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Abstract. Programming network processors remains a challenging task since 
their birth until recently when high-level programming environments for them 
are emerging. By employing domain specific languages for packet processing, 
the new environments try to hide hardware details from the programmers and 
enhance both the programmability of the systems and the portability of the ap-
plications. A frequent issue for the new environments to be widely adopted is 
their relatively low achievable performance compared to low-level, hand-tuned 
programming. In this paper we present two techniques, Packet Access Combin-
ing (PAC) and Compiler-Generated Packet Caching (CGPC), to optimize 
packet accesses, which are shown as the performance bottleneck in such new 
environments for packet processing applications. PAC merges multiple packet 
accesses into a single wider access; CGPC implements an automatic packet 
data caching mechanism without a hardware cache. Both techniques focus on 
reducing long memory latency and expensive memory traffic, and they also re-
duce instruction counts significantly. We have implemented the proposed tech-
niques in a high level programming environment for network processor named 
Shangri-La. Our evaluation with standard NPF benchmarks shows that for the 
evaluated applications the two techniques can reduce the memory traffic by 
90% and improve the packet throughput by 5.8 times, on average. 

1   Introduction 

Network processors (NPs) have been proposed as a key building block of modern 
network processing systems. To meet the challenging performance and programma-
bility requirements of network applications, network processors typically incorporate 
some unconventional, irregular architectural features, e.g. multiple heterogeneous 
processing cores with hardware multithreading, exposed multi-level memory hierar-
chy, and banked register files, etc. [9, 11]. Effective utilization of these features is 
critical to the performance of NP-based systems. However, the state-of-the-art of 
programming with NPs is still at a low level, often assembly language, which requires 
extensive knowledge of both the applications and the architectural details of the target 
system. A low-level programming task is tedious, time-consuming, and error-prone. It 



is difficult to port an application across different network processors even within the 
same family. A high-level programming environment is hence desirable to facilitate 
the packet processing application development on NPs. The key to the success of 
such a programming environment is not only its ease of programming, but also its 
ability to deliver high performance.  

Packet processing systems typically store packets in a packet buffer in DRAM, 
which usually has a large capacity but a long access latency compared to other mem-
ory levels. Since there are a large number of packet accesses in network applications, 
DRAM bandwidth needs to be high enough to sustain maximal packet processing 
throughput. Although the DRAM access latency can be partially hidden using multi-
threading, the bandwidth problem remains critical. Actually, DRAM bandwidth has 
been considered as the bottleneck of network application performance in some prior 
studies [1, 8, 12]. Our approach is to optimize the packet accesses automatically in a 
compiler, which reduces both the packet access count and the aggregate access size, 
so that the total access time and bandwidth requirement are effectively reduced. 

In this paper, we present two techniques used for packet access optimizations. The 
first one is Packet Access Combining (PAC), which reduces the number of packet 
accesses by merging several access requests into one; and the second technique is 
Compiler-Generated Packet Caching (CGPC), which implements an automatic 
packet data caching mechanism to minimize the number of accesses to the packet 
buffer in DRAM as well as reduce the instruction count. 

We implemented the proposed optimizations in Shangri-la [3], which is a pro-
gramming environment for network processors, and targets the Intel IXP family [11]. 
Shangri-La encompasses a domain-specific programming language designed for 
packet processing named Baker [2], a compiler that automatically restructures and 
optimizes the applications written in Baker, and a runtime system that performs re-
source management and dynamic adaptation at runtime. The compiler consists of 
three components: a profiler, a pipeline compiler, and an aggregate compiler. The 
profiler extracts runtime characteristics by simulating the application with test packet 
traces. The pipeline compiler is responsible for pipeline construction (partition appli-
cation into a sequence of staged aggregates, where an aggregate includes the code 
running on one processing element) and data structure mapping. The aggregate com-
piler takes aggregate definitions and memory mappings from the pipeline compiler 
and generates optimized code for each of the target processing cores. It also performs 
machine dependent and independent optimizations, as well as domain-specific trans-
formations to maximize the throughput of the aggregates. The work presented here is 
implemented in the pipeline compiler and the aggregate compiler. 

Our experiments are performed on Intel IXP2400, which contains eight Microen-
gines (MEs) for data plane processing and one XScale core for control plane process-
ing. IXP2400 has four types of memory levels: local memory, scratchpad, SRAM and 
DRAM. Experimental results show that our approach can reduce the memory traffic 
by 90% and improve the throughput by a factor of 5.8X, on average. 

