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Abstract. Thread-level speculation (TLS) allows potentially dependent threads to 
speculatively execute in parallel, thus making it easier for the compiler to extract 
parallel threads. However, the high cost associated with unbalanced load, failed 
speculation, and inter-thread value communication makes it difficult to obtain the 
desired performance unless the speculative threads are carefully chosen. 

In this paper, we focus on extracting parallel threads from loops in general-
purpose applications because loops, with their regular structures and significant 
coverage on execution time, are ideal candidates for extracting parallel threads. 
General-purpose applications, however, usually contain a large number of nested 
loops with unpredictable parallel performance and dynamic behavior, thus making 
it difficult to decide which set of loops should be parallelized to improve overall 
program performance. Our proposed loop selection algorithm addresses all these 
difficulties. We have found that (i) with the aid of profiling information, compiler 
analyses can achieve a reasonably accurate estimation of the performance of paral-
lel execution, and that (ii) different invocations of a loop may behave differently, 
and exploiting this dynamic behavior can further improve performance. With a ju-
dicious choice of loops, we can improve the overall program performance of 
SPEC2000 integer benchmarks by as much as 20%. 

1   Introduction 

Microprocessors that support multiple threads of execution are becoming increas-
ingly common [1, 13, 14]. Yet how to make the most effective use of such processors 
is still unclear. One attractive method of fully utilizing such resources is to automati-
cally extract parallel threads from existing programs. However, automatic paralleliza-
tion [4, 10] for general-purpose applications (e.g., compilers, spreadsheets, games, 
etc.) is difficult because of pointer aliasing, irregular array accesses, and complex 
control flow. Thread-level speculation (TLS) [3, 6, 9, 11, 16, 22, 24, 26] facilitates 
the parallelization of such applications by allowing potentially dependent threads to 
execute in parallel while maintaining the original sequential semantics of the pro-
grams through runtime checking. Although researchers have proposed numerous 
techniques for providing the proper hardware [17, 18, 23, 25] and compiler [27-29] 
support for improving the efficiency of TLS, how to provide adequate compiler sup-
port for decomposing sequential programs into parallel threads that can deliver the 
desired performance has not yet been explored with the proper depth. In this paper, 



we present a detailed investigation of extracting speculative threads from loops for 
general-purpose applications. 

Loops are attractive candidates for extracting thread-level parallelism, as programs 
spend significant amounts of time executing instructions within loops, and the regular 
structure of loops makes it relatively easy to determine (i) the beginning and the end 
of a thread (i.e., each iteration corresponds to a single thread of execution) and (ii) the 
inter-thread data dependences. Thus it is not surprising that most previous research on 
TLS has focused on exploiting loop-level parallelism. However, general-purpose 
applications typically contain a large number of potentially nested loops, and thus 
deciding which loops should be parallelized for the best program performance is not 
always clear. We have found 7800 loops from 11 benchmarks in the SPEC2000 inte-
ger benchmarks; among these, gcc contains more than 2600 loops. Thus it is neces-
sary to derive a systematic approach to automatically select loops to parallelize for 
these applications. 

It is difficult for a compiler to determine whether a loop can speed up under TLS, 
as the performance of the loop depends on (i) the characteristics of the underlying 
hardware, such as thread creation overhead, inter-thread value communication la-
tency, and mis-speculation penalties, and (ii) the characteristics of the parallelized 
loops, such as the size of iterations, the number of iterations, and the inter-thread data 
dependence. While detailed profiling information and complex estimations can poten-
tially improve the accuracy of estimation, it is not clear whether these techniques will 
lead to an overall better selection of loops. 

When loops are nested, we can parallelize at only one loop nest level. We say that 
loop B is nested within loop A when loop B is syntactically nested within loop A or 
when A invokes a procedure that contains loop B. On average, we observe that the 
SPEC2000 integer benchmarks have a nesting depth of 8. Figure 1 shows that 
straightforward solutions that always parallelize the innermost or the outermost loops 
do not always deliver the desired performance. Therefore a judicious decision must 
be made to select the proper nest level to parallelize. 
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Fig. 1. Performance comparison of simple loop selection techniques 

Furthermore, different invocations of the same static loop may have different be-
haviors. For instance, a parallelized loop may speed up relative to the sequential exe-
cution in some invocations but slow down in others. We refer to this behavior as 
context sensitivity. Exploiting this behavior and parallelizing a loop invocation only if 



that particular invocation is likely to speed up can potentially offer additional per-
formance benefit. 

