
LSU EE 4755 Homework 4 Due: 4 November 2022

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2022/hw04.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw04.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Helpful Past Homework Assignments
For those who would like to see a fairly simple sequential circuit, and one that counts characters,
see 2017 Homework 4, maxrun.

Problem 1: Module word_count has three inputs, an 8-bit char input, and 1-bit inputs clk and
reset. At each positive edge of clk a new ASCII character will be available at input char. The
characters might be from a text file, a keyboard, or some other source of English text. Based on
the word rules given below these characters form words, and the module is to count the words and
provide other information.

Module word_count has three parameters, wl, wn, and n_avg_of. The module has six outputs.
Output len_word, which is wl bits, is the length so far of the current word, or the length of the
most recent word. Output n_words, which is wn bits, is the number of complete words counted
since the last reset.

Output len_avg, which is also wl bits, is the average length of the n_avg_of most recent
completed words with the fractional part truncated. If fewer than n_avg_of words have ended
since the last reset then len_avg should be zero. For example, if n_avg_of=4 and the lengths of
the four most recent words are 8, 4, 12, and 15 then len_avg should be set to b(8+4+12+15)/4c =
b39/4c = b9.75c = 9. If there is a reset and then only three words have ended, len_avg should be
0.

Output word_start should be set to 1 iff the current character starts a word. Output
word_part should be set to 1 if the current character is part of a word based on the word rules
described further below. (If word_start is 1 then word_part is 1.) Output word_ended is 1 if the
character in the previous cycle was the last character of a word.

For an example of how these output should be set examine the testbench output below, col-
lected for the text “A or bee”:

W-M I Text---->! SPE L N A {D}

Trace 2-5 0 " A" ___ SP_ 1 0 0 {1}

Trace 2-5 1 " A " sp_ __E 1 1 0 {0}

Trace 2-5 2 " A o" __e SP_ 1 1 0 {1}

Trace 2-5 3 " A or" sp_ _P_ 2 1 0 {1}

Trace 2-5 4 " A or " _p_ __E 2 2 1 {0}

Trace 2-5 5 " A or b" __e SP_ 1 2 1 {1}

Trace 2-5 6 " A or be" sp_ _P_ 2 2 1 {1}

Trace 2-5 7 " A or bee" _p_ _P_ 3 2 1 {1}

Trace 2-5 8 " A or bee " _p_ __E 3 3 2 {0}

Trace 2-5 9 "A or bee 2" __e ___ 3 3 2 {0}

Trace 2-5 10 " or bee 2n" ___ ___ 3 3 2 {1}

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2022/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

Each line shows the output at one cycle, the I column shows an index (which is something like
a cycle number). The W column shows the value of n_avg_of and the M column shows the maximum
possible word length. The last column, {D}, is for debugging, see the discussion further below.

The most-recent ten characters are shown under the Text heading, in the first line (index 0),
A is the most recent character. There will be an R to the right of the text in a cycle when reset is
1.

The L column shows the length of the word so far, or the length of the most recent word. The
N column shows the number of words (incremented when the word ends), and the A column shows
a running average of the last word lengths, the last 2, in this case. The column headed SPE shows
the state of the outputs of word_start, word_part, and word_ended outputs. An upper case letter
shows the state after the positive edge of the clock (which is the one that is needed). To help with
debugging, the lower case letters show the state just before the positive edge.

Note: word_part should only be 1 if char is a word-part char and a word has already started.
Notice that at index 10 the arriving character is an n, which is a word-part character. But because
it was not preceded by a non-word-part character a word does not start at index 10 (nor 9).

Notice that L is updated as each character arrives, while N and A only update when the word
ends.

The testbench will trace the first few lines, and then only show trace lines when there are
errors (along with a few trace lines preceding the error). For lines with an error the correct output
is also shown:

W-M I Text---->! SPE L N A

Trace 2-5 5 " I II I" __e SP_ 1 2 1

Trace 2-5 6 " I II II" sp_ _P_ 2 2 1

Trace 2-5 7 " I II III" _p_ _P_ 3 2 1

Trace 2-5 8 " I II III " _p_ __E 3 3 3 <- Error Correct -> __E 3 3 2

W-M I Text---->! SPE L N A SPE L N A

In the example above, the running average, A, is wrong. The module output is 3 but the
testbench expects a 2.

