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Abstract. We briefly introduce the notion of Semantically Enhanced Library
Languages, SELL, as a practical and economical alternative to special-purpose
programming languages for high-performance computing. Then we de-
scribe the Pivot infrastructure for program analysis and transformation
that is our main tool for supporting SELL. Finally, we outline how the
IPR (The Pivot’s Internal Program Representation) can be used to represent
central notions of high-performance computing, such as parallelizable ar-
ray operations. Our focus is on a broad exposition of ideas, rather than
technical details1.

1 Languages and libraries

For ease of programming, portability, and acceptable performance, we design
and implement special-purpose programming languages for high-performance
computing [15]. Alternatively, we can use a Semantically Enhanced Library Lan-
guage. A SELL is a language created by extending a programming language
(usually a popular general-purpose programming language) with a library pro-
viding the desired added functionality and then using a tool to provide the de-
sired semantic guarantees needed to reach a goal (often a higher level seman-
tics, absence of certain kinds of errors, or library-specific optimizations) [12].
This paper focuses on a tool, The Pivot, being developed to support SELLs in
ISO C++ [11, 5] and its application to High-Performance Computing.

2 A brief overview of the Pivot

The Pivot is a general framework for the analysis and transformation of C++
programs. It is designed to handle the complete ISO C++, especially more ad-
vanced uses of templates and including some proposed C++0x features. It is
compiler independent. The central part of the Pivot is a fully typed abstract
syntax tree called IPR (Internal Program Representation).

There are lots of (more than 20) tools for static analysis and transformation
of C++ programs, e.g. [7, 2, 8, 6]. However, few — if any — handle all of ISO

1 This is the "cut" or "abbreviated" version of this paper. For a full version, see
http://www.research.att.com/ bs/papers.html



Standard C++, most are specialized to particular forms of analysis or transfor-
mation, and few will work well in combination with other tools. We are particu-
larly interested in advanced uses of templates as used in generic programming,
template meta-programming, and experimental uses of libraries as the basis of
language extension. For that, we need a representation that deals with types as
first-class citizens and allows analysis and transformation based on their prop-
erties. In the C++ community, this is discussed under the heading of concepts
and is likely to receive significant language support in the next ISO C++ stan-
dard (C++0x) [13, 9, 14, 3]. We use the word concept to a designate collection of
properties that describes usage of values and types. From the point of view of
support for HPC — and for the provision of special-purpose facilities in gen-
eral — a concept can be seen as a way of specifying new types with associated
semantics without the modification of compilers or new syntax. That done, the
SELL approach then uses the concepts as a hook for semantic properties beyond
what C++ offers.

2.1 System organization

To get IPR from a program, we need a compiler. Only a compiler “knows”
enough about a C++ program to represent it completely with syntactic and
type information in a useful form. In particular, a simple parser doesn’t un-
derstand types well enough to do a credible general job. We interface to a com-
piler in some appropriate and minimally invasive fashion. A compiler-specific
IPR generator produces IPR on a per-translation-unit basis. Applications inter-
face to “code” through the IPR interface. So as not to run the compiler all the
time and to be able to store and merge translation units without compiler inter-
vention, we can produce a persistent form of IPR called XPR (eXternal Program
Representation).
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Fig. 1. An overview of The Pivot infrastructure

From a compiler, we generate IPR containing fully typed abstract syntax
trees. In particular, every use of a function name and operator is resolved to



its proper declaration, all scope resolution is done, and all implicit calls of con-
structors and destructors are known. We base our work on compilers, rather
than on a simple parser because only a complete and correct compiler can col-
lect sufficient information for type-driven and concept-driven applications. We
have IPR generators from GCC and EDG, so that the Pivot is not compiler
specific. The reason for preserving compiler independence is to maximize the
portability of IPR-based tools. A tool that is built directly on a compiler’s inter-
nal interface cannot easily be ported to another compiler. In fact, the interfaces
to current C++ compilers’ data structures for syntax and type information dif-
fer dramatically and most are de facto inaccessible for technical, commercial, or
political reasons.

Early versions of this system (and its precursors) have been used to write
pretty printers, generate XML for C++ source, CORBA IDL from C++ classes,
and distributed programs using C++ source augmented with a library defining
modularity.

The XPR is a compact and human readable ASCII representation of IPR.
XPR can be used as a transfer format between two different runs of the Pivot
or two different implementations of the IPR. The library implementing the IPR
is elegant, compact, and efficient. It is just 2,500 lines of C++ to cope with all of
C++, unify types (and literals and anything else we might want to unify), and
manage memory.

