
LSU EE 4755 — Digital Design Using Verilog

Problem Set — Sequential Code

This is a collection of EE 4755 solved problems related to sequential logic. The problems have been selected
to cover important areas and are ordered from simple to more elaborate.

Each problem appears twice, first without a solution, and in the second half of this file, with a solution.

1

2016 Midterm Exam Problem 4 — Simple Counters

2016 Midterm Exam Problem 4

The subjects of this problem are two very simple sequential modules implementing counters. An impor-
tant difference between the two modules is the logic connected to the output port. That difference, and its
implications are covered in part b of the problem.

Appearing in this problem are several variations on a counter.

(a) Show the hardware inferred for each counter below.

module ctr_a(output uwire [9:0] count, input uwire clk);

logic [9:0] last_count;

assign count = last_count + 1;

always_ff @(posedge clk) last_count <= count;

endmodule

module ctr_b(output logic [9:0] count, input uwire clk);

uwire [9:0] next_count = count + 1;

always_ff @(posedge clk) count <= next_count;

endmodule

Inferred hardware for ctr a and ctr b.

(b) There is a big difference in the timing of the outputs of ctr_a and ctr_b. Explain the difference and
illustrate with a timing diagram.

Difference between two modules. Timing Diagram.

2

2015 Final Exam Problem 2 — Simple Memory Module

2015 Final Exam Problem 2

This problem starts with simple Verilog code describing a memory module, smemory. Module smemory uses
a Verilog array for the memory itself and provides ports to reading and writing the memory. Part (a) asks
for the inferred hardware (assuming the synthesis program doesn’t just map it to a memory module in the
FPGA or ASIC library). In part (b) a timing diagram is to be completed, and in part (c) the module is to
be modified based on a given timing diagram.

Part (a) requires understanding of how hardware is inferred for the array index operator, for example, a[i],
when used as an expression on the right-hand side, x = a[i]; and as an lvalue (on the left-hand side), a[i]
= y;.

Parts (b) and (c) check for understanding of the timing of sequential circuits, part (c) also exercises design
skills.

The module below implements a simple memory module.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(a) Show the hardware that will be synthesized for this module when elaborated with size_lg = 2. Use
registers, multiplexors, decoders, and basic gates. Do not use a memory module.

Show synthesized hardware, including hardware for reading and writing.

3

2015 Final Exam Problem 2 — Simple Memory Module

Appearing below is the module from the previous page.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(b) Assume that initially location 1 (storage[1]) holds a 10, location 2 holds a 20, location 3 holds a 30,
and so on. Complete the timing diagram below, consistent with this module.

clk

write

wr_idx

rd_idx

wr_data

rd_data

1 2 3

33

3

1

0 4

0 44

Complete rd data row of timing diagram.

4

2015 Final Exam Problem 2 — Simple Memory Module

clk

write

wr_idx

rd_idx

wr_data

rd_data

3

33

30

0

30 33

(c) Modify the module below (same as one on previous
page) so that its behavior is consistent with the timing
diagram to the right. That is, if the location being
written is the same as the one being read the rd_data

output shows the data on wr_data. If the locations
don’t match or nothing is being written the behavior
is unchanged.

Modify the module.

module smemory_bp #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

5

2018 Midterm Exam Problem 5 — Iterative Calculation

2018 Midterm Exam Problem 5

This problem checks for understanding of how sequential logic is inferred from a Verilog description. An
important element is understanding which objects will be synthesized into registers. This particular module
performs an iterative calculation, meaning that the results computed in one cycle are used in a subsequent
cycle.

Show the hardware that will be inferred for the Verilog code below.

Clearly show module ports.

Show inferred hardware. Don’t optimize.

Pay close attention to what is and is not inferred as a register.

module regs #(int w = 10, int k1 = 20, int k2 = 30)

(output logic [w-1:0] y,

input logic [w-1:0] b, c,

input uwire clk);

logic [w-1:0] a, x, z;

always_ff @(posedge clk) begin

a = b + c;

if (a > k1) x = b + 10;

if (a > k2) z = b + x; else z = c - x;

y = x + z;

end

endmodule

6

2015 Final Exam Problem 1 — Verilog from Hardware Diagram

2015 Final Exam Problem 1

In this problem a Verilog description is to be written based on a given diagram of a sequential circuit. An
important concept to understand is the advancement of data through the module with each clock edge. This
must be understood before writing Verilog, and one must code the Verilog description so data is written into
registers at the right time.