This paper makes the following contributions. First, we propose a loop selection 
algorithm that decides which loops should be parallelized to improve overall per-
formance for a program with a large number of nested loops. Second, we find that 
compiler analyses can achieve a reasonably accurate performance prediction of paral-
lel execution. And third, we observe that exploiting dynamic loop behavior can fur-
ther improve this performance. Overall, by making a judicious choice in selecting 
loops, we can improve the performance of SPEC2000 integer benchmarks by 20%. 

The rest of this paper is organized as follows. In Section 2, we describe a loop se-
lection algorithm that selects the optimal set of loops if the parallel performance of a 
loop can be accurately predicted. In Section 3, we describe our experimental frame-
work. Three performance estimation techniques are discussed and evaluated in Sec-
tion 4. We investigate the impact of context sensitivity in Section 5. We discuss re-
lated work in Section 6 and present our conclusions in Section 7. 

2   Loop Selection Algorithm 

In this section, we present a loop selection algorithm that chooses a set of loops to 
parallelize while maximizing overall program performance. The algorithm takes as 
input the speedup and coverage of all the loops in a program and outputs an optimal 
set of loops for parallelization. 

2.1   Loop Graph 

 
Fig. 2. Examples of loop graph and loop tree 

The main constraint in loop selection is that there should be no nesting relation be-
tween any two selected loops. To capture the nesting relation between loops, we 
construct a directed acyclic graph (DAG) called a loop graph. As shown in Figure 
2(b), each node in the graph represents a static loop in the original program, and a 
directed edge represents the nesting relation between two loops. Loops could have a 
direct nesting relation or an indirect nesting relation through procedure calls. In this 

main_for1 

main_for2 

goo_for1 

foo_for1 

(b) Loop graph 

main() { 
    for (i = 0; i < 10; i++) { 
        for (j = 0; j < 10; j++) { 
            foo(); 
            goo(); 
        } 
    } 
} 
foo() { 
    for (i = 0; i < 10; i++) { 
        goo(); 
    } 
} 
goo() { 
    for (i = 0; i < 10; i++) { 
    } 
} 
         (a) Source code 

main_for1 

main_for2 

foo_for1 

goo_for1_A goo_for1_B 

(c) Loop tree 



example, the edge from main_for1 to main_for2 indicates direct nesting, while the 
edge from main_for2 to foo_for1 indicates indirect nesting.  

A recursive call introduces a cycle in the loop graph that violates the acyclic prop-
erty. But cycles can be broken if we can identify backward edges. An edge from node 
s to node t is a backward edge if every path that reaches s from the root passes 
through t. All backward edges are removed once they are detected. If no backward 
edge is detected, we arbitrarily select an edge and remove it to break the cycle. 

A loop graph, like a call graph, can be constructed through runtime profiling or 
compiler static inter-procedure analysis. In this study, it is built upon efficiently col-
lected runtime profiles. 

2.2   Selection Criterion 

We cannot simultaneously select any two loops that have nesting relations. To decide 
which loop to select, we use a criterion called benefit that considers both speedup and 
coverage of a loop. It is defined as follows: 

benefit = coverage × (1 – 1 / speedup) (1) 
The benefit value indicates the overall performance gain that can be obtained by 

parallelizing that loop. A loop with a larger benefit value is more likely to be selected. 
The benefit value is additive, as there is no nesting relationship between the selected 
loops. The speedup for the whole program can be computed directly from the benefit 
value as follows: 

program speedup = 1 / (1 – benefit) (2) 

2.3   Loop Selection Problem 

The general loop selection problem can be stated as follows: given a loop graph with 
benefit value attached to each node, find a set of nodes that maximizes the overall 
benefits such that there is no path between any two selected nodes. 

We transform this loop selection problem into a well-known NP-complete prob-
lem, weighted maximum independent set problem [8], by computing the transitive 
closure of the loop graph. A set of nodes is called an independent set if there is no 
edge between any two of them. 