2.2 IPR principles

The IPR is compact, completely typed (every entity has a type, even types),
representation with an interface consisting of abstract classes. The IPR has a
unified representation so that its memory consumption is minimal. For exam-
ple there will be only one node representing the type int and only one node
representing the integer value 42 in a program that uses those two entities. This
minimalism (in time and space) is key to its use for large systems — million line
programs are no longer rare.

The IPR does its own memory management so users do not have to keep
track of created objects. It is arguably optimal in the number of indirections
needed to access a given piece of information. The IPR is minimal in that it
holds only information directly present in the C++ source. IPR can be annotated
by the user and flow graphs can be generated. However, that’s considered jobs
for IPR applications rather than something belonging to the core framework
itself. In particular, traversal of C++ code represented as IPR can be done in
several ways, including “ordinary graph traversal code”, visitors [4], iterators
[10, 11], or tools such as Rose [7]. The needs of the application — rather than
the IPR — determines what traversal method is most suitable.

The IPR can represent both correct and incorrect (incomplete) C++ code
and both individual translation units and merged units (such as a complete
program). It is therefore suitable for both analysis of individual separately-
compiled units and whole-program analysis.



The IPR represents ISO C++ code. That implies that it can trivially be ex-
tended to represent C code and common C++ dialects. However, since the ini-
tial aim of the Pivot is to look into high-level type-based and concept-based
transformation, there is no immediate desire to extend it to cope with other
languages with significantly different semantics, such as Fortran or Java.

User programs can annotate IPR nodes. An annotation is a (name,value)
pair optionally attached to an IPR node by a Pivot application for its own uses.
An annotation does not affect the way the IPR functions. The IPR “remembers”
the C++ source locations of its nodes, so that a tool can refer back to the original
source code.

3 High-level program representation for HPC

Type systems have been introduced in programming primarily for correctness
and efficiency. For example, if we know at translation time that an operation
involving read and write accesses is alias free, we can exploit that for generating
efficient code. Some programming languages, notably FORTRAN, are designed
to allow the compiler to assume the absence of aliases. Other general-purpose
programming languages, such as C or C++, allow only a restricted set of type-
based aliasing. For example a pointer of type void* can be used to access any
kind to data, but a pointer of type int* cannot be effectively used to access
data of type double.

A typeful programming discipline can help make programs both correct
and efficient. Abstract representation of programs naturally enables symbolic
manipulation. Here, we present an approach to correctness and performance
based on IPR. We will use the notion of parallelizable vector operation as a run-
ning example.

Why C++? For the SELL approach we need a widely-used general-purpose
language for our “host language”. For type transformation and high-level work,
we need a language that provides a flexible type system that can be used in a
type-safe manner. For high-performance computing, we need a language that
can efficiently use hardware resources and is available on high-end computers.
For wide use, we need a non-proprietary and platform-neutral language.

3.1 A notion of parallelizable

Consider the classic operation

z = a * x + y;

where a is scalar; x, y and z denotes vectors, and the operations * and + are
component-wise. It can be parallelized if we know that the destination z does
not overlap with the sources x and y in a way that displays non-trivial data
dependencies. That happens, for example, if we know no vector element has its
address taken. For exposition purpose, we will simplify the notion of Paralleliz-
able to a collection of types whose objects support the operation [] (subscrip-
tion) but not & (address-of) on its elements. Consider the generic function



template<Parallelizable T>
void f(const T& v)
{

double a = v[2]; // #1: OK
double* p = &v[2]; // #2: NOT OK.

}

Line #1 is valid but line #2 is an error because it uses a forbidden operation.
We generalized the standard notation template<typename T> which reads
“for all T”, to template<Parallelizable T> meaning “for all T such that
T is is Parallelizable”.

Concepts will almost certainly be part of C++0x. However, using IPR we can
handle concepts without waiting for the C++ standards committee to decide on
the technical details, see Section 3.3.

A programmer might use Parallelizable to constrain the use of a vec-
tor:

vector<double> v(10000);
// ...
f(v); // f will use v as an Parallelizable (only)

Here we now know that f() will not use & on v even though the standard
library vector actually allows that operation. We can use f() with its no-alias
guarantee for any type that supports subscripting. For example we might use a
STAPL [1] pvector:

pvector<double> vd(100000);
// ...
f(vd);

The concept checking allows no assumptions about types uses beyond what
the concept actually specifies (here, a Paralleizable provides []). In partic-
ular, no hierarchical ordering or run-time mechanisms are required.

