smaller. This phenomenon sug-
gests that our estimation method may not be very accurate but is useful in selecting a
set of loops that have good performance potential.

5 The Impact of Dynamic Loop Behavior on Loop Selection

Once a loop is selected by our current loop selection algorithm, every invocation of
this loop is parallelized. The underlying assumption is that the parallel execution of a
loop behaves the same across different invocations. However, some loops exhibit
different behaviors when they are invoked multiple times. Different invocations of a
loop may differ in the number of iterations, the size of iterations, and the data de-
pendence patterns, and thus demonstrate different parallel execution efficiency. Con-
sequently, it might be desirable to parallelize only certain invocations of a loop. In
this section, we address this phenomenon. In particular, we examine whether exploit-
ing such behavior can help us select a better set of loops and improve the overall
program performance.

5.1 Calling Context of a Loop

In the loop graph, as described in Section 2, we refer to the path from the root node to
a particular loop node as the calling context of that loop. It is possible for a particular
loop to have several distinct calling contexts, and it is also possible for loops with
different calling contexts to behave differently. To study this behavior, we replicate
the loop nodes for each distinct calling context. An example is shown in Figure 2(c),
where the loop node goo_for1 has two distinct calling contexts and is thus replicated
into goo_for1_A and goo_for1_B. After the replication, the original loop graph is
converted into a tree, which we refer to as the loop tree.

We parallelize a loop under a certain calling context if the parallel execution
speeds up under that calling context. Loop selection on the loop tree is straightfor-
ward. The algorithm is as follows. We first traverse the loop tree bottom-up. For each
node in the tree, we evaluate its benefit value as Bcurrent. We sum up the benefit values
if we parallelize its descendants, and refer to this number as Bsubtree. If Bcurrent is
greater than Bsubtree, we mark this node as a potential candidate for parallelization. We
also record the larger of these two numbers as Bperfect, which is used to calculate Bsub-

tree of its parent. Next we traverse the loop tree top-down. Once we have encountered
a loop node that is marked as a potential candidate from the previous step, we prune
its children. The leaf nodes of the remaining loop tree correspond to the loops that
should be parallelized. The accurate solution for selecting loops from a loop tree can
be found in polynomial time.

5.2 Dynamic Behavior of a Loop

It is possible for two different invocations of a loop to behave differently even if they
have the same calling context. To study this behavior further, we assume an oracle

that can perfectly predict the performance of a particular invocation of a loop and
parallelize this invocation only when it speeds up. A different set of loops are selected
and evaluated assuming that such an oracle is in place.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

mcf
cra

fty
tw

olf gz
ip

bz
ip2

vo
rte

x vp
r

pa
rse

r
ga

p
gc

c

pe
rlb

mk

sp
ee

du
p

No Context Calling Context Oracle

Fig. 7. Performance comparison of loop selection based on different contexts

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

mcf
cra

fty
tw

olf gz
ip

bz
ip2

vo
rte

x vp
r

pa
rse

r
ga

p
gc

c

pe
rlb

mk

co
ve

ra
ge

No Context Calling Context Oracle

Fig. 8. Coverage comparison of loop selection based on different contexts

5.3 Evaluation

In this section, we evaluate the impact of considering the calling context of a loop (as
described in Section 5.1) and the impact of parallelizing only selected invocations of
a loop (as described in Section 5.2). The impact of such behavior on overall program
performance is shown in Figure 7. We have observed that by differentiating loops
with different calling contexts, some benchmarks are able to obtain better program
performance. Among them, crafty has an additional speed up of 2% and perlbmk
speeds up by 7%. The performance of mcf, crafty, and bzip2 improves an additional
2% by having an oracle that parallelizes only invocations of loops that speed up.
Thus, we found that the dynamic behavior of loops has performance impact for some
benchmarks. We believe that a dynamic or static loop selection strategy that can pre-
dict whether a particular invocation of a loop speeds up can help us achieve addi-
tional performance improvement.

Figure 8 shows the coverage for the selected loops. For some benchmarks, such as
perlbmk, we observe that the overall program performance improves although the
coverage of parallelized loops decreases when we take context information into con-
sideration. Close examination reveals that perlbmk contains a loop that only speeds
up under certain circumstances, and by parallelizing only such invocations, we can
achieve better performance. For some other benchmarks, such as crafty and vortex,
the coverage of parallel loops increased due to the selection of a different set of loops.