Write a Verilog description of the hardware illustrated below.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

Verilog description of hardware including port declarations and port and other sizes.

7

2016 Final Exam Problem 1 — FP Module Reuse

2016 Final Exam Problem 1

This problem starts with both incomplete Verilog and an incomplete hardware diagram. They show two
presumably costly floating-point calculation modules, an adder and a multiplier. The goal of the problem is to
use these modules over multiple cycles to perform a calculation. To solve the problem one must decide what
the adder and multiplier will do each cycle based on what is needed in the calculation and what connections
are available based on the diagram. Also, one must know how to write Verilog to choreograph all of this.

The diagram and Verilog code below show incomplete versions of module prob1_seq. This module is to
operate something like mag_seq from Homework 6. When start is 1 at a positive clock edge the module
will set ready to 0 and start computing v0*v0 + v0*v1 + v1*v1, where v0 and v1 are each IEEE 754 FP
single values. The module will set ready to 1 at the first positive edge after the result is ready.

Complete the Verilog code so that the module works as indicated and is consistent with the diagram. It is
okay to change declarations from, say, logic to uwire. But the synthesized hardware cannot change what is
already on the diagram, for example, don’t remove a register such as ac0 and don’t insert any new registers
in existing wires, such as those between the multiplier inputs and the multiplexors.

Don’t modify this diagram, write Verilog code.

v0

v1

clk

CW_fp_mult
m1

rnd

3
'b
0

CW_fp_add
a1

rnd

3'b0

32'd0

ac0

ac1
re
s
u
lt

start
readyprob1_seq

Don’t modify this diagram, write Verilog code.

module prob1_seq(output uwire [31:0] result, output uwire ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [7:0] mul_s, add_s;

uwire [31:0] mul_a, mul_b, add_a, add_b, prod, sum;

logic [31:0] ac0, ac1; logic [2:0] step;

localparam int last_step = 1;

always_ff @(posedge clk)

if (start) step <= 0; else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(3’d0), .z(prod), .status(mul_s));

CW_fp_add a1(.a(add_a), .b(add_b), .rnd(3’d0), .z(sum), .status(add_s));

assign ready = step == last_step; /// THIS MUST BE CHANGED.

/// USE NEXT PAGE FOR SOLUTION!
endmodule

8

2016 Final Exam Problem 1 — FP Module Reuse
Don’t modify, Verilog only.

v0

v1

clk

CW_fp_mult
m1

rnd

3
'b
0

CW_fp_add
a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Solution on this page.

Complete Verilog so that module
computes v0*v0 + v0*v1 + v1*v1.

Synthesized hardware must be consistent with di-
agram, especially synthesized registers.

Note that ready must come from a register.

Don’t skip the easy part: connections to adder.

module prob1_seq(output uwire [31:0] result, output uwire ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [7:0] mul_s, add_s;

uwire [31:0] mul_a, mul_b, add_a, add_b, prod, sum;

logic [31:0] ac0, ac1;

logic [2:0] step;

localparam int last_step = 1; // MUST BE CHANGED.

always_ff @(posedge clk)

if (start) step <= 0; else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(3’d0), .z(prod), .status(mul_s));

CW_fp_add a1(.a(add_a), .b(add_b), .rnd(3’d0), .z(sum), .status(add_s));

assign ready = step == last_step; // MUST BE CHANGED.

endmodule

9

2018 Homework 8 Problem 3 — Degree-m Multiplier

2018 Homework 8 Problem 3

This is a good moderate-difficulty problem on inference of hardware and of computing cost and delay. The
subject of this problem is Verilog code for a degree-m sequential multiplier, a multiplier that computes m
partial products per clock cycle. Unlike those other degree-m sequential multipliers this one skips over mul-
tiplicand digits that are equal to zero! In part a the inferred hardware for the Verilog is to be found. This
requires a good understanding not just of which objects are inferred into registers, but also of if statements and
iteration. In part b the cost and delay is to be found. A good part c would be a comparison with conventional
(those other) degree-m multipliers, but that’s not part of the problem.