The rest of the paper is organized as follows. Section 2 introduces the related fea-
tures of the Baker language. Section 3 and Section 4 describe Packet Access Combin-
ing and Compiler-Generated Packet Caching, respectively. Section 5 presents the 
experimental results. Section 6 reviews related work. Section 7 concludes the paper. 



2   Baker Language and Packet Access Characteristics 

Baker is a domain-specific programming language for packet processing on highly 
concurrent hardware. It presents a data-flow programming model and hides the archi-
tecture details of the target processors. Baker provides domain-specific constructs, 
such as Packet Processing Functions (PPFs) and Communication Channels (CCs), to 
ease the design and implementation of packet processing applications, as well as 
enable effective and efficient compile-time parallelization and optimizations. 
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Fig. 1. The packet flow graph of Layer 3 Switch Baker program (L3-Switch): bridges Ethernet 

packets and switches IPv4 packets 

Baker programs are organized as data flow graphs (referred to as packet flow 
graphs) with the nodes representing Packet Processing Functions and the arcs repre-
senting Communication Channels, as shown in Fig. 1. A PPF can have its private 
data, functions and channel endpoints, and performs the actual packet processing. 
CCs are logically asynchronous and unidirectional queues, and can be created by 
wiring the input and output endpoints of PPFs. Baker also provides module as a way 
to encapsulate PPFs, shared data and configuration functions. Rx and Tx are native 
modules provided by system vendors which can be used as a device driver to receive 
and transmit packets with external interfaces, respectively. 

protocol ipv4 {
ver : 4;
length : 4;
...
ttl: 8;
prot: 8;
checksum: 16;
...
demux{length << 2};

};

void A.process(ether_packet_t* pkt){
ipv4_packet_t* p;
mac_addr_t mac;
mac = pkt->dst;
...
if(fwd){
p = packet_decap(pkt);
channel_put(l3_fwdr_chnl,p);

}
}

protocol ether {
dst : 48;
src : 48;
type : 16;
demux{ 14 };

};

 
Fig. 2. Protocol construct and packet primitives in Baker 

The format of the packet header of any protocol can be specified using the proto-
col construct, as illustrated in Fig. 2. These definitions introduce new types called 
ether_packet_t and ipv4_packet_t, which are processed as built-in types to support 
operations on Ethernet and IPv4 packet headers, respectively. To access the packet 
fields of a particular protocol header, programmers must specify a pointer to packet 
and the field name of corresponding protocol construct. The pointers to packets are 
referred as packet handles. As illustrated in Fig. 2, pkt is a packet handle to 



ether_packet_t, thus pkt->dst represents the dst field of Ethernet header. We called 
the reference to a packet field as a packet access.  

Baker provides an encapsulation mechanism to layer different packet protocols. 
The packet_encap/packet_decap primitive is to add or remove a protocol header to or 
from the current packet. As illustrated in Fig. 2, p = packet_decap(pkt) will remove 
the Ethernet header from the pkt packet so as to convert it to an IPv4 packet. 

Besides packet accesses and packet encapsulations, Baker also provides other 
primitives to ease the manipulations of packets. For example, channel_get and chan-
nel_put are for receiving and transmitting packets through a channel, respectively. 

These primitives constitute a packet abstraction model which provides a very con-
venient way for programmers to write network applications without concerning the 
underlying implementations. To keep the portability, all packet primitives are imple-
mented as intrinsic functions in the runtime system. The Baker primitives imple-
mented in the runtime system are briefly described below. 

The packet handle actually points to metadata in SRAM, which is data that is as-
sociated with a packet but does not come directly from an external source. The meta-
data is useful to store the packet-associated information generated by one PPF and 
pass it to another PPF to be processed. For example, the output port is likely part of 
metadata. The pointers (head pointer and tail pointer) in the metadata point to the 
actual packet data in DRAM, as illustrated in Fig. 3. 
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Fig. 3. The layout of packet data and metadata 

Packet encapsulations are implemented as intrinsic calls: packet_encap/packet_de-
cap(packet_handle, size). The size is the number of bytes to add to or remove from 
the head. As the example in Fig. 2, p = packet_decap(pkt) will be converted to 
packet_decap(pkt,14). The 14 is the length of Ethernet header, which can be deter-
mined by the demux field in the protocol construct. The implementation of this intrin-
sic simply increases the head pointer in the metadata by 14 bytes. 