2.4   Graph Pruning 

The general loop selection problem is NP-complete, so that an exhaustive search 
algorithm only works for a graph with few nodes. For a graph with hundreds or thou-
sands of nodes, which is common for most of the benchmarks that we are studying, a 
more efficient heuristic has to be used. Because a heuristic-based algorithm only 
gives a sub-optimal solution, we must use it wisely. By applying a technique called 
graph pruning, we can find a reasonable approximation more efficiently. Graph prun-
ing simplifies the loop graph by eliminating those loops that will not be selected as 
speculative threads. These would include such loops as: (i) loops that have less than 
100 dynamic instructions on average, as they are more appropriate for instruction-
level parallelism (ILP); (ii) loops that have no more than 2 iterations on average, as 



they are more likely to underutilize multiple processor resources; and (iii) loops that 
are predicted to slow down the program execution if parallelized. 

Graph pruning reduces the size of a loop graph by eliminating unsuitable loops. 
After we delete unnecessary nodes, one single connected graph is split into multiple 
small disjointed sub-graphs. Then we can apply selection algorithm to each sub-graph 
independently. It is efficient to use exhaustive searching algorithm for small sub-
graphs. For larger sub-graphs, heuristic-based searching algorithm usually gives a 
reasonable approximation. 

2.5   Exhaustive Searching Algorithm 

In this simple algorithm, we exhaustively try every set of independent loops to find 
the one that provides the maximum benefit. For each computed independent loop set, 
we track all loops that have nesting relations to any loop within this independent set 
and record them in a vector called a conflict vector. By using a conflict vector, it is 
easy to find a new independent loop to add into the current independent set. After a 
new loop is added, the conflict vector is updated as well. 

An exhaustive searching algorithm gives an accurate solution for the loop selection 
problem, but is very inefficient. Graph pruning creates smaller sub-graphs that are 
suitable for exhaustive searching that works efficiently for sub-graphs with fewer 
than 50 nodes in our experiments. 

2.6   Heuristic-based Searching Algorithm 

Even after graph pruning, some sub-graphs are still very big. For those, we use a 
heuristic-based algorithm. We first sort all the nodes in a sub-graph according to their 
benefit values. Then we pick one node at a time and add it into the independent set 
such that the node has the maximal benefit value and it does not conflict with already 
selected nodes. Similarly to the exhaustive searching algorithm, we maintain a con-
flict vector for the selected independent set and update it whenever a new node is 
added. 

Although this simple greedy algorithm gives a sub-optimal solution, it can select a 
set of independent loops from a large graph in polynomial time. In our experiments, 
the size of sub-graph is less than 200 nodes after graph pruning, so the inaccuracy 
introduced by this algorithm is negligible. 

3   Experimental Framework 

We implement the loop selection algorithm in the Code Generation phase of the ORC 
compiler [2], which is an industrial-strength open-source compiler based on the Pro64 
compiler and targeting on Intel’s Itanium Processor Family (IPF). 

For each selected loop, the compiler inserts special instructions to mark the begin-
ning and the end of parallel loops. Fork instruction is inserted at the beginning of the 
loop body. We optimize inter-thread value communication using the techniques de-
scribed in [28, 29]. The compiler synchronizes all inter-thread register dependences 
and memory dependences with a probability greater than 20%. Both intra-thread 



control and data speculation are used for more aggressive instruction scheduling so as 
to increase the overlap between threads. 

Our execution-driven simulator is built upon Pin [15]. The configuration of our 
simulated machine model is listed in Table 1. We simulate four single-issue in-order 
processors. Each of them has a private L1 data cache, a write buffer, an address 
buffer, and a communication buffer. The write buffer holds the speculatively modi-
fied data within a thread. The address buffer keeps all memory addresses accessed by 
a speculative thread. The communication buffer stores data forwarded by the previous 
thread. All four processors share a L2 data cache. 

Table 1. Machine configuration.  Table 2. Benchmark statistics. 

