
Array Replication to Increase Parallelism in

Applications Mapped to Configurable
Architectures

Heidi E. Ziegler, Priyadarshini L. Malusare and Pedro C. Diniz

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, California, 90292
{ziegler,priya,pedro}@isi.edu

Abstract. Configurable architectures, with multiple independent on-
chip RAM modules, offer the unique opportunity to exploit inherent
parallel memory accesses in a sequential program by not only tailoring
the number and configuration of the modules in the resulting hardware
design but also the accesses to them. In this paper we explore the possi-
bility of array replication for loop computations that is beyond the reach
of traditional privatization and parallelization analyses. We present a
compiler analysis that identifies portions of array variables that can be
temporarily replicated within the execution of a given loop iteration,
enabling the concurrent execution of statements or even non-perfectly
nested loops. For configurable architectures where array replication is
essentially free in terms of execution time, this replication enables not
only parallel execution but also reduces or even eliminates memory con-
tention. We present preliminary experiments applying the proposed tech-
nique to hardware designs for commercially available FPGA devices.

1 Introduction

Emerging computing architectures now have multiple computing cores and mul-
tiple memory modules such as discrete and programmable register files as well
as RAM blocks. For example, field-programmable gate arrays (FPGAs) allow
designers to define an arbitrary set of registers and customize the topology of
internal RAM blocks [12] to suit the data and computational needs of the com-
putation. Other programmable architectures simply allow for the arrangement
of registers and fine-grain functional units to create tailored pipelined archi-
tectures [5]. Overall these flexible architectures provide ample opportunities to
exploit data parallelism as well as coarse and fine-grain parallelism.

Unfortunately, mapping sequential applications to these architectures is a dif-
ficult task. Programmers must explicitly manage the mapping and organization
of arrays among the rich set of storage resources, configurable register sets and
on and off-chip memories, if they are to fully exploit the architectural benefits
of configurable devices. The wide range of design choices faced by the program-
mer makes it desirable to develop automated analysis and mapping tools that

2

can navigate certain characteristics of the design space, in particular, the data
dependences found in common sequential imperative programs.

In this paper we focus on array privatization and array replication techniques
to enable compilers to uncover parallelism opportunities in sequential computa-
tions that are traditionally impeded by both anti and output-dependences. We
focus on array privatization not across loop iterations but within the same loop
iteration. It focuses on the analysis of non-perfectly nested loops by determining
anti-dependences between a sequence of nested loops in a control loop.

When two computations, that execute serially, access the same array location,
reading its previous value and then writing a new value into the location, this
gives rise to an anti-dependence between them. Similarly when two computation
use the same location to store consecutive values that are otherwise independent
creates an output-dependence. These dependences can be eliminated by creating
a copy of the array, that each computation freely accesses. Each computation
uses a distinct memory location to write and read a value, and in the absence of
true-dependences between these loops nest, they can execute concurrently within
the same iteration of the control loop.

This concurrent execution, however, raises the issue of memory contention
when two or more concurrently executing loop nests access the same array region,
i.e., the loops exhibit input-dependences. To overcome this memory contention,
we take advantage of the flexibility of memory mapping in configurable architec-
tures by creating copies of shared array variables. By accessing the array copies,
the parallel loop nests can therefore execute concurrently due to the absence
of anti-dependences but also be contention-free. When the original computation
exhibits loop-carried true-dependences (i.e., values written in a given iteration
that are read in a later iteration of a loop), the transformed code must update
the array copies (not necessarily all of them) when the concurrent execution
terminates to ensure that subsequent computations proceed with the correct
values.

This transformation explores a space-time tradeoff. In order to eliminate
anti-, output- and input-dependences, the implementation requires additional
memory space. In addition, some execution time overhead is incurred in updat-
ing the copies to enforce the original program data dependences. The analysis
abstractions, in cooperation with estimates of memory space usage, allow for an
effective algorithm to manage this tradeoff and adjust, possibly dynamically, the
performance of the implementation in response to available resources.

In this paper we evaluate the replication and privatization transformations
when mapping a set of computations to a configurable computing device, a
Xilinx VirtexTM FPGA. We simulate the transformed code as a concurrently
executing hardware design, thereby revealing the effects on performance and the
corresponding cost of storage.

