
LSU EE 4755 Homework 5 Due: 18 Nov 2024 (evening)

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2024/hw05.v.html.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is the students’ responsibility to resolve frustrations and roadblocks
quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if somehow necessary at this point), copy the assignment, and run the Verilog
simulator on the unmodified homework file, hw05.v. Do this early enough so that minor problems
(e.g., password doesn’t work) are minor problems.

Homework Overview
The module in this assignment, dot_seq_2, computes a dot product of two vectors, a and b, each
of length n, where n is even (and greater than zero). At each cycle two elements of a and b arrive,
so it takes n/2 cycles for the complete vectors to arrive. The connections to dot_seq_2 are:

module dot_seq_2 #(int w = 5, wi = 4)

(output logic [w-1:0] dp,

output logic [wi-1:0] first_id, last_id,

input uwire [w-1:0] a[2], b[2],

input uwire [wi-1:0] in_id,

input uwire reset, first, last,

input uwire clk);

Each element of input vector a and b is w bits. Inputs a and b carry the first two elements of
each vector when input first=1. At each subsequent cycle a and b will carry two more elements of
the vector until reaching a cycle where last=1, in which case a and b carry the last two elements
of each vector. (See the testbench section for examples.) If first=1 and last=1 in the same cycle

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2024/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

then the vectors are just of length 2. There is no upper bound on the vector length. Some time
after last=1 output dp is to be set to the dot product of the vectors.

In the unmodified assignment dp is set to the correct value in the same cycle that last=1. In
a correct solution dp should be set three cycles later to limit the critical path (see the problem
description).

Input in_id is a wi-bit ID number which is used to identify the beginning and end of the vector.
Outputs first_id and last_id are each wi-bit ID numbers. In a correctly solved assignment
first_id is the ID of the beginning of the vector whose dot product appears on dp and last_id

is the ID appearing at the end of that vector. In the unmodified assignment last_id is set to the
correct value (though along with dp it is set too soon).

When input reset=1 any in-progress dot-product computation is abandoned that outputs
first_id and last_id are set to zero.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. The testbench will apply inputs to dot_seq_2 and report on the results. Unlike other
assignments, only one module instantiation will be tested.

The testbench will show a trace for at least the first 20 cycles, with additional trace output
shown before errors. The trace lines from a correctly solved assignment appear below.

2 _F_ ID a8 A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 DP xx

3 ___ ID aa A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 DP xx

4 ___ ID ad A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 DP xx

5 ___ ID af A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 DP xx

6 __L ID b1 A 01,01 B 01,10 exp: fid a8 lid b1 dp 55 MOD: FID 00 LID 00 DP xx

7 ___ ID b3 A 01,01 B 01,10 exp: fid a8 lid b1 dp 55 MOD: FID 00 LID 00 DP xx

8 _F_ ID b5 A 01,01 B 01,10 exp: fid a8 lid b1 dp 55 MOD: FID 00 LID 00 DP xx

9 ___ ID b8 A 01,01 B 01,10 exp: fid a8 lid b1 dp 55 MOD: FID a8 LID b1 DP 55

10 ___ ID b9 A 01,01 B 01,10 exp: fid a8 lid b1 dp 55 MOD: FID a8 LID b1 DP 55

11 __L ID ba A 01,01 B 01,10 exp: fid b5 lid ba dp 44 MOD: FID a8 LID b1 DP 55

12 _FL ID bc A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID a8 LID b1 DP 55

13 ___ ID bd A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID a8 LID b1 DP 55

14 ___ ID c0 A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID b5 LID ba DP 44

15 ___ ID c3 A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID bc LID bc DP 11

16 _F_ ID c4 A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID bc LID bc DP 11

17 ___ ID c7 A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID bc LID bc DP 11

18 ___ ID ca A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID bc LID bc DP 11

19 ___ ID cc A 01,01 B 01,10 exp: fid bc lid bc dp 11 MOD: FID bc LID bc DP 11

Trace lines start with a cycle number, in the sample above they go from 2 to 19 as of this
writing. That is followed by three characters that show the state of the reset, first, and last

inputs (in that order). In cycle 2 first=1 and the other two are zero. In cycle 12 first=1 and
last=1. In the sample above reset is always 0.

Upper-case labels, such as ID and FID are used for module inputs and outputs. Lower-case
labels, such as lid and dp are used to show what the testbench expects to find at the outputs
(though the expectation can be for several cycles later). Label exp: is an abbreviation for expected
outputs, and label MOD: indicates module outputs. (A reminder of what the lower- and upper-case
labels signify.)