Packet accesses (packet reads and writes) are implemented as intrinsic calls: pa-
cket_read/packet_write(packet_handle,offset,size,data). For example, data=p->ttl 
and p->ttl=data can be converted to packet_read(p,64,8,data) and packet_write 
(p,64,8,data), respectively. The size of 8 means that this packet access will retrieve or 
modify a bit field which is 8-bit wide, and the offset of 64 specifies that the distance 
to the beginning of the current protocol header is 64 bits. The fourth parameter, data, 
is the input or output data to be read from or written to as specified by programmers. 
The two intrinsic calls, referred to as packet access intrinsics will access DRAM to 
retrieve or modify packet data. They resolve the DRAM address by the value of head 
pointer plus the offset parameter. 



In the Intel IXP2xxx network processors, DRAM can only be accessed in multi-
ples of 8 bytes starting on any 8-byte boundary. Although packet_read and 
packet_write intrinsics can specify arbitrary offset and size, the runtime system must 
take care of address alignment and access granularity. For example, write accesses 
smaller than 8-byte cause read-modify-write operations to merge data, and the run-
time system will generate a mask to select which bytes to be written into DRAM. In a 
read-modify-write operation it will cause two DRAM accesses. 

3   Packet Access Combining 

In general, a packet_read intrinsic has one DRAM access (for packet data) and one 
SRAM access (for packet metadata) and dozens of other instructions. A packet_write 
doubles the cost. In a Baker program, each of the packet accesses may operate on 
only a few bits of the packet header. However, since each DRAM access operates at 
an 8-byte granularity, a naive code generation that translates a packet access into an 
intrinsic call can cause a significant waste of DRAM bandwidth and incur unneces-
sary execution time due to the long DRAM access latency.  

The idea of PAC optimization is based on the observation that many packet reads 
(writes) access contiguous locations. It is possible for the compiler to automatically 
merge several packet reads (writes) into one, so that only one packet_read 
(packet_write) intrinsic is issued to load (store) all of the needed data at once. Thus 
the DRAM access count can be reduced.  

PAC optimization should not change the semantics of the original program, so the 
application of PAC must comply with control and data dependence requirements. 
When combining two packet reads, there are two requirements that must be satisfied:  
1. Dominance: The first read must dominate the second read in flow graph; 
2. There are no intervening packet writes along the path from the first read to the 

second read altering the packet data that the second read will use. 
Correspondingly, the requirements of combing two packet writes are: 

1. Control Equivalence: The first packet write dominates the second and the second 
post-dominates the first. 

2. There are no intervening packet reads (writes) along the path from the first write to 
the second write using (altering) the packet data of the second write. 
The conditions for combining more than two packet reads (writes) can be derived 

from the requirements above since the compiler can always merge the first two packet 
reads (writes) into one and then merge this new one with the third read (write). The 
compiler can follow this process iteratively till all of the reads (writes) that satisfy the 
conditions are combined.  

Fig. 4 gives an example of PAC optimization. Fig. 4.a is the flow graph before a 
PAC optimization. The packet accesses are represented as packet access intrinsic calls. 
There are two packet reads and two packet writes accessing nearby but different 
fields of IPv4 header. PAC wants to merge the two reads into a single read, and the 
two writes into a single write. The flow graph after combining is shown in Fig. 4.b. 
The benefit of PAC is clear: two packet access intrinsic calls were removed. To for-



malize the solution of the combining problem, we develop a bit-field dataflow analy-
sis on these packet accesses.  

a) Before combining b) After combining

packet_read(p,64,8,s)

paket_write(p,64,8,x)

packet_read(p,80,16,t)

packet_write(p,80,16,y)

s = p->ttl

p->ttl = x

p->checksum = y

t = p->checksum

packet_read(p,64,32,u)
s=(u>>24)&0xff

v=(x & 0xff)<<24

t=u & 0xffff

v=(y & 0xffff)|v
v=(u & 0x00ff0000)|v

packet_write(p,64,32,v)

 
Fig. 4. An example of PAC 

3.1   Algorithm 

According to the requirements described above, only those packet accesses that sat-
isfy the following conditions can be combined: First, all accesses must be of the same 
type (read or write), and operate on the same packet. Second, the offsets and sizes of 
all accesses must be known at compile-time. Third, the size of the combined access 
must be within the burst size of a single DRAM access. Last, there shouldn’t be any 
violation of control and data dependence due to combining these accesses. 