Note that when defined in this way, Parallelizable requires no modifi-
cation to C++0x or to any compiler. Furthermore, the use of Parallelizable
is most likely to be composable with other facilities introduced as concepts –
even if the facilities were developed in isolation.

Below, we will briefly present a high-level representation of C++ programs
that support concept-based analysis and transformations.

3.2 Concepts in the IPR

A translation unit is represented as a graph with a distinguished root for the
sequence of top-level declarations. In IPR, every entity in a C++ program is
viewed as an expression possessing some type. So, types have types, which
are called concepts. This becomes more useful, and maybe clearer, for a type
variable as we find them in template parameter lists.

In Fig. 2, we have drawn a view of the representation of the declaration
Parallelizable T. The declaration of the template-parameter T has type
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Fig. 2. IPR model Parallelizable T

Parallelizable. If we knew about the syntax and semantics of Parallelizable,
that knowledge would be represented by a node referred to by the type field
of the node with the identifier "Parallelizable".

Note how Parallelizable fits into the IPR framework without modifi-
cation or special rules. Parallelizable is simply a (deliberately trivial) ex-
ample of what can be done with concepts in general.

Concepts are the basis for checking usage of types in templates, just like
ordinary types serve to check uses of values in functions. Concept checking is
done at two sites: (a) at template use site; and (b) at template definition site. If
concept checking succeeds at both sites, then the template arguments are used
(only) according to the semantics expressed in the concepts. In the particular
case of Parallelizable, it means that no vector has its address taken, and
consequently parallelization transformations can be safely applied.

3.3 Getting concepts into the IPR

How do we get concepts into our program? C++0x will most likely provide a
way of specifying and checking concepts. That will provide a convenient han-
dle for all concepts and for all SELL type-based analysis and transformation.
For example:

concept Parallelizable<typename T> {
// operations required by any Parallelizable type
// only required operations will be accepted
// for an object of a Parallelizable type

};

Once, the concept Parallelizable is part of the program, a Pivot applica-
tion can operate based on its understanding of it. Note that this “understaning”
can be extra-linguistic based on the tool builders knowledge of the semantics
of the library of which Parallelizable is part.

However, what do we do if we don’t have a C++0x compiler that directly
supports concepts? After all, C++0x won’t be fully specified for another couple
of years. We could rely on annotations, pragmas, language extensions, etc., but



that has serious implications and costs. In particular, our programs would al-
most certainly not be composable with extensions defined and implemented by
another group. The obvious alternative is to rely on convention: Traditionally,
C++ programmers name template parameters to indicate their intended use.
For example:

template<class Parallelizable>
void f(const Parallelizable& v)
{

// operate on v according to Parallelizable rules
}

A Pivot application (tool) can easily recognize the type name Parallelizable
and connect it to the definition of the concept Parallelizable as defined by the
tool. From the point of view SELL and the Pivot, C++0x concepts is a significant
convenience that provides a major advantage in notation and checking. How-
ever, it is only a (major) convenience because a Pivot-based tool can manipu-
late the IPR directly. For example, we could take code using the C++ standard
library accumulate

template<class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last,

const T& init);

and transform every use into its equivalent parallel STAPL p-algorithm if (and
only if) the STAPL requirements for its arguments are met. That is, the trans-
formation takes place iff in addition to being an InputIterator the argu-
ment tyoe is a BidirectionalIterator or a RandomAccessIterator.
This general approach to semantics-based transformation applies to all C++
standard algorithms described in terms of “abstract sequences”.

The concept-based techniques rely critically on the use of templates, so that
we can type template paraments with concepts to get a handle on their semantic
properties. So, what do we do with code that doesn’t use templates? Given an
abstract syntax tree that represents a function declaration, we can transform it
into a templated version and concept-check it. Consequently, we can check and
transform a whole program as if it was fully templated.

4 Conclusion

The SELL, Semantically Enhanced Library Language, approach to supporting special-
purpose languages can yield extension that are composable and portable. We
presented our main tool for supporting the “semantic part” of that approach,
The Pivot. The Pivot provides a general framework for analysis and transfor-
mation of C++ programs with an emphasis on high-level and type sensitive
approaches. Our semantics-based analysis and transformation do not require
modification to a host language and is minimally invasive to tool chains. It re-
lies on a high-level program representation, the IPR, with emphasis on types



and concepts. Using the IPR we can perform analysis and transformation for
high-performance computing (as well as other forms of computing) that tra-
ditionally required special-purpose languages or ownership of a specialized
compiler and related tool chain.
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