Issue Width 1
L1-D Cache 32K, 2-way, 1 cycle
L2-D Cache 2M, 4-way, 10 cycles
Write Buffer 32K, 2-way, 1 cycle
Address Buffer 32K, 2-way, 1 cycle
Communication Buffer 128 entries, 1 cycle
Communication Delay 10 cycles
Thread Spawning Overhead 10 cycles
Thread Squashing Overhead 10 cycles
Main Memory 50 cycles

 
 

3.1   Benchmarks 

We study all the SPEC2000 integer benchmarks except for eon, which is written in 
C++. The statistics for each benchmark are listed in Table 2. The average loop itera-
tion size is measured by using the ref input set and counting dynamic instructions. 
Most of the benchmarks have a large set of loops with complex loop nesting, which 
makes it difficult, if not impossible, to select loops without a systematic approach. 

3.2   Simulation Methodology 

All simulation is performed using the ref input set. To save simulation time, we paral-
lelize and simulate each loop once. After applying a selection technique, we directly 
use the simulation result to calculate the overall program performance. In this way, 
we avoid simulating the same loop multiple times if it is selected by different tech-
niques. 

Moreover, we use a simple sampling method to further speed up the simulation. 
For each loop, we select the first 50 invocations for simulation. For each invocation, 
we simulate the first 50 iterations. This simple sampling method allows us to simulate 
up to 6 billion dynamic instructions while covering all loops. 

4   Loop Speedup Estimation 

Our goal in loop selection is to maximize the overall program performance, which is 
represented as the benefit value of the selected loops. In order to calculate the benefit 

Program Number of 
Loops 

Average Loop 
Iteration Size 

Maximal 
Nest Depth 

mcf 51 29,605 4 
crafty 420 59,775 10 
twolf 899 12,437 7 
gzip 178 206,755 6 

bzip2 163 109,227 9 
vortex 212 45,179 7 

vpr 401 1,500 5 
parser 532 8,820 10 

gap 1,655 53,721 10 
gcc 2,619 5,394 10 

perlbmk 729 2,826 10 



value for each loop, we have to estimate both the coverage and speedup of each loop. 
Coverage can be estimated using a runtime profile. To estimate speedup, we have to 
estimate both sequential and parallel execution time. 

We assume that each processor executes one instruction per cycle, i.e., each in-
struction takes one cycle to finish. It is relatively easy to estimate sequential execu-
tion time Tseq of a loop. We can determine the average size of a thread (average num-
ber of instructions executed per iteration) and the average number of parallel threads 
(average number of times a loop iterates) by using a profile. Tseq can be approximated 
by using equation (3), where S is the average thread size and N is the average number 
of threads. 

Tseq = S × N (3) 

 
Fig. 3. Impact of delay D assuming 4 processors 

On the other hand, the parallel execution time depends on other factors such as the 
thread creation overhead, the cost of inter-thread value communication, and the cost 
of mis-speculation. We simplify the calculation by dividing the total parallel execu-
tion time Tpar into two parts: perfect execution time Tperfect and mis-speculation time 
Tmisspec. Tperfect is the parallel execution time on p processors assuming that there is no 
mis-speculation. Tmisspec is the wasted execution time due to mis-speculation. 

Tpar = Tperfect + Tmisspec (4) 
We also define delay D as the delay between two consecutive threads caused by 

inter-thread value communication Tcomm and thread creation overhead O. 
D = max(Tcomm, O) (5) 

Depending on the delay D, we use different equations to estimate Tperfect. If D ≤ S / 
p, we can have a perfect pipelined execution of threads, as shown in Figure 3(a), and 
use equation (6) for estimation.  

Tperfect = ((N – 1) / p + 1) × S + ((N – 1) mod p) × D (6) 
If D > S / p, delay D causes bubbles in the pipelined execution of threads and has a 

higher impact on the overall execution time, as shown in Figure 3(b). In this case, we 
use equation (7) for estimation.  
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Tperfect = (N – 1) × D + S (7) 
The key to accurately predicting speedup is how to estimate Tcomm and Tmisspec. 

Tcomm is caused by the synchronization of frequently occurring data dependences, 
while Tmisspec is caused by the mis-speculation of unlikely occurring data depend-
ences. We describe techniques to estimate Tmisspec and Tcomm in the following sections. 