This paper makes the following specific contributions:

– Describes the application of array replication and array privatization trans-
formations to take advantage of the flexibility of configurable architectures.

3

– Extends existing array data-flow analysis to identify opportunities for con-
current execution of entire loops when arrays are replicated and temporarily
privatized.

– Presents experimental results of our array replication algorithm when applied
to a sample set of image processing computations for specific mappings to
an FPGA device.

Preliminary results reveal that a modest increase of storage for private and
replicated data leads to hardware designs that exhibit respectable execution time
speedups, making this approach feasible when storage space is not a limiting
factor in the design.

With the increase in VLSI device capacity and the emergence of computing
architectures that have multiple computing units on the same die and a very
rich set of configurable storage structures, the placement and layout of data
will become increasingly important if applications are to fully exploit the true
potential of internal data bandwidth and computational units.

This paper is structured as follows. Section 2 illustrates a motivating exam-
ple for array replication. Section 3 describes the compiler analyses and a data
replication algorithm. In section 4 we present preliminary experimental results
of the application of the proposed analyses to a set of multimedia computations
targeting an FPGA configurable device. We discuss related work in section 5
and then conclude in section 6.

2 Example

We now present an example showing how array replication (or copying) elim-
inates anti- and output-dependences thereby enabling concurrent execution of
loops. This example also illustrates the elimination of input-dependences (i.e.,
when two loops access arrays that are stored in the same memory module) that
reduces memory contention introduced by concurrency. The computation is il-
lustrated in figure 1 and consists of an outer i loop with three loop nests, L1, L2
and L3 nested within. Each of these three loop nests access a two-dimensional
array variable A using affine subexpressions. The first two loop nests L1 and L2
read two consecutive rows of the array whereas the third loop nest L3 writes the
array row read by the first loop nest in the same iteration of i and in iteration
i+1 by the second loop nest.

Within loop i, one cannot execute loops L1 and L2 concurrently with loop
L3, since there is an anti-dependence between L3 and the other loops. Itera-
tions of the i loop also cannot be executed concurrently given the loop-carried
true-dependence between L3 and L2. As such, privatization of A is therefore not
possible either [11].

A way to enable concurrent execution of all loop nests during the execution
of each iteration of the i loop is to create a copy of array A named A 3, which
L3 can update locally while loops L1 and L2 read from the original array A.
We call this transformation where the array is being replicated with respect
to the loop nest that writes it, a partial replication. At the end of concurrent

4

/* control loop */
for(i = 0; i < M; i++){

/* loop L1 */
for(j=0; j < N; j++){

for(k=0; k < N; k++){
. . . = A[i][k];
. . .

}
}

/* loop L2 */
for(j=0; j < N; j++){

for(k=0; k < N; k++){
. . . = A[i-1][k];
. . .

}
}

/* loop L3 */
for(j=0; j < N; j++){

for(k=0; k < N; k++){
A[i][k] = . . .
. . .

}
}

}

tim
e

ite
ra
tio
n
i

ite
ra
tio
n
i+
1

L1: reads A[i+1][*] L2: reads A[i][*] L3: writes A[i+1][*]

update A[i+1][*] = A_3[i+1][*]
barrier

L1: reads A[i][*] L2: reads A[i-1][*] L3: writes A_3[i][*]

update A[i][*] = A_3[i][*]
barrier

tim
e

ite
ra
tio
n
i

ite
ra
tio
n
i+
1

L1: reads A_1[i+1][*] L2: reads A_2[i][*] L3: writes A[i+1][*]

update A_2[i+1][*] = A_3[i+1][*]
barrier

L1: reads A_1[i][*] L2: reads A_2[i-1][*] L3: writes A_3[i][*]

update A_2[i][*] = A_3[i][*]
barrier

tim
e

L1: reads A[i][*]
L2: reads A[i-1][*]
L3: writes A[i][*]

L1: reads A[i+1][*]
L2: reads A[i][*]
L3: writes A[i+1][*]

ite
ra
tio
n
i

ite
ra
tio
n
i+
1

tru
e

de
pe
nd
en
cy

an
ti

de
pe
nd
en
cy

(a) Sequential execution.