Appearing below is a solution to 2018 Homework 7, Problem 2, the streamlined degree-m multiplier with
handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w and m are
both powers of 2.

module mult_seq_d_prob_2 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

logic [iter_lg-1:0] next_iter;

if (in_valid) begin

iter = 0;

accum = 0;

out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum;

out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

for (int i=iterations-1; i>0; i--)

if (i>iter && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

(a) Show the hardware that will be inferred for this module.

(b) Compute the cost and delays for this module using the simple model. Show these in terms of w and m.
Clearly show the critical path on your diagram.

10

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html

Solutions

11

Solution — 2016 Midterm Exam Problem 4 — Simple Counters

2016 Midterm Exam Problem 4 — Solution

The subjects of this problem are two very simple sequential modules implementing counters. An impor-
tant difference between the two modules is the logic connected to the output port. That difference, and its
implications are covered in part b of the problem.

Appearing in this problem are several variations on a counter.

(a) Show the hardware inferred for each counter below.

module ctr_a(output uwire [9:0] count, input uwire clk);

logic [9:0] last_count;

assign count = last_count + 1;

always_ff @(posedge clk) last_count <= count;

endmodule

module ctr_b(output logic [9:0] count, input uwire clk);

uwire [9:0] next_count = count + 1;

always_ff @(posedge clk) count <= next_count;

endmodule

� Inferred hardware for � ctr a and � ctr b.

ctr_a

last_count
count

1
+

clk

ctr_b

count

1

clk

next_count+

(b) There is a big difference in the timing of the outputs of ctr_a and ctr_b. Explain the difference and
illustrate with a timing diagram.

� Difference between two modules. � Timing Diagram.

In ctr a the module output, count, is connected to the output of an adder. That means the value at the output will not be stable

until later in the clock cycle. See the left-side timing diagram below. External hardware could not do anything with the value other

than clocking it into a register for use in the next clock cycle. In contrast, the ctr b module output, count, is connected to a

register output, and so it is available for use at the beginning of the clock cycle.

clk

t 0 1 2

31

2

4

count

2

3 4 5

last_count

ctr_a

clk

t 0 1 2

31

2

4count 2

3 4 5next_count

ctr_b

12

Solution — 2015 Final Exam Problem 2 — Simple Memory Module

2015 Final Exam Problem 2 — Solution

This problem starts with simple Verilog code describing a memory module, smemory. Module smemory uses
a Verilog array for the memory itself and provides ports to reading and writing the memory. Part (a) asks
for the inferred hardware (assuming the synthesis program doesn’t just map it to a memory module in the
FPGA or ASIC library). In part (b) a timing diagram is to be completed, and in part (c) the module is to
be modified based on a given timing diagram.

Part (a) requires understanding of how hardware is inferred for the array index operator, for example, a[i],
when used as an expression on the right-hand side, x = a[i]; and as an lvalue (on the left-hand side), a[i]
= y;.

Parts (b) and (c) check for understanding of the timing of sequential circuits, part (c) also exercises design
skills.

The module below implements a simple memory module.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(a) Show the hardware that will be synthesized for this module when elaborated with size_lg = 2. Use
registers, multiplexors, decoders, and basic gates. Do not use a memory module.

� Show synthesized hardware, including hardware for � reading and � writing.

rd_idx

wr_idx

write

clk

rd_data

en

en

en

en

0:01:1

wr_data

smemory
Solution appears to the right.

13

Solution — 2015 Final Exam Problem 2 — Simple Memory Module

Appearing below is the module from the previous page.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(b) Assume that initially location 1 (storage[1]) holds a 10, location 2 holds a 20, location 3 holds a 30,
and so on. Complete the timing diagram below, consistent with this module.

clk

write

wr_idx

rd_idx

wr_data

rd_data

1 2 3

33

3

1

0 4

0 44

10 20 30

33

� Complete rd data row of timing diagram.

Solution appears above in blue.

14

Solution — 2015 Final Exam Problem 2 — Simple Memory Module

clk

write

wr_idx

rd_idx

wr_data

rd_data

3

33

30

0

30 33

(c) Modify the module below (same as one on previous
page) so that its behavior is consistent with the timing
diagram to the right. That is, if the location being
written is the same as the one being read the rd_data

output shows the data on wr_data. If the locations
don’t match or nothing is being written the behavior
is unchanged.