4.1 Tmisspec Estimation 

When a mis-speculation is detected, the violating thread will be squashed and all the 
work done by this thread becomes useless. We use the amount of work thrown away 
in a mis-speculation to quantify the impact of the mis-speculation on the overall par-
allel execution. The amount of work wasted depends on when a mis-speculation is 
detected. For instance, if a thread starts at cycle c1 and mis-speculation is detected at 
cycle c2, we have (c2 – c1) wasted cycles.  

In our machine model, a mis-speculation in the current thread is detected at the end 
of the previous thread, so we could waste (S – D) cycles for a mis-speculation. The 
overall execution time wasted due to mis-speculation is calculated in equation (8), 
where Pmisspec is the probability that a thread will violate inter-thread dependences and 
is obtained through a profile. 

Tmisspec = (S – D) × Pmisspec (8) 

4.2   Tcomm Estimation I 

One way to estimate the amount of time that parallel threads spend on value commu-
nication is to identify all the instructions that are either the producers or the consum-
ers of inter-thread data dependences and estimate the cost of value communication as 
the total cost of executing all such instructions. 

Although this estimation technique is simple, it assumes that the value required by 
a consumer instruction is immediately available when it is needed. Unfortunately, this 
assumption is not always realistic, since it is often the case that the instruction that 
consumes the value is issued earlier than the instruction that produces the value, as 
shown in Figure 4(a). Thus the consumer thread T2 has to stall and wait until the 
producer thread T1 is able to forward it the correct value, as shown in Figure 4(b). 
The flow of the value between the two threads serializes the parallel execution, so we 
refer to it as a critical forwarding path. 

4.3   Tcomm Estimation II 

To take into consideration the impact of the critical forwarding path, we propose 
estimation technique II. Assuming that load1, the consumer instruction in thread T2, 
is executed at cycle c2 and that store1, the producer instruction in thread T1, is exe-
cuted at cycle c1, the cost of value communication between these two instructions is 
estimated as (c1 – c2). 

If the data dependence does not occur between two consecutive threads but rather 
has a dependence distance of d, the impact on the execution time of a particular 
thread should be averaged out over the dependence distance. Thus the impact of 
communicating a value between two threads is estimated as follows: 



criticalness = (c1 – c2) / d (9) 
There is one more mission piece if this estimation technique is to be successful, 

which is how to determine which cycle of a particular instruction should be executed. 
Since it is not possible to perfectly predict the dynamic execution of a thread, we 
made a simplification assuming each instruction will take one cycle to execute; thus 
the start cycle is simply an instruction count of the total number of instructions be-
tween the beginning of the thread and the instruction in question. However, due to 
complex control flows that are inherent to general-purpose applications, there can be 
multiple execution paths, each with different path length, that reach the same instruc-
tion. Thus the start time of a particular instruction is the average path length weighted 
by path taken probability, as shown in equation (10). 

c = Σ pi∈all_paths(length(pi) × prob(pi)) (10) 
 

 
Fig. 4. The data dependence patterns between two speculative threads 

For many loops, multiple data dependences exist between two threads, as shown in 
Figure 4(c). In such cases, the cost of value communication is determined by the most 
costly one, since the cost of other synchronizations can be hidden. 

4.4   Tcomm Estimation III 

Previous work has shown that the compiler can effectively reduce the cost of syn-
chronization through instruction scheduling and that such optimizations are particu-
larly useful for improving the efficiency of communicating register-resident scalars 
[28, 29]. Unfortunately, the estimation technique described in the previous section 
does not take such optimization into consideration and tends to overestimate the cost 
of inter-thread value communication. 

It is desirable to find an estimation technique that considers the impact of instruc-
tion scheduling on reducing the critical forward path length. Thus, we use a third 
technique, in which the start time of an instruction is computed from the data depend-
ence graph. When there are multiple paths that can reach an instruction in the data 
dependence graph, the average start time of this instruction can be measured by equa-
tion (11), assuming that the average length of a path pi that reaches this instruction in 
the data dependence graph is length(pi). 

c = max(length(pi)) (11) 
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4.5   Evaluation 

The three speedup estimation techniques described above have been implemented 
in our loop selection algorithm and three sets of loops are selected for parallelization 
respectively. The performance improvement of the parallel execution is evaluated 
against sequential execution and the results are illustrated in Figure 5. For compari-
son, we also select loops using speedup value calculated from simulation results and 
use this perfect estimation as the upper bound. 