(b) Concurrent execution without array replication.

(c) Concurrent execution replicating array A.

Fig. 1. Example computation and illustrative sequential and concurrent execution.

execution of loops L1 through L3 within one iteration of the i loop, we insert a
synchronization barrier and then update the original array A with the new values
generated by loop L3. This concurrent execution is illustrated in figure 1(b) and
the corresponding parallel code is depicted in figure 2(a).

Due to the concurrent execution of the three loop nests, there is now memory
contention on array A by the loops L1 and L2. In an architecture with memory
modules with a limited number of memory ports and in the absence of care-
ful scheduling of read operations the execution of each loop will possibly stall
for data. To alleviate the memory contention, we further replicate array A and
assign these new arrays A 1 and A 2 to two memories that can be accessed in
parallel by loops L1 and L2. In this extended replication transformation, called
full replication, we create copies that are local to the loops that both read and
write the arrays.1 We trade decreased execution time for increased array storage.
In addition, the implementation must update the arrays to ensure data consis-

1 There are additional degrees of replication with respect to the loops that read a
given array. Furthermore, this need to replicate to reduce memory access contention
interacts with other transformations such as custom data-layout enabled by loop
unrolling as described in [9].

5

for(i = 0; i < M; i++){ /* control loop */

begin par
{

for (j=0; j < N; j++){ /* loop L1 */
for (k=0; k < N; k++){

. . . = A[i][k];

. . .;
}

}
}

{
for (j=0; j < N; j++){ /* loop L2 */

for (k=0; k < N; k++){
. . . = A[i-1][k];
. . .;

}
}

}

{
for (j=0; j < N; j++){ /* loop L3 */

for (k=0; k < N; k++){
A 3[j][k] = . . .;
. . .;

}
}

}
end par
/* update original A */
for (k=0; k < N; k++){

A[i][k] = A 3[i][k];
}

}

for(i = 0; i < M; i++){ /* control loop */

begin par
{

for (j=0; j < N; j++){ /* loop L1 */
for (k=0; k < N; k++){

. . . = A 1[i][k];

. . .;
}

}
}

{
for (j=0; j < N; j++){ /* loop L2 */

for (k=0; k < N; k++){
. . . = A 2[i-1][k];
. . .;

}
}

}

{
for (j=0; j < N; j++){ /* loop L3 */

for (k=0; k < N; k++){
A 3[j][k] = . . .;
. . .;

}
}

}
end par
/* update A 2 */
for (k=0; k < N; k++){

A 2[i][k] = A 3[i][k];
}

}
(a) Transformed code with (b) Transformed code with

partial replication full replication

Fig. 2. Transformed example computation

tency. While updating complete arrays is a safe and conservative approach, in
actuality, only array elements that correspond to loop-carried true-dependences
need to be updated. In our example and given that the array section written by
L3 is read only by L2 in the next iteration of the i loop, the implementation only
needs to update the array A 2 associated with L2 and not A 1 associated with
L1. In other words the definition of the array row written by L3 reaches L2 but
not L1. Figure 2(b) depicts the transformed code after the replication of these
arrays and the corresponding concurrent execution is illustrated in figure 1(c).

While the inclusion of a copy operation is likely to decrease performance
benefits of such transformations in a classical architecture, in the context of
configurable architectures, it has little if any impact on overall execution time.
When the implementation of the computation in L3 has to issue a write operation
to a specific memory module with a configurable number of read and write ports,
one can specify a multi-port write operation to occur synchronously to many
memory modules without any performance penalty.

This example illustrates the kind of computation the array privatization and
replication analysis described in this paper is designed to handle. First, we focus
on non-perfectly nested loops with intra-iteration anti-dependences and true-
dependences to recognize computations that can execute concurrently by the

6

introduction of one copy to the loop nest that modifies sections of an array.
These values must then be copied back into the original array or other copies
at the end of the execution of the parallel code region. Second, we introduce
array copies to eliminate memory contention during the concurrent execution of
multiple loop nests, thereby eliminating memory contention by exploiting the
memory bandwidth available in architectures with configurable storage units.