6 Related Work

Colohan et al. [7] have empirically studied the impact of thread size on the per-
formance of loops, and derived several techniques to determine the unrolling factor of
each loop. Their goal is to find the optimal thread size for parallel execution. Our
estimation techniques can be employed to determine the candidate loops to unroll.
They also propose a runtime system to measure the performance and select loops
dynamically.

Oplinger et al. [19] have proposed and evaluated a static loop selection algorithm
in their study of the potential of TLS. In their algorithm, they select the best loops in
each level of a dynamic loop nest as possible candidates to be parallelized and com-
pute the frequency with which each loop is selected as the best loop. Then they select
loops for parallelization based on the computed frequencies. Their concept of a dy-
namic loop nest is similar to the loop tree proposed in this paper, but is used only to
guide the heuristic in context-insensitive loop selection. Their performance estimation
is obtained directly from simulation and does not consider the effect of compiler
optimization.

Chen et al. [5] have proposed a dynamic loop selection framework for the Java
program. They use hardware to extract useful information (such as dependence tim-
ing and speculative state requirements) and then estimate the speedup for a loop.
Their technique is similar to the runtime system proposed by Colohan et. al. [7] and
can only select loops within a simple loop nest. Considering the global loop nesting
relations and selecting loops globally introduces significant overhead for a runtime
system.

Several papers [12, 21] have studied thread generation techniques that extract
speculative parallel threads from consecutive basic blocks. Threads generated using
these techniques are fine-grained and usually contain neither procedure calls nor
inner loops. These thread generation techniques can complement loop-based threads
by exploiting parallelism in the non-loop potion of the program or in loops that are
not selected for parallel execution by our algorithm.

Prabhu et al. [20] manually parallelize several SPEC2000 applications using tech-
niques beyond the capabilities of current parallelizing compilers. However, only a
few loops are evaluated due to the time-consuming and error-prone nature of this
process.

7 Conclusions

Loops, with their regular structures and significant coverage on execution time, are
ideal candidates for extracting parallel threads. However, typical general-purpose
applications contain a large number of nested loops with complex control flow and
ambiguous data dependences. Without an effective loop selection algorithm, deter-
mining which loops to parallelize can be a daunting task. In this paper, we propose a
loop selection algorithm that takes the coverage and speedup achieved by each loop
as inputs and produces the set of loops that should be parallelized to maximize pro-
gram performance as the output. One of the key components of this algorithm is the
ability to accurately estimate the speedup that can be achieved when a particular loop
is parallelized. This paper evaluates three different estimation techniques and finds
that with the aid of profiling information, compiler analyses are able to come up with
reasonably accurate estimates that allow us to select a set of loops to achieve good
overall program performance. Furthermore, we have observed that some loops be-
have differently across different invocations. By exploiting this behavior and parallel-
izing only invocations of a loop when it actually speeds up, we can potentially
achieve better overall program performance for some benchmarks.

References

1. Intel Pentium Processor Extreme Edition.
http://www.intel.com/products/processor/pentiumXE/prodbrief.pdf.

2. Open Research Compiler for Itanium Processor Family. http://ipf-orc.sourceforge.net/.
3. Akkary, H. and Driscoll, M., A Dynamic Multithreading Processor. in Proceedings of

Micro-31, (December 1998).
4. Blume, B., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P.,

Pottenger, B., Rauchwerger, L., Tu, P. and Weatherford, S., Polaris: Improving the Effec-
tiveness of Parallelizing Compilers. in Proceedings of the 7th LCPC, (1994).

5. Chen, M. and Olukotun, K., TEST: A Tracer for Extracting Speculative Threads. in Pro-
ceedings of 2003 International Symposium on CGO, (March 2003).

6. Cintra, M.H., Martínez, J.F. and Torrellas, J., Architectural support for scalable specula-
tive parallelization in shared-memory multiprocessors. in Proceedings of the ISCA,
(2000).

7. Colohan, C.B., Zhai, A., G., S.J. and Mowry, T.C., The Impact of Thread Size and Selec-
tion on the Performance of Thread-Level Speculation. in progress.