Packet access combining can be performed in the following four steps: 
1. Collect the candidate packet access information 

We first traverse a program function to collect the necessary information for each 
packet access, including the packet handle, offset and size. This information will be 
used in the succeeding steps. 
2. Compute the dominance relations 

As discussed above, these packet accesses to be combined must satisfy the domi-
nance relationship (control dependence). Because one basic block (BB) can only have 
one branch or call instruction, these packet access calls must be in different BBs. 
Hence, the dominance relationship of packet accesses can be represented as dominate 
tree of BBs.  
3. Perform a packet field live analysis 

We perform a data-flow analysis on packet fields of packet accesses. In the analy-
sis, a packet read can be considered as a use to a bit-field of packet buffer, and a 
packet write can be considered as a definition. To uniquely identify each packet ac-
cess and describe the bits information of them, a triplet {bb,ph,pf} was introduced to 
represent packet access info during the iterative dataflow analysis. The bb depicts the 
basic block that the packet access resides in. The ph (packet handle) indicates which 
packet instance it will access. The pf (packet field) is a bit vector each bit of which 
represents a bit in the packet buffer. The corresponding bits that the packet access 
will read or modify are set to valid while other bits are set to invalid. If the packet 
access info is propagated across a packet_encap or packet_decap call, its pf must shift 
corresponding bits because the current head pointer has been changed. The dataflow 
analysis of packet reads is a backward dataflow problem. Its corresponding flow 
equations are specified as Fig. 5. PFrev_in(BBi) and PFrev_out(BBi) are the sets of 



reversed input and output packet accesses information of BBi, respectively. After the 
bitwise dataflow analysis, PFrev_in of each BB contains all possible packet accesses 
which can be propagated to the exit of this BB. We said a packet access s is live at 
BBi if s∈PFrev_in(BBi) and the valid bits in s.pf has not been changed with respect 
to its original BB (s.bb). A packet access live at a given program point indicates 
that it can be combined with another packet access resided at this point without vio-
lating any data dependence. 
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Fig. 5. Data-flow equations of packet field live analysis for packet reads 

4. Finalize the combining 
For each packet access, the candidates can be selected by taking a bitwise OR op-

eration on the current packet access’s pf field and those of all live packet accesses at 
this point. If the bit width of combined result does not exceed the width limit of 
DRAM instructions, the corresponding live packet access is a candidate. We use the 
combining density to describe data reuse characteristics as defined in Eq. (1). In this 
equation field_len1 and field_len2 are the valid bit widths of the pf fields in the cur-
rent packet access and candidate packet access, respectively. combined_len is the 
valid bit width after the combination. For example, if the two packet accesses are to 
the same packet field, the value of combining density equals the width of the packet 
field. If the packet fields are adjacent, the value is zero, and so on. We will first com-
bine the packet accesses whose combining density is higher. 

CombiningDensity=field_len1 + field_len2 - combined_len . (1) 

After the combination, the offset and size of current packet access are adjusted to 
retrieve all needed packet data and the redundant packet access is eliminated. The 
cached packet data can be kept in registers. 

The algorithm of PAC can be easily extended to handle more complex cases. For 
example, it can combine two packet writes even if they are to non-adjacent fields of a 
packet. By using a dominator packet read to cache the data of the gap between two 
packet writes, we can combine the two packet writes with the cached gap into a wide 
write. Furthermore, it can combine packet writes located in basic blocks that are not 
control equivalent. It may still be worth combining if we can reduce the number of 
packet writes on the critical path. To maintain correctness, compensation packet 
writes must be generated in the corresponding exits to cold paths. 