3 Compiler Analysis

We now describe the compiler analysis and basic abstractions used to determine
the opportunities for array replication with the goal of executing loop nests con-
currently while reducing memory contention caused by accessing shared arrays.
In this section we focus on imperfectly nested loops that manipulate array refer-
ences. Whereas our analysis can be very precise for arrays that have affine array
access functions, it can also handle, with loss of precision, references that are
very irregular, i.e., array-based indirect accesses.

3.1 Basic Abstractions and Auxiliary Functions

This analysis focuses on imperfectly nested loops where the outermost loops i1
through ik in the nest are perfectly nested. The ik loop in the nest has a loop
body that consists of a sequence of loop nests, each of which is a perfectly nested
loop as well. We name the ik as the control loop and build a control-flow-graph
CFG corresponding to its body where each node corresponds to a loop nest. For
the example in section 2, the CFG is a linear sequence of loop nests L1 through
L3, with loop i as the control loop. The corresponding CFG and dependences
between the nodes are illustrated in figure 3.

For each loop nest, corresponding to a node nk in the CFG, we define the
upwards-exposed read and write regions for a given array A denoted by ER(A, nk)
and WR(A, nk) respectively. The accessed array region is described by a set of
linear inequalities. Given that each loop nest may be enclosed by a control loop,
the corresponding dimension in the linear inequality will consist of symbolic
information. A simple, yet effective implementation restriction is to limit the
analysis to loops with single-induction variable affine subexpressions making the
presence of index variables of the control loop simple. Figure 3 depicts the CFG
of the control loop for the example in section 2, along with the relevant exposed-
read and write region abstractions for the array A.

Using these abstractions, the compiler can compute data dependences be-
tween nodes of the CFG uncovering anti-, input-, output- and true-dependences
by determining if the intersection between ER(A, ni) and WR(A, nj) between nodes
ni and nj corresponding to the same array are non-empty. For instance, an
anti-dependence exists between loops ni and nj due to array variables A iff
{WR(A, ni) ∩ ER(A, nj) with i > j} �= ∅. In some cases the intersection will
yield symbolic variables corresponding to the loops of the nest and the depen-
dence test must conservatively assume dependence. In addition, we also define

7

Loop 1

Loop 2

Loop 3

= { i-1 < d0 < i-1, 0 < d1 < N-1}

= { }

= { }

= { }

post dominates { , }

{

{

{
WRA

ER A

WRA

ER A

WRA

ER A

= { i < d0 < i , 0 < d1 < N-1}

= { i < d0 < i , 0 < d1 < N-1}

d (,) = <0>
anti

d (,) = <1>

d (,) = <1>

n1 n2

inp
n1 n2

true
n3 n2

n3 n1 n2

n3

n3

n2

n2

n1

n1

Fig. 3. Control flow graph and dependence information for the example code.

a dependence distance for each dependence type. For the example in section 2,
there is a loop-carried true-dependence on the control loop i with a distance of
1 between the nodes corresponding to the loops L2 and L3 since L3 writes the
ith row of the array A which is read by L2 on the subsequent iteration of i.

3.2 Algorithm for Detecting Replication

Using the abstractions for data accesses, ER and WR, as well as the δ data de-
pendence distance information, we now describe a compiler algorithm that de-
termines opportunities for parallel execution of the loop nests that make up the
body of the control loop. The algorithm also determines which arrays can be
replicated to mitigate memory contention resulting from concurrent execution.

The algorithm, shown in figure 4, is structured into 5 main steps. In the first
step the algorithm extracts the control loop i and the CFG corresponding to
the enclosed loops. In the second step, for each node nk, the algorithm computes
ER and WR for each array variable A. In step three, the algorithm computes the
dependence distances between every pair of nodes. In step four, the algorithm
determines the opportunities for concurrent execution of the nodes within the
same iteration of the i loop. The basic idea of this step is to identify a straight-
line sequence of nodes such that the last node of the sequence exhibits an anti-
dependence with the other nodes but there are no true- or output-dependences
for that same iteration.2 The set of nodes that meet this data dependence and
control dependence criteria are gathered in a parallel region corresponding to
the new node named parallel(nk). The compiler creates an array copy corre-
sponding to this parallel node in order to eliminate anti-dependences and inserts
synchronization code at the beginning and end of the parallel region so that
values in the original array are updated with the value generated by nk.
2 Extending this simple algorithm to regions of the CFG with control-flow leads to

several code generation complications.