� Modify the module.

Solution appears below. The original line is commented out for

reference. Otherwise, cluttering your code with commented out

lines is bad style. Instead, learn how to diff your working copy with

the latest committed version and be able to do so in < 500 ms.

module smemory_bp #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// assign rd_data = storage[rd_idx];

// SOLUTION

assign rd_data = write && rd_idx == wr_idx ? wr_data : storage[rd_idx];

endmodule

15

Solution — 2018 Midterm Exam Problem 5 — Iterative Calculation

2018 Midterm Exam Problem 5 — Solution

This problem checks for understanding of how sequential logic is inferred from a Verilog description. An
important element is understanding which objects will be synthesized into registers. This particular module
performs an iterative calculation, meaning that the results computed in one cycle are used in a subsequent
cycle.

Show the hardware that will be inferred for the Verilog code below.

� Clearly show module ports.

� Show inferred hardware. Don’t optimize.

� Pay close attention to what is and is not inferred as a register.

module regs #(int w = 10, int k1 = 20, int k2 = 30)

(output logic [w-1:0] y,

input logic [w-1:0] b, c,

input uwire clk);

logic [w-1:0] a, x, z;

always_ff @(posedge clk) begin

a = b + c;

if (a > k1) x = b + 10;

if (a > k2) z = b + x; else z = c - x;

y = x + z;

end

endmodule

regs, w, k1, k2

c

b

0

1

w
+ a

+10

k1 >

>k2

x

-

+

+

z

y
z

z
y

x

x

clk

w

always_ff @ (posedge clk)

Solution appears above

Explanation: The area corresponding to the always ff block is outlined in a green dashed line. Registers are shown on the right-

hand boundary because the value that gets clocked into a register is the value present when control reaches the end of the block (the

end statement above). Four values are assigned within the block, a, x, z, and y. Registers are inferred only for those variables that

are a live out object of the block. That is true for y since it’s also a module output and so its value is needed outside the block. In

contrast, the value of a that is computed in the block is not used again after the end is reached. (When the block is re-entered a

new value of a will be computed.) The same is true for z. But the value of x may be used after end is reached. That happens when

the block is re-entered and a ≤ k1, in which case x is set to the previous value of x (the one in the register) rather than b+10.

16

Solution — 2015 Final Exam Problem 1 — Verilog from Hardware Diagram

2015 Final Exam Problem 1 — Solution

In this problem a Verilog description is to be written based on a given diagram of a sequential circuit. An
important concept to understand is the advancement of data through the module with each clock edge. This
must be understood before writing Verilog, and one must code the Verilog description so data is written into
registers at the right time.

Write a Verilog description of the hardware illustrated below.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

SOLUTION ON NEXT PAGE

17

Solution — 2015 Final Exam Problem 1 — Verilog from Hardware Diagram

� Verilog description of hardware including � port declarations and � port and other sizes.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

b
ab ab_1

c_1

ab_20

ab_21

The solution appears below. Names for wires that were unlabeled in the problem appear in purple. (That is, the purple labels are

part of the solution.) Note the use of case/endcase for the mux. Though using an if/else chain or the conditional operator,

?:, would be correct, they are more tedious and prone to error and so it’s worth taking the trouble to remember to use case.

module thing(output uwire [15:0] x, input uwire c, input uwire [1:0] s,

input uwire [7:0] b0, b1, b2, b3, a, input wuire clk);

logic [7:0] b, ab, ab_1, ab_20, ab_21;

logic c_1;

always_comb begin

case (s)

0: b = b0;

1: b = b1;

2: b = b2;

3: b = b3;

endcase

ab = a + b;

end

always_ff @(posedge clk) begin

c_1 <= c; // Note: Delayed assignment, so if(c_1) uses prior value.

ab_1 <= ab; // Delayed assignment here too.

if (c_1) ab_21 <= ab_1; else ab_20 <= ab_1;

end

assign x = a * (ab_20 + ab_21);

endmodule

18

Solution — 2016 Final Exam Problem 1 — FP Module Reuse

2016 Final Exam Problem 1 — Solution

This problem starts with both incomplete Verilog and an incomplete hardware diagram. They show two
presumably costly floating-point calculation modules, an adder and a multiplier. The goal of the problem is to
use these modules over multiple cycles to perform a calculation. To solve the problem one must decide what
the adder and multiplier will do each cycle based on what is needed in the calculation and what connections
are available based on the diagram. Also, one must know how to write Verilog to choreograph all of this.