We make several observations. First, for estimation I, the performance improve-
ment obtained by most benchmarks is close to the perfect performance improvement 
obtained through simulation. However, for gzip, the loops selected using this estima-
tion is completely wrong and results in a 40% performance degradation. Second, the 
set of loops selected using estimation II is able to achieve only a fraction of the per-
formance obtained by the set of loops selected using simulation results. This estima-
tion technique tends to be conservative in selecting loops. Third, the set of loops 
selected with estimation III always performs at least as well as the set of loops se-
lected by estimation I and estimation II. 
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Fig. 5. Performance comparison of different speedup estimation techniques 
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Fig. 6. Coverage comparison of different speedup estimation techniques 

Figure 6 illustrates the coverage of parallel execution on the total execution time. 
We have found that although the set of loops selected using simulation results dem-
onstrate the most performance improvement, these loops do not always have the large 
coverage on execution time. In mcf, the set of loops selected using estimation III has 



the similar performance as the set of loops selected using simulation results, however, 
the coverage of the perfect loop set is significantly smaller. This phenomenon sug-
gests that our estimation method may not be very accurate but is useful in selecting a 
set of loops that have good performance potential. 

5   The Impact of Dynamic Loop Behavior on Loop Selection 

Once a loop is selected by our current loop selection algorithm, every invocation of 
this loop is parallelized. The underlying assumption is that the parallel execution of a 
loop behaves the same across different invocations. However, some loops exhibit 
different behaviors when they are invoked multiple times. Different invocations of a 
loop may differ in the number of iterations, the size of iterations, and the data de-
pendence patterns, and thus demonstrate different parallel execution efficiency. Con-
sequently, it might be desirable to parallelize only certain invocations of a loop. In 
this section, we address this phenomenon. In particular, we examine whether exploit-
ing such behavior can help us select a better set of loops and improve the overall 
program performance. 

5.1   Calling Context of a Loop 

In the loop graph, as described in Section 2, we refer to the path from the root node to 
a particular loop node as the calling context of that loop. It is possible for a particular 
loop to have several distinct calling contexts, and it is also possible for loops with 
different calling contexts to behave differently. To study this behavior, we replicate 
the loop nodes for each distinct calling context. An example is shown in Figure 2(c), 
where the loop node goo_for1 has two distinct calling contexts and is thus replicated 
into goo_for1_A and goo_for1_B. After the replication, the original loop graph is 
converted into a tree, which we refer to as the loop tree. 

We parallelize a loop under a certain calling context if the parallel execution 
speeds up under that calling context. Loop selection on the loop tree is straightfor-
ward. The algorithm is as follows. We first traverse the loop tree bottom-up. For each 
node in the tree, we evaluate its benefit value as Bcurrent. We sum up the benefit values 
if we parallelize its descendants, and refer to this number as Bsubtree. If Bcurrent is 
greater than Bsubtree, we mark this node as a potential candidate for parallelization. We 
also record the larger of these two numbers as Bperfect, which is used to calculate Bsub-

tree of its parent. Next we traverse the loop tree top-down. Once we have encountered 
a loop node that is marked as a potential candidate from the previous step, we prune 
its children. The leaf nodes of the remaining loop tree correspond to the loops that 
should be parallelized. The accurate solution for selecting loops from a loop tree can 
be found in polynomial time. 