8

Step 1. Extract control loops and coarse-grain control flow graph
extract control loops i0, . . . , ik and CFG;

Step 2. Determine exposed read and write information for each loop
for all nodes ni ∈ CFG
for all arrays A ni manipulates

compute ER(A, ni) and WR(A, ni);

Step 3. Compute dependence types and distances
for all pairs of nodes (ni,nj) ∈ CFG
compute δtype(ni, nj) <, =, > 〈x〉 where x is distance

Step 4. Identify parallel regions
for all nodes nk ∈ CFG s.t. WR(A, nk) �= ∅ do
if(numPreds(nk) > 1) then

parallel(nk) = ∅;
continue;

R = {nk};
n = preds(nk);
while (n �= entry OR numSuccs(n) = 1) do

if ((ni �∈ R) AND (ER(A, ni) �= ∅) AND (δtrue(ni, nk) = 〈0〉)) then
R = R + {ni}

end if;
end while;
parallel(nk) = R;
insert fork before firstNode(parallel(nk));
insert join barrier after lastNode(parallel(nk));
end for;

end for;

Step 5. Reduce contention by replicating arrays
for all parallel regions of CFG do
// Partial Replication case
insert update array variable A for WR(A, nk);
if (FullReplication) then

selectNumberCopies(parallel(nk));
for all nj ∈ parallel(nk) do

update copy of A that has δtrue(nj , nk) > 〈0〉;
for all arrays B replicate array for which δinput(ni, nj) = 〈0〉;

end for all;
end if;

end for;

Fig. 4. Parallelism detection and replication algorithm.

In step five, the algorithm identifies which array should be replicated for
each parallel region. In this step the algorithm must decide how many copies to
insert for each array variable and which copies need to be updated due to true-
dependences across iterations of the control loop. In its simplest form, partial
replication, there is a single copy for each parallel region that corresponds to
a single node writing to an array variable. In the full replication variation, the
algorithm generates one copy per each node that reads the array variable as
well. Rather then updating all array copies, the algorithm only updates copies
using the reaching definitions across loop iterations which is captured by loop-
carried dependence information [13]. To this effect the algorithm determines
which nodes, and for each array variable, exhibit a loop-carried true dependence,
at the control-loop level. The particular value of the dependence distance of the
control loop indicates the number of iterations across which the values need to

9

be updated in the original array location or copies. For the shortest distance of
1, the values must be updated at the end of the current iteration to be used in
the subsequent iteration. However, if the distance is longer, one can delay the
update and overlap it with the execution of another iteration thereby hiding its
cost.

In this description we have statically determined which nodes of the CFG
and therefore which loop nests operate on copies of the array using an external
function, selectCopies(parallel(nk)). We foresee a more sophisticated algo-
rithm, possibly dynamic, in which the need to replicate is selected at run-time
depending on execution conditions.

3.3 Granularity of Replication

The algorithm described above can be augmented to allow the compiler to un-
cover opportunities for fine-grain replication by observing the order (in terms of
array dimensions) in which multiple loop nests access the same array variables.
In the example in figure 1 during parallel execution all loop nests access shared
arrays in the same order, therefore array replication can occur at the finest gran-
ularity of an element.3 Then concurrently executing loop nests only require 1
element of replicated data in the array copy. As soon as a loop nest has finished
processing a given element, another element of the array can be copied. In ad-
dition the updates for copies can also proceed at a finer granularity as long as
the iterations of the various concurrent loops execute synchronously. A similar
analysis approach has been developed in the context of choosing the granularity
of multiple communicating computations executing in a pipelined fashion [13].

In addition to requiring less storage space, at an increase in synchronization
cost, this strategy also allows for the updates of copies to be executed concur-
rently with the parallel execution of the loop nests with the proper synchroniza-
tion. This strategy reduces the execution time overhead of copy updating and
substantially reduces the storage overhead.