The diagram and Verilog code below show incomplete versions of module prob1_seq. This module is to
operate something like mag_seq from Homework 6. When start is 1 at a positive clock edge the module
will set ready to 0 and start computing v0*v0 + v0*v1 + v1*v1, where v0 and v1 are each IEEE 754 FP
single values. The module will set ready to 1 at the first positive edge after the result is ready.

Complete the Verilog code so that the module works as indicated and is consistent with the diagram. It is
okay to change declarations from, say, logic to uwire. But the synthesized hardware cannot change what is
already on the diagram, for example, don’t remove a register such as ac0 and don’t insert any new registers
in existing wires, such as those between the multiplier inputs and the multiplexors.

Don’t modify this diagram, write Verilog code.

v0

v1

clk

CW_fp_mult
m1

rnd

3
'b
0

CW_fp_add
a1

rnd

3'b0

32'd0

ac0

ac1
re
s
u
lt

start
readyprob1_seq

Don’t modify this diagram, write Verilog code.

19

Solution — 2016 Final Exam Problem 1 — FP Module Reuse
Don’t modify, Verilog only.

v0

v1

clk

CW_fp_mult
m1

rnd

3
'b
0

CW_fp_add
a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Solution on this page.

� Complete Verilog so that module
computes v0*v0 + v0*v1 + v1*v1.

� Synthesized hardware must be consistent with di-
agram, � especially synthesized registers.

� Note that ready must come from a register.

� Don’t skip the easy part: connections to adder.

module prob1_seq(output uwire [31:0] result, output logic ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [7:0] mul_s, add_s;

uwire [31:0] mul_a, mul_b; uwire [31:0] add_a, add_b; uwire [31:0] prod, sum;

logic [31:0] ac0, ac1; logic [2:0] step;

localparam int last_step = 4; // ←− SOLUTION.

always_ff @(posedge clk) if (start) step <= 0;

else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(rnd), .z(prod), .status(mul_s));

CW_fp_add a1(.a(add_a), .b(add_b), .rnd(rnd), .z(sum), .status(add_s));

// assign ready = step == last_step; // SOLUTION: Remove this line.

// SOLUTION (remainder of module is solution)

assign mul_a = step < 2 ? v0 : v1; // Connect FP multiplier ports ..

assign mul_b = step == 0 ? v0 : v1; // .. to appropriate values.

assign add_a = ac0, add_b = ac1; // Connect FP adder input ports.

always_ff @(posedge clk) begin // Assign registers ac0, ac1, and ready.

ac0 <= prod; // Always write ac0.

case (step) // Set ac1 based on the step value ..

0: ac1 <= 0; // .. *before* the positive clk edge.

1, 2: ac1 <= sum;

endcase

if (start) ready <= 0; // Reset ready *before* step 0 ..

else if (step == last_step-1) ready <= 1; // .. and set ready when will be done.

end

assign result = sum; // Connect FP adder output to this module’s output.

endmodule

20

Solution — 2016 Final Exam Problem 1 — FP Module Reuse

To understand how the solution works refer to the timing diagram below. Note that the value of step in the second always ff

is before it is incremented.

v0

v1

clk

CW_fp_mult
m1

rnd

3
'b
0

CW_fp_add
a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

start

clk

prod

ac0

ac1

sum

ready

step

v0² v0v1

v0v1+
 v0²

4 0 1 2 3

v1²

v0² v0v1 v1²

4

0 v0²

v0²

v0v1 + v0²

v1² + v0v1 + v0²

mul_a v0 v1

mul_b v0 v1 Mux delay.

Mult delay.