4   Compiler-Generated Packet Caching 

By default, for each packet access our compiler will generate a packet access intrinsic 
call which is implemented in the runtime system. This approach, though allows the 
flexibility of changing the implementation of the packet buffer without modifying the 
compiler, will incur significant performance overhead. In fact, we may not need to 
invoke the intrinsic call to load the packet data for every reference in the program. If 
we preload all needed packet data into a cache, the subsequent packet accesses can be 
replaced by cache accesses. Actually, packet data accesses exhibit good spatial local-
ity w.r.t. different fields in the same packet [15]. Based on this observation, we pro-
pose a new approach to implement packet accesses, named Compiler-Generated 
Packet Caching (CGPC). CGPC tries to identify the critical path of the packet flow in 
a network application based on profiling information and optimize all packet accesses 
along the path. If there are multiple accesses to the same packet in the critical path, 
the related packet data will be buffered in the fastest level of memory (e.g., the local 
memory in IXP2400), and those accesses that can be resolved statically will be re-
placed by the accesses to the buffered data. For those accesses that can only be re-
solved at run time, efficient code sequence will be generated to calculate the offset 
and alignment and perform the access. Actually, CGPC can be considered as an ex-
treme situation of PAC that it tries to combine all the packet accesses in a thread into 
only one packet read at the thread entrance and one packet write at the thread exit. 

4.1   Algorithm  

CGPC is performed in two steps. First, an inter-procedure analysis, referred to as 
Packet Flow Analysis, is to identify the critical path in the packet flow graph and 
calculate associated information of each packet access and packet_encap/decap. Sec-
ond, a compiler generates the instructions for each packet access and packet_encap/ 
decap based on the packet flow analysis information. 

4.1.1   Packet Flow Analysis 
The information needed by the packet flow analysis is collected by a profiler. By 
utilizing user-supplied packet traces, the profiler simulates the execution of network 
applications at a high-level Intermediate Representation (IR) in the compiler. After 
the simulation, the profiling information, such as execution frequency and access 
statistics, is available. The pseudo code of the algorithm for the packet flow analysis 
is presented in Fig. 6. Flow_Anaysis is a recursive function which starts the 
analysis from the endpoint of the channel coming out of the Rx module. The cached 
packet data should be preloaded at the entry of the packet flow, but the preload width 
can not be determined until the analysis is finished. During the analysis, the value of 
the current head pointer is tracked and updated whenever encountering a 
packet_encap/decap. However, different intrinsic calls and control structures compli-
cate this process. If a packet_encap/decap sits inside a loop with an unknown loop 
count, inside an if-branch, or inside a circle of the packet flow graph, we may not be 
able to track a constant value of head pointer statically. 



Flow_Analysis(currStmt){
switch(currStmt){
case Intrinsic_Call:
{Process_Intrinsic_Call(Intrinsic_Call);
break;}

case Call:
{callee=Get_Callee(Call);
if(callee has been analysed) break;
else{
Flow_Analysis(callee->first_Stmt);}

break;}
case Loop:
{set is_in_loop flag;
estimate loop count by profiler;
Flow_Analysis(Loop body);
if(not in outer loop) reset is_in_loop flag;
break;}

case If:
{Flow_Analysis(if condition);
Flow_Analysis(then branch);
then_ofst=currOfst;
Flow_Analysis(else branch);
else_ofst=currOfst;
if(then_ofst==else_ofst) break;
if(packet_is_over in then/else branch)
set currOfst to else_ofst/then_ofst;

else
set unresolved flag; break;}

…… // other cases
default:
{Flow_Analysis(kid nodes of currStmt);}

}}

Process_Instrinsic_Call(currCall){
if(currCall is packet_encap/decap){
if(is_in_loop){
set unresolved flag;
set currCall dynamic;}

else{
Increase/Decrease currOfst;
set currCall eliminable;}

}
if(currCall is packet_read/write){
if(access offset is variable||unresolved)
set currCall dynamic;

else{
set currCall static;
calculate absolute offset and size;}

update preload & writeback range;
}
if(currCall is channel_put){
if(send packet to Tx or Xcale){
set packet_is_over;
if(cache has been written) writeback cache;

}
if(send packet to ME){
if(cache has been written) writeback cache;
callee=Get_End_Func(currChannel);
Flow_Analysis(callee->first_Stmt);

}
}
if(currCall is packet_drop)
set packet_is_over;