The presence of irregular data access patterns, i.e., non-affine does not pose
a fundamental problem for the analysis outlined here. Rather then being able
to determine exactly the array sections that need to be replicated in the case
of a finer-grain synchronization, the analysis settles for replication at the next
computational level at which the irregular data access pattern has been absorbed
in a specific array dimension.

4 Experimental Results

We now describe the experimental methodology and results for the manual ap-
plication of the analysis and program transformations to a set of kernels.

3 The finest granularity may not be the best choice as additional execution time over-
head might not be amortized over the small data size.

10

4.1 Methodology

We applied the analysis algorithm described in section 3 and evaluated the ben-
efits and drawbacks using 3 synthetic kernels hist, bic and lcd.

The hist kernel is composed of 3 nested loops inside a single control loop with
a total of 15 lines of C code. Each of the inner loop nests in hist manipulates
3 distinct array variables exhibiting anti-dependences among the last loop nest
and the first two nests. There is a true dependence between the first and second
loop nests preventing them from being executed concurrently even when anti-
dependences are removed by replication. Nevertheless, the second and third loop
nests can be executed concurrently.

The bic kernel is composed of 4 loop nests inside a single control loop with
a total of 50 lines of C code. Each of the inner loop nests manipulates 4 array
variables. This kernel exhibits intra-iteration anti-dependences among the four
loop nests and an output dependence between the last two nests. Replicating a
single array variable, however, will enable the concurrent execution of the first
three loop nests.

The lcd kernel is composed of 3 loop nests inside a single control loop with
a total of 20 lines of C code. Each of the inner loop nests manipulates 2 array
variables. This kernel exhibits only intra-iteration anti-dependences among the
last loop nest and the first two loop nests allowing the three loop nests to be
executed concurrently via replication of a single array variable.

After we apply the analysis outline in section 3, we manually translate each
of these kernels into behavioral VHDL and simulate the execution of the control
loop using the MonetTM [7] behavioral synthesis tool. From this simulation, we
obtain the execution time of each loop nest, in clock cycles at a given frequency,
assuming each loop nest executes sequentially. Using the number of clock cycles
obtained via the Monet simulation, we then use a simple discrete event simulator
to determine the parallel execution time when one or more of the arrays have
been replicated, thereby allowing for concurrent execution as well as reduced
memory contention. This simulator allows us to determine the waiting time of
each loop nest in the control loop as well as the overall percentage of time
the execution spends stalled for memory operations. In our experiments we did
not consider software pipelining execution techniques as they further increase
the memory contention thereby skewing the replication results to be even more
favorable to the application of the technique presented here. In these results we
assume that every RAM is dual ported, with a one read and one write port
that can be accessed in parallel and assigned the latency of every read and write
operation to be 3 clock cycles.

4.2 Results

We now describe the results in terms of execution time reduction due to par-
allelism and the impact on memory space usage for each kernel. The original
version is simply the kernel executing in a sequential fashion without any repli-
cation or parallel execution. The partial replication version corresponds to the

11

introduction of array copies for eliminating anti-dependences. In this version
parallel loops may still access shared data. Finally, the full replication version
includes copies of the array variables to decrease memory contention.

Table 1 summarizes the results in terms of execution time for each kernel
and each analysis variation. For the partial and full replication versions, we
have included the cost of performing the update operations after the parallel
regions execute. The table indicates the amount of time each transformed kernel
spends doing computation (comp. columns), updating the copies if any (update
columns), stalling for memory (stall columns) and the overall percentage reduc-
tion (red. columns) of the total execution time taking into account the copy
operations which execute sequentially after the parallel region executes.

Kernel Original Code Partial Replication Full Replication
comp. update total stall red. comp. update total stall red. comp. update total stall red.

% % %

hist 1.86 0 1.86 0 – 1.29 0.07 1.36 0 26.9 1.29 0.07 1.36 0 26.9

bic 131.1 0 131.1 0 – 77.8 4.11 81.9 36.9 37.5 65.55 4.11 69.66 0 46.8

lcd 61.44 0 61.44 0 – 49.15 4.10 53.25 24.58 13.3 24.57 4.10 28.68 0 53.3

Table 1. Execution time results (cycles in thousands).