Reset Behavior
If input reset is 1 on a positive edge then len_word, num_words, and len_avg should all be set to
zero and input char should be considered a non-word character (regardless of its value). The trace
below shows an example of reset behavior. The reset occurs at index 6. Because of when the reset
occurs bee, rather than being a three-letter word is considered a one-letter word, the last e. Notice
also that the average length (column A) does not show a value until two complete words arrive.

W-M I Text---->! SPE L N A {D}

Trace 2-5 3 " A or" sp_ _P_ 2 1 0 {1}

Trace 2-5 4 " A or " _p_ __E 2 2 1 {0}

Trace 2-5 5 " A or b" __e SP_ 1 2 1 {1}

Trace 2-5 6 " A or be" R sp_ ___ 0 0 0 {1}

Trace 2-5 7 " A or bee" ___ SP_ 1 0 0 {1}

Trace 2-5 8 " A or bee " sp_ __E 1 1 0 {0}

Trace 2-5 9 "A or bee k" __e SP_ 1 1 0 {1}

Trace 2-5 10 " or bee kn" sp_ _P_ 2 1 0 {1}

Trace 2-5 11 "or bee kno" _p_ _P_ 3 1 0 {1}

Trace 2-5 12 "r bee knot" _p_ _P_ 4 1 0 {1}

Trace 2-5 13 " bee knot " _p_ __E 4 2 2 {0}

Trace 2-5 14 "bee knot " __e ___ 4 2 2 {0}

2

Testbench Information
The testbench will instantiate and test word_count at three different sizes, varying both the value
of n_avg_of and the maximum word size. The values of n_avg_of will be 2, 1, and 9. To change
these sizes search for pset in hw04.v. Several items in the testbench can be changed to facilitate
debugging and familiarization. Search for HW04 and read the comments for more info. The testbench
will start streaming characters from the string test_one, and after that will construct a stream of
random characters. Feel free to change test_one to facilitate debugging.

The testbench shows the first few errors encountered, and then silently tallies errors. After
each instantiation is tested a summary of errors is shown:

Trace 9-7 10 " or bee " ___ ___ 3 3 0 {0}

Trace 9-7 11 "or bee " ___ ___ 3 3 0 {0}

Done with n_avg_of=9, max wd len=7. Errors: st 0, pa 0, en 0, nc 0, nw 0, av 0

The line starting Done shows a tally of errors by type after the word Errors. Six types of errors
are tallied (all have zero errors in the output above). They are st, the word_start output, pa,
the word_part output, en, the word_ended output, nc, the len_word output, nw, the num_words

output, and av, the len_avg output. Remember that the line describes one instantiation, so there
should be three lines printed.

The trace can be helpful for looking at values of objects in your module (not just inputs and
outputs). As an example, the trace shows the value of object char_az, but feel free to change that
or add others. To do so search for wd_cnt.char_az. It appears as an argument to $sformatf

which prepares part of the trace text. Here wd_cnt is the instance name that the testbench uses
for word_count. Change or add arguments to $sformatf to examine additional objects in your
module. Be sure to change the format string to match the arguments. The end of the format string,
the part in curly braces, handles the last argument wd_cnt.char_az.

The value of wc will always be chosen so that output len_chars never overflows. It is unlikely
but not impossible that the number of words is too large for wn.

Word Rules
A character is an 8-bit quantity. A character is called a word-start character if it an ASCII
alphabetic character (upper or lower case). In word_char net char_wd_start is set to one if the
char input is a word-start character. A character is called a word-part character if it an ASCII
alphabetic character (upper or lower case), a digit, or an underscore character. The word_count

module net char_wd_part is set to one if the char input is a word-part character. Note that all
word-start characters are word-part characters.

A word starts when the current character is a word-start character and the previous character
was not a word-part character or if the module was reset in the previous cycle. A word ends when
an arriving character is not a word-part character.

The length of a word is the number of characters. The output len_word should only be zero
after a reset and until the next word starts.

Design Requirements and Goals
As always, avoid costly designs. Pay particular attention to the logic computing len_avg. Do not
use n_avg_of-1 adders to compute this. And definitely don’t use n_avg_of division units.

The design can use procedural code, but it must be synthesizable. Use command genus

-files syn.tcl to synthesis. Timing and area (cost) reports will be placed in a file named
syn-report.log.

3

	Problem 0
	Problem 1