…… // other cases
}  

Fig. 6. The algorithm of packet flow analysis 

For each packet access, if the head pointer is not resolved as a compile-time con-
stant or its offset parameter is a variable, it will be marked as dynamic. They need a 
compiler to generate code to compute the offset and alignment at runtime so as to 
access the cached data. Other packet accesses will be marked as static and will have 
their offsets and alignments calculated at compile-time. Since the offsets of static 
packet accesses are known at compile-time, we can use the absolute offset in the 
cache to access packet data across different protocol layers. As a result, some 
packet_encap/decaps become redundant if they are used only to provide the encapsu-
lation protection for static packet accesses. These packet_encap/decaps are marked as 
eliminable, which means they can be removed safely. Other packet_encap/decaps are 
marked as dynamic which will be used in generating code for dynamic packet ac-
cesses. When packets flow to the Tx module or heterogeneous cores (e.g., XScale), 
the packet flow path is ended and the cached packet data should be written back to 
DRAM if it has been modified. If we use a processor-local memory (e.g., local mem-
ory in ME) as a cache and packets flow across different cores (e.g., MEs), the cached 
data should be written back to DRAM when it comes out of one processing core and 
reloaded when it enters another core.  

Fig. 7 illustrates the critical packet flow path of L3-Switch. The head pointer can 
always be determined statically along this path. All packet accesses are resolved ex-
cept one in the lpm_lookup PPF, which is used to verify the checksum of IPv4 header. 
Its offset is a variable and this access is executed ten times for every processed packet. 
We need to insert code to compute its offset at runtime. 
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4.1.2   Compiler-Generated Packet Accesses 
After the packet flow analysis, the flags (as shown in Fig. 6) and necessary informa-
tion are annotated on each packet access and packet_encap/decap. In the code gen-
erator, the actual code is generated according to the flags and the information. If the 
packet access is static, the cache can be accessed directly with a constant offset and 
size provided by the packet flow analysis. An unaligned access can be effectively 
optimized to a wide access followed by some shift instructions. As for a dynamic 
access, the offset and alignment must be calculated at runtime. Our solution is illus-
trated in Fig. 8. We use a variable to track the value of head pointer and initialize it 
when the compiler preloads the cache. When a packet flows across a dynamic 
packet_encap/decap, additional instructions are executed to update its value at run-
time. We can then use the variable of head pointer to generate code for the dynamic 
packet access. The absolute offset of a dynamic packet access in cache can be deter-
mined by adding the original offset to the current head pointer. A check is performed 
on the absolute offset. If the offset within the cache, it can directly access the cached 
data. Otherwise, it will fall through to invoke the original intrinsic call. 

After the optimization, a DRAM access is performed only when preloading and 
writing back the cache. An unaligned DRAM access will cause a much higher cost 
than the aligned one. For example, an unaligned write would need a write-after-read 
operation to keep the unwritten section intact, which needs to be implemented in two 
DRAM accesses. Instead, our compiler implements all preload and write back opera-
tions at the aligned boundaries. All intermediate packet accesses’ offsets are adjusted 
according to the alignment. As a result, our implementation properly aligns all 
DRAM accesses. Although this approach may waste some cache space to hold un-
used data, it avoids the write-after-read operations on DRAM and reduces the align-
ment instructions. 

5   Evaluations 

We have evaluated the proposed optimizations with representative workloads on real 
network processors. In this section, we will present the hardware evaluation environ-
ment, benchmarks, and experimental results.  



5.1   Benchmark Applications 

We use three typical network applications, L3-Switch, MPLS and Firewall, for our 
evaluation. They are all written in Baker. L3-Switch and MPLS were evaluated using 
the NPF standard configurations [16, 17]. Firewall was evaluated using a packet trace 
internally developed. 

Layer 3 Switch (L3-Switch) [16] implements Ethernet bridging and IPv4 routing. 
For each packet received, it performs table lookups to determine the next hop, decre-
ments the Time-To-Live (TTL), and updates the checksum for the packet header. 

Multi-Protocol Label Switch (MPLS) [17] attaches one or more labels in the head 
of each packet and routes the packet based on the label rather than the destination 
address. By using the label as an index into a forwarding table, the routing process 
can be accomplished more quickly. 

Firewall sits between a private network and its Internet connection, protecting the 
internal network against attacks. The firewall takes actions, such as passing or drop-
ping a packet, based on an ordered list of user-defined rules. These rules specify the 
actions to take when the fields of incoming packets (e.g. source and destination IPs, 
source and destination ports, protocol etc.) match certain patterns. 