As can be seen, there is a sharp decrease in the execution time in the partial
replication code versions due to parallel execution ranging from 13% to 37%.
This reduction simply reflects the concurrent execution of loop nests as revealed
by comparing the values in the comp. columns for the original and partial repli-
cation versions. The results for the partial replication versions also reveal the
opportunity to reduce execution time since the stall time values are substantial
in the case of bic and lcd. For hist there is no stall time in the partial repli-
cation version given that only two loop nests execute concurrently and one of
them updates a local copy. By aggressively replicating data in the full replication
versions, the execution time is subsequently reduced leading to overall speedups
between 1.37 and 2.1 over the original code version.

Table 2 depicts the space requirements for each code version. For each ker-
nel and respective code version, we describe the number and size (in terms of
number of array elements) the code uses along with the total space in bytes and
percentage increase over the original code version.

Reflecting the opportunity for replication, the space requirements increase
monotonically between the partial and full replication code versions. In the case
of the lcd and hist kernels there is a substantial increase in memory usage close
to 100%. While this increase may seem extreme, we note that these figures are
biased by the fact that we do not take into account other kernel data structures.
This effect is apparent in the bic kernel where due to the fact that this kernel

12

Kernel Original Code Partial Replication Full Replication
Array Total Size Incr. Array Total Size Incr. Array Total Size Incr.
Info (KBytes) (%) Info (KBytes) (%) Info (KBytes) (%)

hist 1 × (64 by 64) 17.15 — 2 × (64 by 64) 33.56 95.5 2 × (64 by 64) 33.56 95.5
3 × (64) 3 × (64) 3 × (64)

bic 6 × (64 by 64) 98, 30 — 7 × (64 by 64) 114.7 16.7 10 × (64 by 64) 163.8 66.7

lcd 2 × (64 by 64) 32.77 — 3 × (64 by 64) 49.15 50.0 4 × (64 by 64) 65.54 100.0

Table 2. Space requirements results.

manipulates a larger number of arrays that are not replicated, the percentage
increase of space requirements is much smaller.

4.3 Discussion

These preliminary results indicate that the execution overhead of updating array
copies can be negligible, allowing full exploitation of the concurrent execution
performance benefits. The results also reveal that memory contention, even with
a small number of concurrent tasks can be substantial. In this scenario, the fully
replicated variation allows for the elimination of memory contention, and further
improve execution performance. Overall fully replicated code versions achieve
speedups between 1.4 and 2.1 with a maximum increase in memory usage by a
factor of 2.

Although there are other execution techniques, such as pipelining, these
results reveal that using replication techniques a compiler can eliminate anti-
dependences enabling substantial increases in execution speed at modest in-
creases in memory space requirements. This experience reveals that replication
can be a valuable technique for parallel performance when memory space is not
at a premium.

5 Related Work

In this section we discuss related work in the areas of array data-flow analysis,
privatization, storage reuse and replication.
Array Privatization/Renaming and Data-flow Analysis Array privati-
zation determines that a variable assigned within the loop is used only in the
same iteration in which it is assigned [4, 6]. Renaming is designed to allow for
concurrent operations that have output and anti-dependences but where there
is no flow of values between statements of a loop nest. It has been used mainly
for scalar variables as for arrays the additional memory costs make it very un-
profitable for traditional high-end architectures. Array data-flow analysis [3, 10]
focuses on data dependence analysis that is used to determine the privatization
requirements as well as the conditions for parallelization.

13

Replication for Shared Memory Multiprocessor Systems Many compil-
ers targeting shared memory systems replicate data to enable concurrent read
accesses [1] and further [8] investigates adaptive replication in order to reduce
synchronization overheads that may ultimately degrade performance.
Memory Parallelism There have been many approaches to improve memory
parallelism. In particular, for FPGAs, [9] introduces a novel data and code trans-
formation called custom data layout. After applying scalar replacement to reduce
the number of memory accesses, this transformation is applied to partition the
remaining array accesses across available memories.