8. Du, D.Z. and Pardalos, P.M., Handbook of Combinatorial Optimization. Kluwer Aca-
demic Publishers., 1999.

9. Gopal, S., Vijaykumar, T., Smith, J. and Sohi, G., Speculative Versioning Cache. in Pro-
ceedings of the 4th HPCA, (February 1998).

10. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.-W., Bugnion, E.
and Lam, M.S., Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE
Computer, 1999 (12).

11. Hammond, L., Willey, M. and Olukotun, K., Data Speculation Support for A Chip Multi-
processor. in Proceedings of ASPLOS-8, (October 1998).

12. Johnson, T.A., Eigenmann, R. and Vijaykumar, T.N., Min-Cut Program Decomposition
for Thread-Level Speculation. in Proceedings of PLDI, (2004).

13. Kalla, R., Sinharoy;, B. and Tendler, J.M., IBM Power5 Chip: a Dual-Core Multithreaded
Processor. IEEE MICRO, 2004 (2).

14. Kongetira, P., Aingaran, K. and Olukotun, K., Niagara: A 32-Way Multithreaded Sparc
Processor. IEEE MICRO, 2005 (2).

15. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J. and Hazelwood, K., Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation. in Proceedings of the ACM Intl. Conf. on Programming Language
Design and Implementation, (June 2005).

16. Marcuello, P. and Gonzlez, A., Clustered Speculative Multithreaded Processors. in Pro-
ceedings of MICRO-32 (November 1999).

17. Moshovos, A.I., Breach, S.E., Vijaykumar, T. and Sohi, G.S., Dynamic Speculation and
Synchronization of Data Dependences. in the proceedings of the 24th ISCA, (June 1997).

18. Olukotun, K., Hammond, L. and Willey, M., Improving the Performance of Speculatively
Parallel Applications on the Hydra CMP. in Proceedings of the ACM Int. Conf. on Super-
computing, (June 1999).

19. Oplinger, J., Heine, D. and Lam, M.S., In Search of Speculative Thread-Level Parallelism.
in Proceedings of PACT, (October 1999).

20. Prabhu, M. and Olukotun, K., Exposing Speculative Thread Parallelism in SPEC2000. in
Proceedings of the 9th ACM Symposium on Principles and Practice of Parallel Program-
ming, (2005).

21. Quinones, C.G., Madriles, C., Sanchez, J., Marcuello, P., González, A. and Tullsen, D.M.,
Mitosis Compiler: An Infrastructure for Speculative Threading Based on Pre-Computation
Slices. in Proceedings of the ACM Intl. Conf. on Programming Language Design and Im-
plementation, (June 2005).

22. Rauchwerger, L. and Padua, D.A., The LRPD Test: Speculative RunTime Parallelization
of Loops with Privatization and Reduction Parallelization. IEEE Transactions on Parallel
Distributed Systems, 1999 (2). 160-180.

23. Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K. and Torrellas, J., Tasking with Out-of-
Order Spawn in TLS Chip Multiprocessors: Microarchitecture and Compilation. in Pro-
ceeding of the 19th ACM International Conference on Supercomputing, (2005).

24. Sohi, G.S., Breach, S.E. and Vijaykumar, T.N., Multiscalar Processors. . in Proceedings of
the 22nd ISCA, (June 1995).

25. Steffan, J.G., Colohan, C.B., Zhai, A. and Mowry, T.C., Improving Value Communication
for Thread-Level Speculation. in Proceedings of the 8th HPCA, (February 2002).

26. Tsai, J.-Y., Huang, J., Amlo, C., Lilja, D. and Yew, P.-C., The Superthreaded Processor
Architecture. IEEE Transactions on Computers, 1999 (9).

27. Vijaykumar, T.N. and Sohi, G.S., Task Selection for a Multiscalar Processor. in Proceed-
ing of the 31st International Symposium on Microarchitecture, (December 1998).

28. Zhai, A., Colohan, C.B., Steffan, J.G. and Mowry, T.C., Compiler Optimization of Mem-
ory-Resident Value Communication Between Speculative Threads. in Proceedings of
2004 International Symposium on CGO, (March 2004).

29. Zhai, A., Colohan, C.B., Steffan, J.G. and Mowry, T.C., Compiler Optimization of Scalar
Value Communication Between Speculative Threads. in Proceedings of the 10th
ASPLOS, (October 2002).