5.2   Experimental Environment 

Our evaluations were conducted on a RadiSys ENP-2611 evaluation board, which 
contains an Intel IXP2400 network processor running MontaVista Linux on the 
XScale core. IXP2400 consists of eight multi-threaded MicroEngines (MEs) for traf-
fic processing, an Intel XScale core for control plane processing, 8MB SRAM, and 
64MB DRAM [10]. An IXIA packet generator with two 1Gbps optical ports was used 
to generate packet traffics and collect statistics. When the ports are used in full duplex 
mode, the peak input rate is 2Gbps.  

Table 1. The parameters of different levels of memories in IXP 2400 (Unit B stands for Bytes) 

Memory Type Size Access time 
(Cycles) 

Start Address
Alignment 

Min 
Length

Max 
Length 

Local Memory 2560B 3 4B boundary 4B 4B 
Scratchpad 16KB 60 4B boundary 4B 64B 

SRAM 256MB 90 4B boundary 4B 64B 
DRAM 2GB 120 8B boundary 8B 128B 

The memory hierarchy of IXP2400 consists of four different memory levels: local 
memory, Scratchpad, SRAM, and DRAM, with increasing capacities and access la-
tencies. Table 1 lists their access parameters. There is no hardware cache; any access 
to the memory units is carried out explicitly with specific instructions for respective 
memory types.  

For all configurations in our evaluation, six MEs with each ME having eight thread 
contexts all ran the same code from the critical path of an application. The other two 



MEs were dedicated to receive (Rx) and transmit (Tx) module, respectively. The cold 
path and control plane code of the application were mapped to XScale. 

5.3   Packet Access Count and Aggregate Access Size 

We compared the number of packet-related DRAM accesses and the packet forward-
ing rates for the three applications, with and without the proposed optimizations. The 
BASE configuration enables only typical scalar optimizations. We evaluated these 
two optimizations on top of BASE separately. PAC enables the packet access combin-
ing. Procedure inlining was performed to expose more opportunities for combining. 
CGPC represents the compiler-generated packet caching. Since CGPC can be consid-
ered as an aggressive version of PAC, we have not evaluated the combined effect. 

Table 2. Memory access statistics (per packet) and instruction counts 

  DRAM 
Access 
Count 

Aggregate 
Access Size 

(Bytes) 

Instruction 
Count1

BASE 29 696 2033 
PAC 13 200 1190 

L3-
Switch 

CGPC 2 72 770 
BASE 16 384 1851 
PAC 9 212 1428 

MPLS 

CGPC 2 48 1495 
BASE 24.2 580 1742 
PAC 4.4 140 572 

Firewall 

CGPC 1 32 375 

Table 2 shows the DRAM access count and aggregate access size per packet and 
the instruction count for each benchmark application. We can see that PAC can re-
duce the DRAM access dramatically. CGPC has the lowest number of DRAM ac-
cesses and reduces the aggregate access size by 90% on average (L3-Switch: 89.7%, 
MPLS: 87.5%, Firewall: 94.5%).  Taking L3-Switch as an example, its packet ac-
cesses are marked in Fig. 7. There are 9 static packet reads, 5 static unaligned packet 
writes, and 1 dynamic packet read on the critical path. The dynamic packet read is 
caused by a checksum checking, which iterates through the packet header in a unit of 
2-byte. PAC merges the static packet accesses but cannot catch the dynamic one. 
CGPC can deal with all of the packet accesses, thus only need DRAM accesses in the 
preload and write back operations. MPLS presents a challenge to our techniques 
initially. It pushes, swaps, and pops MPLS labels dynamically, which may include an 
arbitrary number of MPLS headers and our techniques can not determine the cache 
layout statically. However, the results demonstrate that CGPC remain effective for 

                                                           
1 The instruction count is an approximate number of the instructions actually executed in Mi-

croEngines for one packet processing. It includes critical path code and packet accesses. A 
packet read takes about 50 instructions and a packet write takes about 100 instructions. 



this dynamic situation. Overall, PAC and CGPC not only reduce the memory traffic, 
but also reduce the number of executed instructions. 

