LSU EE 4755 Homework 3 Due: 20 Oct 2024 (evening)

For instructions wvisit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2024/hw03.v.html.

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if necessary), copy the assignment, and run the Verilog simulator on the un-
modified homework file, hw03.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
In string ((I am balanced)) the parentheses are balanced, but in ((Not balanced) they are
not because a closing parenthesis is missing and so an opening parenthesis is unmatched. The
modules in this assignment examine a string containing parentheses and report the number of
unmatched closing,), and opening, (, parentheses. Both modules put these numbers on outputs
left_out_n_unmat_close and right_out_n_unmat_open. The parentheses in a(b)c and (()a))
are correctly matched. The parentheses in ()), ((()), and)) ((are not. For inputs like (), (()),
and () () both outputs should be zero. For) and ()) the number of unmatched closing parentheses
is one and so output left_out_n_unmat_close should be 1 and output right_out_n_unmat_open
should be 0. See the testbench output for more examples.

In both modules, pmatch_base (Problem 1) and pmatch_mark (Problem 2), the string appears
on input str. In pmatch_mark there is an additional output, str_marked, which should be set to a
version of the string in which the correctly matched parentheses are replaced by angle brackets. For
example, for input str=’>(()’ the output shold be str_marked=’(<>’. See the testbench output
for more examples.

The modules each have parameter n. Input str and output str_marked are n-element un-
packed (ordinary) arrays of 4-bit quantities. For convenience enumeration constants are defined for
the characters used in this assignment:

typedef enum logic [3:0]
{ Char_Blank, Char_Dot,
Char_Open, Char_Close,
Char_Open_Okay, Char_Close_Okay } Char;

The input str can consist of any of the first four values. There is no distinction between
Char_Blank and Char_Dot, they are stand-ins for arbitrary characters and neither affects paren-

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2024/hw03.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

thesis matching. The last two, Char_Open_0Okay and Char_Close_0kay are to be used in Problem
2 for replacing properly matched parenthesis.

Those who are unsure of how to work with str or of just what the modules are supposed to do
should examine modules pmatch_comb_base and pmatch_comb_mark. Module pmatch_comb_base
will pass the testbench for Problem 1 (if it were renamed pmatch_base) and pmatch_comb_mark
would pass the testbench for Problem 2 (if renamed).

These comb modules compute their results by scanning the string from left to right. In their
synthesized hardware the critical path appears to be proportional to n, the string length. That’s
too long a critical path for our purposes. In Problems 1 and 2 this is to be overcome by using a
recursive module structure that describes tree-like hardware. In a correct solution the critical path
will be closer to logn, and the cost will be lower too.

The synthesis output below shows the result of synthesizing the comb base module and a correct
solution to Problem 1 at exponentially increasing string lengths (n = 4, 8, 16, 32). Notice that in
the comb version the delay too increases exponentially (in proportion to n) while the delay in the
Problem 1 solution increases more linearly. Absolute costs are lower too. The differences are less
stark with a larger delay target. The default synthesis script uses the larger delay target to save
time.

Module Name Area Delay Delay Synth

Actual Target Time
pmatch_comb_base_n4_13 43915 0.82 0.1 ns 24 s
pmatch_comb_base_n8_29 175285 2.31 0.1 ns 185 s
pmatch_comb_base_nl16_61 221959 6.99 0.1 ns 256 s
pmatch_comb_base_n32_125 771830 15.69 0.1 ns 772 s
pmatch_base_n4 22979 1.22 0.1 ns 15 s
pmatch_base_n8 73381 1.93 0.1 ns 50 s
pmatch_base_nl6 142421 3.24 0.1 ns 86 s
pmatch_base_n32 341921 4.49 0.1 ns 179 s
pmatch_comb_base_n4 11039 2.14 900.0 ns 8 s
pmatch_comb_base_n8 33748 7.11 900.0 ns 77 s
pmatch_comb_base_nl16 93278 18.98 900.0 ns 53 s
pmatch_comb_base_n32 248862 48.57 900.0 ns 117 s
pmatch_base_n4 15550 3.10 900.0 ns 6 s
pmatch_base_n8 41187 5.99 900.0 ns 5 s
pmatch_base_nl6 98336 9.91 900.0 ns 18 s
pmatch_base_n32 216143 14.60 900.0 ns 23 s
Testbench

To compile your code and run the testbench press in an Emacs buffer in a properly set up
account. The testbench will apply inputs to several instantiations of modules pmatch_base and
pmatch_mark. The instantiations differ in the length of the string. At the end of execution the
number of errors for each module at each size are shown. The output below is from a correctly
solved assignment:

Total pmatch_base n=4: Errors: O cl, 0 op, O mk.
Total pmatch_base n=5: Errors: 0 cl, 0 op, O mk.

2

Total pmatch_base n=7: Errors: O cl, 0 op, O mk.
Total pmatch_base n=8: Errors: 0 cl, 0 op, O mk.
Total pmatch_base n=9: Errors: 0 cl, 0 op, O mk.
Total pmatch_base n=17: Errors: 0 cl, O op, O mk.