Each a and b input has two values. Both values appear next to A and B, shown in hexadecimal.
In the first tests the a and b vectors are set to make it easy to debug problems: each component of
vector a is 1. The even components of b are 1 and the odd components of b are set to 1610 = 1016.

2

Consider the trace for cycle 9. The dp output is 55 and the IDs are a8 (first) and b1 (last).
The vectors started arriving in cycle 2 (note the matching a8 on the module input, labeled ID), and
the last pair of elements arrived at cycle 6. Though the vector finished arriving at cycle 6, its dot
product did not appear at the module output until cycle 9. Also consider cycle 8. A new vector
starts arriving, as one can tell by the first=1 signal. The newly arriving vector does not interfere
with the computation of the vector that finished arriving in cycle 6. Dot products for both will be
computed.

The testbench will print a summary of results at the end, for the correct solution:

Done with 10000 tests. 0 dp errs (9718 correct)

Done with 10000 tests. 0 FID errs, 0 LID errs.

Done with 10000 tests. Correct 9718, avg latency 3.0 cyc Okay

The first line above indicates that there were zero errors with the dp output. A total of 10000
vectors were offered to the module and the module finished 9718 of them. The 10000− 9718 = 282
other vectors were interrupted by the reset signal. In the second line FID errs indicates how
many first_id outputs were incorrect, the same for LID errs. The last line indicates the average
number of cycles to compute a dot product. In this assignment that’s expected to be an integer,
and equal to 3.

When there are errors the trace indicates which outputs are wrong by changing labels FID, LID,
and DP to ERR if the respective output value is incorrect. The expected correct values of first_ID
and last_ID are based on the dp output. For example, if first_ID and last_ID are changed for a
new vector but dp shows the dot product of the previous vector, then the values of first_ID and
last_ID will be considered wrong and so FID and LID will show ERR.

If the dp value is correct but arrives in less than 3 cycles an error message will be printed.
Also, the DP label will be changed to EY (early) for a correct dot product value that appears earlier
than 3 cycles after last arrived.

Note that the exp (lower case) labels show values that are expected now or in the future. For
example, in cycle 6 below the dp label shows a 55 based on the arrival of the last signal. However,
that dp value should not be seen at the outputs until 3 cycles later.

Also additional detail is provided in the first line following an error. Consider the output from
the unmodified assignment:

2 _F_ ID a8 A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 EY 11

3 ___ ID aa A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 DP 22

4 ___ ID ad A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 DP 33

5 ___ ID af A 01,01 B 01,10 exp: fid 00 lid 00 dp 00 MOD: FID 00 LID 00 DP 44

6 __L ID b1 A 01,01 B 01,10 exp: fid a8 lid b1 dp 55 MOD: ERR 00 LID b1 EY 55

Error first ID: 0 != a8 (correct)

Error dp timing: latency 0 cyc < 3 cyc (minimum)

7 ___ ID b3 A 01,01 B 01,10 exp: fid a8 lid b1 dp 55 MOD: FID 00 LID b1 ER 66

Error dp: 66 != 55 (correct)

At cycle 6 output dp is set to the correct value, 55 (see the dp item) as is the LID, but since
dot product arrives early the label is EY rather than DP. Also, the first_id output is incorrect,
0, so it is labeled ERR in the trace and the correct value is shown, a8. At cycle 7 the DP output is
incorrect, it should have stayed at 55.

Helpful Examples
A pipelined execution unit was the subject of 2016 Homework 6. Other than the need to do

3

floating-point computation, the 2016 Homework 6 pipeline was simpler than the one in this assign-
ment. Another pipelined calculation (something to be covered in class on on Friday 15 November
2024) is the subject of 2021 Homework 6. Past assignments and their solutions are linked to the
assignments and exams page.

4

https://www.ece.lsu.edu/koppel/v/prev.html

Problem 1: In the unsolved assignment dot_seq_2 computes the correct dot products, but does
not accompany those with the correct first_id value, and the synthesized module would have a
longer critical path than desired. Complete the module so that first_id is set to the correct ID
and meeting the following timing requirements:

Don’t perform any computation on values arriving at the inputs. Instead, write them to registers
and start computation in the next cycle.

The critical path can include at most one arithmetic operation on the vector components. For
example, don’t compute a[0]*b[0]+a[1]*b[1] because that operation has a critical path of 2
operations: a multiply and add. Instead compute the products in one cycle and the sum in another.

The correct dp should be available three cycles after the last=1.

Once the dp, first id, and last id outputs are set they should remain unchanged until either
the reset is asserted or until the next dot product is ready.

The module must be synthesizable. Verify with the command genus -files syn.tcl.

5

	Problem 0
	Problem 1