21

Solution — 2018 Homework 8 Problem 3 — Degree-m Multiplier

2018 Homework 8 Problem 3 — Solution

This is a good moderate-difficulty problem on inference of hardware and of computing cost and delay. The
subject of this problem is Verilog code for a degree-m sequential multiplier, a multiplier that computes m
partial products per clock cycle. Unlike those other degree-m sequential multipliers this one skips over mul-
tiplicand digits that are equal to zero! In part a the inferred hardware for the Verilog is to be found. This
requires a good understanding not just of which objects are inferred into registers, but also of if statements and
iteration. In part b the cost and delay is to be found. A good part c would be a comparison with conventional
(those other) degree-m multipliers, but that’s not part of the problem.

Appearing below is a solution to 2018 Homework 7, Problem 2, the streamlined degree-m multiplier with
handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w and m are
both powers of 2.

module mult_seq_d_prob_2 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

logic [iter_lg-1:0] next_iter;

if (in_valid) begin

iter = 0;

accum = 0;

out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum;

out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

for (int i=iterations-1; i>0; i--)

if (i>iter && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

22

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html

Solution — 2018 Homework 8 Problem 3 — Degree-m Multiplier

(a) Show the hardware that will be inferred for this module.

clk

mult_seq_d_prob_2 (w,m)

p
ro
d

a
ccu

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_v
a
lid

0
1

o
u
t_a

v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0
n-1

>n-1

0

w
-1

-m
:w

-2
m

≠

n-2

>n-2

0 ≠

1

>1
2

m
-1

:m

0

+

iter

iter
cand

iter

i=n-1 i=n-2 i=1

=

1

Hardware shown above with the critical path shown in red.

23

Solution — 2018 Homework 8 Problem 3 — Degree-m Multiplier

(b) Compute the cost and delays for this module using the simple model. Show these in terms of w and m.
Clearly show the critical path on your diagram.

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
ccu

m
ite

r

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_v
a
lid

0
1

o
u
t_a

v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0
n-1

>n-1

0

w
-1

-m
:w

-2
m

≠

n-2

>n-2

0 ≠

1

>1

2
m

-1
:m

0

+

iter

iter
cand

iter

i=n-1 i=n-2 i=1

=

1

9(m+w-1)m

9(m+w)

Cost in turquoise.

3(m+w)lg n

2w

3
m

(n
-1

)

6w

1
4

w
1

4
w

7n = 7w/m

1 1

2 7

n
lg n

m-1
1

n

lg n-1

lg m

lg n

2

lg lg n

4(m-2)+4 : 2w+6m-6

4w+4

all bits

0

1

1
+

2
lg

 n

1+2lg n +
 4(m-2)+4first bit

2lg n + 4m
- 3 + 2lg n

first bit

4lg n + 4m
- 3 + 4w+4

all bits

1
+

lg
 n

Component
delay in purple.
Path delay
in orange.

1
+

lg
 n

2+lg n

3
+

lg
 n

1+n
+lg n

0

0

0

0

0

0 2lg n

1

2lg n

1

1

1

11

2

The costs and delay of each component are shown in the diagram above. The path delay for selected paths is shown in the

circled orange numbers . Note that one input to all of the comparison units (for example, the zero in 6= 0), is a constant, re-

ducing their costs and delays. Many of the multiplexors also have one constant data input.

The interesting thing to compare is the time needed to compute the updated accum value versus the time needed to find the next

non-zero digit. The i > iter comparison, because i is a constant, takes time lgw/mut = lg n ut and the 6= 0 takes less,

24

Solution — 2018 Homework 8 Problem 3 — Degree-m Multiplier

especially if w/m > m. The mux delay is 1 ut because one data input is a constant. The time to generate the new iter signal is

(1 + n + lg n) ut.

The updated accum value consumes most of the time. Inputs arrive at the multiplier at time 1+2 lg n. For an unoptimized m-bit by

w+m-bit multiplier, the least significant bit takes (4(m−2)+4) ut to compute. Since the shifter can shift by n possible amounts

its delay is 2 lg n. The least significant bit arrives at the adder at time 1+2 lg n+4(m−2)+4+2 lg n = (4 lg n+4m−3) ut

(see the diagram). The adder requires (4w+4) ut to finish and so the adder output is ready at time (4 lg n+4m−3+4w+4) ut.

The clock period would include six more cycles for the latch setup time.

25