Total pmatch_mark n=4: Errors: O cl, O op, O mk.
Total pmatch_mark n=5: Errors: O cl, 0 op, O mk.
Total pmatch_mark n=7: Errors: O cl, O op, O mk.
Total pmatch_mark n=8: Errors: 0 cl, O op, O mk.
Total pmatch_mark n=9: Errors: 0 cl, O op, O mk.

Total pmatch_mark n=17: Errors: 0 cl, O op, O mk.

Each line starting with Total shows a tally of results. After Total the line shows the module name,
either pmatch_base or pmatch_mark, and n, the length of the string. A tally of each output’s error
is shown after Errors:, cl is the number of incorrect closing-parentheses values, op is the number
of opening-parenthesis values, and mk is the number of incorrectly marked strings.

Further up, the testbench shows sample output and error details. For each instantiation the
first n_errors_show = 5 incorrect outputs are shown on lines starting with Error. If it would
help to see more then feel free to search for n_errors_show and increase the value. In addition the
details of the first n_samples_show = 6 correct outputs are shown on lines starting with Sample.
The output below shows correct outputs:

Starting pmatch_base tests for n=5.

Sample pmatch_base n=5 ’() >: close = 0, open = 0 (both correct)
Sample pmatch_base n=5 ’.() ’: close = 0, open = 0 (both correct)
Sample pmatch_base n=5 ’)(’: close = 1, open = 1 (both correct)
Sample pmatch_base n=5 ’) >: close = 1, open = 0 (both correct)
Sample pmatch_base n=5 ’)) ’: close = 2, open = 0 (both correct)
Sample pmatch_base n=5 ’())) ’: close = 2, open = 0 (both correct)
Sample pmatch_base n=5 >())(’: close = 1, open = 1 (both correct)
Sample pmatch_base n=5 >())((’: close = 1, open = 2 (both correct)
Sample pmatch_base n=5 ’))((’: close = 2, open = 2 (both correct)

In the sample above the first Sample line indicates that for input () both the left_out_n_unmat_close
and right_out_n_unmat_open outputs were 0, which is correct because there were no unmatched
parentheses. The second sample is also properly matched. It consists of a dot (which is just an
ordinary character), parentheses, and spaces. The third sample has both one unmatched opening
parenthesis and an unmatched closing parenthesis.

The testbench starts applying patterns found in str_special. Feel free to add your own to
help with debugging. After the patterns in str_special are used the testbench will make up
random patterns.

The output below is of a run using a partially correct pmatch_base:

Sample pmatch_base n=5 ’() >: close = 0, open = 0 (both correct)
Sample pmatch_base n=5 ’.() ’: close = 0, open = 0 (both correct)
Sample pmatch_base n=56 ’)(’: close = 1, open = 1 (both correct)
Sample pmatch_base n=5 ’) >: close = 1, open = 0 (both correct)
Error pmatch_base n=5 ’)) ’: close O != 2 (correct)
Sample pmatch_base n=5 ’())) ’: close = 2, open = 0 (both correct)
Error pmatch_base n=5 ’))((’: close 0 != 2 (correct)
Error pmatch_base n=5 ’)) >: close O != 2 (correct)

The errors reported above seem to show that the left_out_n_unmat_close is wrong when the
string starts with two consecutive closing parentheses.

The str_marked output of module pmatch_mark is supposed to show the string with the cor-
rectly matched parentheses replaced by angle brackets (actually less-than and greater-than sym-
bols). Appearing below is sample output of the module in a correctly solved assignment. Two lines
are used to show the result of each input. The first shows the input string, such as () in the first
sample, the second line shows the marked string, such as <>.

Sample pmatch_mark n=5 ’() ’: close = 0, open = 0 (both correct)
Sample pmatch_mark n=5 ’<> > (marked_outpuut)
Sample pmatch_mark n=5 ’.() ’: close = 0, open = 0 (both correct)
Sample pmatch_mark n=5 ’.< > ’ (marked_outpuut)
Sample pmatch_mark n=5 ’)(’: close = 1, open = 1 (both correct)
Sample pmatch_mark n=5 ’)(’ (marked_outpuut)
Sample pmatch_mark n=5 ’) >: close = 1, open = 0 (both correct)
Sample pmatch_mark n=5 ’) > (marked_outpuut)
Sample pmatch_mark n=5 ’)) ’: close = 2, open = O (both correct)
Sample pmatch_mark n=5 ’)) ’ (marked_outpuut)
Sample pmatch_mark n=5 ’())) ’: close = 2, open = 0 (both correct)

Sample pmatch_mark n=5 ’<>)) ’ (marked_outpuut)

Sample pmatch_mark n=5 *())(’: close = 1, open = 1 (both correct)
Sample pmatch_mark n=5 ’<>)(’ (marked_outpuut)

Sample pmatch_mark n=5 ’())((’: close = 1, open = 2 (both correct)
Sample pmatch_mark n=5 ’<>) ((’ (marked_outpuut)
Sample pmatch_mark n=5 ’))((’: close = 2, open
Sample pmatch_mark n=5 ’))((’ (marked_outpuut)

2 (both correct)

The output below is of a run using an incorrect pmatch_mark module. An error line is printed
for each incorrect output, left_out_n_unmat_close, right_out_n_unmat_open, and str_marked.
For a particular input, say (), a module can have one incorrect output, such as left_out_n_unmat_close,
while the other two outputs, right_out_n_unmat_open and str_marked are correct. That’s the
case in the first and last error below:

Starting pmatch_mark tests for n=5.