5.4   Forwarding Rate 

The forwarding rates of three applications on the minimum sized 64-byte packets are 
presented in Fig. 9. The numbers of MEs to execute the applications are plotted on 
the X-axis and the achieved forwarding rates are plotted on the Y-axis. To obtain the 
full benefits of PAC, we unrolled the checksum checking loop in L3-Switch before 
applying PAC to convert the dynamic packet read to static. PAC reduces the packet 
processing time by removing considerable DRAM accesses and instructions. As a 
result, it gets a higher forwarding rate. CGPC provides a higher performance impact 
than PAC because it has no excessive DRAM accesses and the solution for resolving 
the offset and alignment is effective. Compared to BASE, CGPC improves the 
throughput by 5.8 times on average (L3-Switch: 7.6; MPLS: 3.9; Firewall: 5.9). 
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Fig. 9. Performance of L3-Switch, MPLS and Firewall 

In the BASE configuration, all three applications get their memory bus saturated 
when the number of MEs increases. However, PAC provides good scalability by re-
lieving the contention of DRAM bandwidth. Compared to PAC, CGPC generates 
fewer instructions and DRAM accesses so that it obtains nearly perfect scalability and 
reaches the full line rate quickly. The result shows the system performance is largely 
determined by both the instruction count and DRAM bandwidth. We also applied 
these optimizations on SRAM accesses without as apparent benefits as DRAM ac-
cesses. It is because IXP2400 has only one DRAM controller but two independent 
SRAM controllers.  

6   Related Work 

Several high-level programming languages, such as microC [11] and picocode [9], 
have been introduced with their corresponding NPs. But they are all extended to ex-
pose hardware details and their performances heavily rely on the use of such features. 
A number of domain-specific languages, such as Click [13], NesC [7], etc., have been 



developed to ease programming, and they are more hardware-independent and in-
clude special constructs to express the tasks in packet processing applications. But 
they do not focus on efficient compilation. 

Mudigonda et al. [15] analysed the characteristics of packet data and application 
data accesses. They exhibit the spatial locality of packet data accesses and temporal 
locality of application data accesses. They use a cache to improve the hit rate of ap-
plication data structures. Iyer et al. [12] studied a cache-based memory hierarchy of 
packet buffer. Hasan et al. [8] proposed several techniques to exploit row locality (i.e. 
successive accesses falling within the same DRAM rows) of DRAM accesses. But 
their techniques needed hardware support and focused on the input- and output-side 
of packet processing, which can be implemented in our Rx and Tx modules. Sher-
wood et al. [18] designed a pipelined memory subsystem to improving the throughput 
in accessing application data structures. 

Davidson and Jinturkar [6] described a memory coalescing algorithm for general 
purpose processors similar to packet access combining. This algorithm replaced nar-
row array access with double-word accesses in unrolled loops. It performed a profit-
ability and safety analysis on programs, and generated alignment and alias checks at 
runtime if necessary. But Packet Access Combining works on a whole procedure and 
focuses on packet accesses. It utilizes some domain knowledge and does not need a 
complex alias analysis. Thus, PAC is always profitable when it can be applied. 

There are several techniques which can be used to improve packet accesses. 
McKee et al. [14] designed a separate stream buffer to improve the performance of 
stream accesses. Chen et al. [4] described a hardware-based prefetching mechanism 
to hide memory latency. 

7   Conclusion 

Performance and flexibility are two major but sometime conflicting requirements to 
packet-processing systems and the programming environments associated with them. 
High level programming environments with domain specific languages can satisfy the 
flexibility requirement. However, how to utilize hardware features effectively to 
achieve high performance with automatic compiler supports in such programming 
environments requires more explorations. In this paper, we address one major type of 
memory accesses in network applications – accesses to packet data structures, which 
constitute a significant portion of the total memory accesses. We propose two compi-
lation techniques to reduce the latencies of packet accesses and the contention of 
DRAM bandwidth. 

Packet access combining tries to reduce the number of packet accesses by utilizing 
wide memory references and code motion. It does not incur extra memory space 
compared with caching. Furthermore, it is hardware-independent and always benefi-
cial when applied. Compiler-generated packet caching can be viewed as compiler-
controlled caching. It buffers the packet data to be referenced and replace all of the 
packet accesses on the critical path with accesses to a buffer in cache. Through a 
profiling-based program analysis, it minimizes the required cache size and the num-
ber of cache misses. 



We performed experiments on a real packet processing platform with three repre-
sentative network applications, L3-Switch, MPLS and Firewall. The experimental 
results demonstrate that the efficiency of packet accesses is critical to the system 
performance, and our techniques can reduce the number of packet accesses and the 
total memory bandwidth requirements significantly. 
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