5.2   Dynamic Behavior of a Loop 

It is possible for two different invocations of a loop to behave differently even if they 
have the same calling context. To study this behavior further, we assume an oracle 



that can perfectly predict the performance of a particular invocation of a loop and 
parallelize this invocation only when it speeds up. A different set of loops are selected 
and evaluated assuming that such an oracle is in place. 
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Fig. 7. Performance comparison of loop selection based on different contexts 
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Fig. 8. Coverage comparison of loop selection based on different contexts 

5.3   Evaluation 

In this section, we evaluate the impact of considering the calling context of a loop (as 
described in Section 5.1) and the impact of parallelizing only selected invocations of 
a loop (as described in Section 5.2). The impact of such behavior on overall program 
performance is shown in Figure 7. We have observed that by differentiating loops 
with different calling contexts, some benchmarks are able to obtain better program 
performance. Among them, crafty has an additional speed up of 2% and perlbmk 
speeds up by 7%. The performance of mcf, crafty, and bzip2 improves an additional 
2% by having an oracle that parallelizes only invocations of loops that speed up. 
Thus, we found that the dynamic behavior of loops has performance impact for some 
benchmarks. We believe that a dynamic or static loop selection strategy that can pre-
dict whether a particular invocation of a loop speeds up can help us achieve addi-
tional performance improvement. 



Figure 8 shows the coverage for the selected loops. For some benchmarks, such as 
perlbmk, we observe that the overall program performance improves although the 
coverage of parallelized loops decreases when we take context information into con-
sideration. Close examination reveals that perlbmk contains a loop that only speeds 
up under certain circumstances, and by parallelizing only such invocations, we can 
achieve better performance. For some other benchmarks, such as crafty and vortex, 
the coverage of parallel loops increased due to the selection of a different set of loops. 

6   Related Work 

Colohan et al. [7] have empirically studied the impact of thread size on the per-
formance of loops, and derived several techniques to determine the unrolling factor of 
each loop. Their goal is to find the optimal thread size for parallel execution. Our 
estimation techniques can be employed to determine the candidate loops to unroll. 
They also propose a runtime system to measure the performance and select loops 
dynamically. 

Oplinger et al. [19] have proposed and evaluated a static loop selection algorithm 
in their study of the potential of TLS. In their algorithm, they select the best loops in 
each level of a dynamic loop nest as possible candidates to be parallelized and com-
pute the frequency with which each loop is selected as the best loop. Then they select 
loops for parallelization based on the computed frequencies. Their concept of a dy-
namic loop nest is similar to the loop tree proposed in this paper, but is used only to 
guide the heuristic in context-insensitive loop selection. Their performance estimation 
is obtained directly from simulation and does not consider the effect of compiler 
optimization. 

Chen et al. [5] have proposed a dynamic loop selection framework for the Java 
program. They use hardware to extract useful information (such as dependence tim-
ing and speculative state requirements) and then estimate the speedup for a loop. 
Their technique is similar to the runtime system proposed by Colohan et. al. [7] and 
can only select loops within a simple loop nest. Considering the global loop nesting 
relations and selecting loops globally introduces significant overhead for a runtime 
system. 

Several papers [12, 21] have studied thread generation techniques that extract 
speculative parallel threads from consecutive basic blocks. Threads generated using 
these techniques are fine-grained and usually contain neither procedure calls nor 
inner loops. These thread generation techniques can complement loop-based threads 
by exploiting parallelism in the non-loop potion of the program or in loops that are 
not selected for parallel execution by our algorithm. 

Prabhu et al. [20] manually parallelize several SPEC2000 applications using tech-
niques beyond the capabilities of current parallelizing compilers. However, only a 
few loops are evaluated due to the time-consuming and error-prone nature of this 
process. 



7   Conclusions 

Loops, with their regular structures and significant coverage on execution time, are 
ideal candidates for extracting parallel threads. However, typical general-purpose 
applications contain a large number of nested loops with complex control flow and 
ambiguous data dependences. Without an effective loop selection algorithm, deter-
mining which loops to parallelize can be a daunting task. In this paper, we propose a 
loop selection algorithm that takes the coverage and speedup achieved by each loop 
as inputs and produces the set of loops that should be parallelized to maximize pro-
gram performance as the output. One of the key components of this algorithm is the 
ability to accurately estimate the speedup that can be achieved when a particular loop 
is parallelized. This paper evaluates three different estimation techniques and finds 
that with the aid of profiling information, compiler analyses are able to come up with 
reasonably accurate estimates that allow us to select a set of loops to achieve good 
overall program performance. Furthermore, we have observed that some loops be-
have differently across different invocations. By exploiting this behavior and parallel-
izing only invocations of a loop when it actually speeds up, we can potentially 
achieve better overall program performance for some benchmarks. 
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