The approach described in this paper differs from these efforts in many re-
spects. First, and unlike traditional privatization analyses, we relax the condi-
tions for privatization allowing anti-dependences both within the same iteration
as well as across iterations of the control loop. Array renaming is the tech-
nique used in our first transformation to expose concurrency across multiple
loop nests[2]. We augment this transformation with replication (or copying) to
increase the memory bandwidth and hence eliminate contention. Despite the
similarities our combined renaming and replication transformations allow for
values to flow across iterations of the control loop whereas simple renaming has
been used within the same loop nest. Second, data layout techniques typically
work in combination with loop-based transformations such as loop unrolling to
expose more parallel accesses when the unrolled body reveals references with
data access patterns that are disjoint in space. The transformations described
here are clearly orthogonal to these two approaches. Lastly, the approach de-
scribed here is geared towards non-perfectly nested loops where an outermost
control loop or loops need to be executed sequentially due to true loop-carried
dependences but each loop nested within can execute concurrently.

The approach described here takes advantage of the fact that configurable
architectures can mitigate several sources of replication overhead typically not
possible in traditional computing architectures. First, the number and connec-
tivity of memory units can be tailored to the exact number of array copies.
Second, the spatial nature of the execution in configurable architecture allows
the execution of the copy/update operations without substantially instruction
overhead. Furthermore it is possible to perform a single write operation to mul-
tiple memories simultaneously thereby updating more than one array copy.

6 Conclusion

Configurable architectures offer the potential for customized storage structures.
This flexibility enables the application of low overhead data replication and pri-
vatization techniques to mitigate or even eliminate memory contention issues in
concurrent loop execution where shared data are accessed. In this paper we have
presented a simple array data-flow analysis algorithm to uncover the opportuni-
ties for array replication and temporary privatization in computations expressed
as non-perfectly nested loops. The experimental results, for a set of kernels tar-
geted to commercially available FPGA devices, reveal that a modest increase in

14

storage for private and replicated data leads to hardware designs that exhibit
small speedups. These results make this approach feasible when chip capacity
for data storage is available.

References

1. F. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hsieh, and V. Sarkar. A Framework
for Determining Useful Parallelism. In Proc. Intl. Conf. Supercomputing, ACM,
pages 207–215, 1988.

2. R. Allen and K. Kennedy. Automatic Translation of Fortran Programs to Vector
Form. 9(4):491–542, 1987.

3. V. Balasundaram and K. Kennedy. A technique for summarizing data access and
its use in parallelism enhancing transformations. In Proc. ACM Conf. Programming
Languages Design and Implementation, pages 41–53, 1989.

4. R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the Automat-
icParallelization of four Perfect Benchmark Programs. In Proc. 4th Workshop
Languages and Compilers for Parallel Computing, LNCS. Springer-Verlag, 1991.

5. S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and R. Laufer.
PipeRench: a coprocessor for streaming multimedia acceleration. In Proc. 26th Intl.
Symp. Comp. Arch., pages 28–39, 1999.

6. Z. Li. Array privatization for parallel execution of loops. In Proc. ACM Intl. Conf.
Supercomputing, 1992.

7. Mentor Graphics Inc. MonetTM, 1999.
8. M. Rinard and P. Diniz. Eliminating Synchronization Bottlenecks in object-based

Programs using Adaptive Replication. In Proc. Intl. Conf. Supercomputing, ACM,
pages 83–92, 1999.

9. B. So, M. Hall, and H. Ziegler. Custom Data Layout for Memory Parallelism. In
Proc. Intl. Symp. Code Gen. Opt., pages 291–302, March 2004.

10. C.-W. Tseng. Compiler optimizations for eliminating barrier synchronization. In
Proc. Fifth Symp. Principles and Practice of Parallel Programming, volume 30(8)
of ACM SIGPLAN Notices, pages 144–155, 1995.

11. P. Tu and D. Padua. Automatic Array Privatization. In Proc. 6th Workshop
Languages and Compilers for Parallel Computing, LNCS. Springer-Verlag, 1993.

12. Xilinx Inc. Virtex-II ProTM Platform FPGAs: introduction and overview, DS083-
1(v2.4.1) edition, March 2003.

13. H. Ziegler, M. Hall, and P. Diniz. Compiler-generated Communication for Pipelined
FPGA applications. In Proc. 40th Design Automation Conference, June 2003.