Error pmatch_mark n=5 ’() ’: close 1 != 0 (correct)
Error pmatch_mark n=5: ’<<>>)’ I= <> > (correct)
Error pmatch_mark n=56 ’.() ’: open 3 != 0 (correct)
Error pmatch_mark n=5: ’..(((’ != ’.< >’ (correct)
Error pmatch_mark n=5 ’)(’: close 2 != 1 (correct)

References and Helpful Examples

The modules in this assignment must be recursively defined, so that they describe a tree-like
structure. See the CLZ module from 2019 Homework 2. The assignment, solution, and live version
done in class are part of the 2024 assignment directory, look for the file names starting 2019.
Understanding the clz_tree_fat solution is sufficient. The trick used to avoid the adder in the
clz module is not relevant to this 2024 assignment.

Problem 1: Module pmatch_base has one input, str, and two outputs left_out_n_unmat_close
and right_out_n_unmat_open, and parameters n and wn. Input str is an n-element array of 4-bit
quantities called characters, with str[0] being the leftmost character and str[n-1] being the
rightmost character. Outputs left_out_n_unmat_close and right_out_n_unmat_open are each
wn bits. They should be set to the number of unmatched parentheses as described in the introduction
to the assignment represented as an unsigned integer. The default value of wn, [lg(n + 1)], is the
minimum value needed to correctly report n mismatched parentheses. (Setting wn to a larger values
is a potential waste.)

Complete the module so that it produces these outputs and so that it describes tree-structured
hardware by using recursion. The critical path should be proportional to logn, which can be
achieved by splitting the str input between two recursive instantiations and combining their out-
puts. It may help to examine pmatch_comb_base, which produces the same outputs, though not
recursively.

Complete the module so that the testbench reports zero errors.
The module description must be recursive and describe tree-like hardware.

Set wn to the smallest correct value in the recursive instantiations.

NN

Make sure the module is synthesizable using command genus -files syn.tcl.

Hint: Consider checking str only in the base (terminal) case of the recursion.

Problem 2: Module pmatch_mark has three inputs, str, left_in_n_unmat_open,
right_in_n_unmat_close, and three outputs left_out_n_unmat_close, right_out_n_unmat_open,
str_marked, and parameter n. Input str and output str_marked are n-element 4-bit arrays. In-
put str carries a string, and output str_marked is to be set to a version of the input string with
each properly matched Char_Open replaced with a Char_Open_Okay and each properly matched
Char_Close replaced with a Char_Close_0Okay.

Input left_in_n_unmat_open is set to the number of unmatched opening parentheses to the
left of str. For example, suppose str="))’ and left_in_n_unmat_open=1. Then that means
that one of the unmatched parentheses in str is matched by something to the left of str. For
this example, the value of str_marked=’>)’ because left_in_n_unmat_open=1. Similarly input
right_in_n_unmat_close is set to the number of unmatched closing parentheses to the right of
the string.

The testbench will always set left_in_n_unmat_open and right_in_n_unmat_close to zero.
Your module should set them correctly in connections to recursive instantiations so that they can
determine which of their parentheses are matched.

Outputs left_out_n_unmat_close, right_out_n_unmat_open should have the same values
as they would in Problem 1. That is, they should show the number of unmatched opening
and closing parentheses in str even if those parentheses are marked as matched due to values
of left_in_n_unmat_open and right_in_n_unmat_close. For example, suppose str="))) ()’
and left_in_n_unmat_open=2 and right_in_n_unmat_close=1. The module should set output
left_in_n_unmat_open=3 (ignoring the 2 matches) and right_in_n_unmat_close=1 (ignoring the
one match), and set output str_marked=’>>)<><’, showing the matched parentheses. Parentheses
are set as matched both when they are matched by parentheses within str and when they are
matched by parentheses reported by left_in_n_unmat_open and right_in_n_unmat_close.

D Complete the module so that the testbench reports zero errors.

[] The module description must be recursive and describe tree-like hardware.

5

D Set wn to the smallest correct value in the recursive instantiations.
D Make sure the module is synthesizable using command genus -files syn.tcl.

Hint: Consider writing str_marked only in the base (terminal) case of the recursion.

	Problem 0
	Problem 1
	Problem 2

