
LSU EE 4755 Homework 4 Solution Due: 11 November 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw04.v.html.

Problem 0: If necessary, follow the instructions at https://www.ece.lsu.edu/koppel/v/proc.html
to set up your class account, copy the assignment, and run the Verilog simulator and synthesis pro-
gram on the unmodified homework file, hw04.v. Do this early enough so that minor problems (e.g.,
password doesn’t work) are minor problems.

Teamwork
Students can work on this assignment in teams. Each student should submit his or her own
assignment but list team members. It is recommended that one team member be responsible for
learning SimVision.

Every member of a team that has completed a project, must be capable of re-solving the
problem. It is recommended that all team members re-solve the problem on their own for their
own pedagogical benefit.

Problem 1: Module bit_keeper has a wb-bit output bits (b is for width of buffer) and a 1-bit
output ready. Think of output bits as a long bit vector (wb bits long) that is edited using the
module’s inputs. Commands to edit bits are given using four-bit input cmd (command), wi-bit
input din (data in), and ws-bit input pos (position). The module is to operate sequentially using
input clk.

Complete bit_keeper as described below, and make sure that it is synthesizable. As always,
code should be written clearly, and designs should not be costly or slow.

When completed bit_keeper should operate as follows. On a positive edge of clk action is
taken based on the value of cmd. The possible values of cmd are: Cmd_Reset, Cmd_None, Cmd_Write,
and Cmd_Rot_To. (These can be used as constants in your code. The constants are defined by enum

Command.) Some commands will be complete in one cycle (the cycle in which the cmd is set up to
the positive edge of clk). Other commands will take multiple cycles.

Be sure to understand the details of how multi-cycle commands execute. When a multi-cycle
command starts the ready output must be set to zero and must be held at zero until the command
completes. The command and its arguments will only be held at the inputs for one cycle, and so at
the next positive clock edge they will be gone. The cmd input will be set to Cmd_Nop, and the pos

and din inputs will be set to random values. This means that the inputs of multi-cycle commands
that will be needed in subsequent cycles must be saved in registers.

The testbench can emit a trace of commands and their effects. This trace is used below to
illustrate what the module is supposed to do. The trace is collected after the command completes.
A trace entry starts with the word Cycle. The cycle number is shown, followed by command
details, followed by the state of bits.

For Cmd_Reset output bits should be set to zero. Also, any internal registers should be set
to zero. The command should complete at the positive edge. This should set ready to 1. In the
trace below the reset command set bits back to zero. Notice that the command completes in one
cycle (based on the cycle numbers).
Cycle 307 -- test 73: Cmd_Nop : bits = 01401f4

Cycle 308 -- test 74: Cmd_Reset : bits = 0000000

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

For Cmd_Rot_To the value in bits must be rotated so that the contents of bits[0] is moved
to bits[pos], bits[1] is moved to bits[(pos+1)%wb], and so on. This is like a left shift of pos
bits, except that the most significant pos bits of bits are rotated into the the pos least significant
bits. In the trace below the rotate command rotates four bits (one hexadecimal digit). Notice that
the most-significant digit on the first line is rotated to the least significant digit after the rotation
command.
Cycle 301 -- test 71: Cmd_Nop : bits = 401401f

Cycle 306 -- test 72: Cmd_Rot_To pos 4 : bits = 01401f4

This rotation must be performed using two instances of module rot_left. One instance
should rotate by 1, the other rotates by a larger value, call it rb, of your choosing. Each clock cycle
the value of bits is rotated using one of these, but never both in the same clock cycle. Use the
rb-bit rotate instance until the number of bit positions to shift is ≤ rb, then use the 1-bit rotate
instance.

Command Cmd_Write has two forms based on the value of input pos. If pos is zero then the
least significant wb bits of bits should be written with din. This should complete at the positive
edge. Otherwise, bits pos through pos+wi-1 of bits should be written with din—but not directly.
Instead, bits should be rotated so that bit pos is at the least-significant position, then the data
should be written, then bits should be rotated back to its original position. Use only the two
rot_left instances.

The trace below shows a write with pos=0:
Cycle 417 -- test 86: Cmd_Nop : bits = 0000240000

Cycle 418 -- test 87: Cmd_Write pos 0, data 7 : bits = 0000240007

When pos is non-zero the writes take longer:
Cycle 96 -- test 20: Cmd_Nop : bits = 0a0000003c

Cycle 107 -- test 21: Cmd_Write pos 27, data 4 : bits = 0a2000003c

No action is needed for command Cmd_Nop. In fact, this is the command that will be present
while the external hardware, including the testbench, is waiting for other commands to complete.

The testbench will test bit_keeper at two sizes. At each size detailed information is given for
the first few errors. That includes a trace of commands leading up to the error, followed by the
erroneous command, and what the bits should have been. After each error the testbench sets its
shadow value of bits to the erroneous output so that subsequent tests can pass. Here is in example
of the output:
Cycle 22 -- test 0: Cmd_Rot_To pos 20 : bits = 0000000000

Cycle 54 -- test 1: Cmd_Rot_To pos 31 : bits = 0000000000

Cycle 55 -- test 2: Cmd_Nop : bits = 0000000000

Cycle 96 -- test 3: Cmd_Write pos 37, data 2 : bits = 4000000000

Cycle 97 -- test 4: Cmd_Nop : bits = 4000000000

Cycle 103 -- test 5: Cmd_Rot_To pos 5 : bits = 0000000008

Cycle 104 -- test 6: Cmd_Write pos 0, data 3 : bits = 0000000003

Error in test 7: Cmd_Write pos 1, data 2 : 0000000c04 != 0000000005 (correct)

For multi-cycle commands the testbench will wait for ready to go to zero and then back to
one. If that does not happen after a certain number of cycles the testbench will timeout, meaning
that it will give up waiting and print a CYCLE LIMIT EXCEEDED message. If there is a timeout
while a command is in progress (meaning that ready did go to zero, but did not return to one) the
testbench will show a trace of recent history, followed by an indication of what it was waiting for:
Exit from clock loop at cycle 16000, limit 16000, ** CYCLE LIMIT EXCEEDED **

2

** Preceding Commands **

Cycle 7 -- test 0: Cmd_Rot_To pos 20 : bits = 0000000000

Cycle 14 -- test 1: Cmd_Rot_To pos 31 : bits = 0000000000

Cycle 15 -- test 2: Cmd_Nop : bits = 0000000000

** In-Progress Command **

test 3: Cmd_Write pos 37, data 2

-- Awaiting ready = 1.

If the testbench does not timeout then it will print a tally of the number of errors after testing
each bit_keeper instance. Also, as a measure of quality, the testbench reports the average number
of cycles to perform Cmd_Rot_To and Cmd_Write (with non-zero pos). For example,
Starting tests for (wb=40,wi=4)

Finished 200 tests for (wb=40,wi=4), 0 errors.

Avg cyc Cmd_Rot_To 5.5 (67) Cmd_Write 10.6 (35)

Starting tests for (wb=28,wi=8)

Finished 140 tests for (wb=28,wi=8), 0 errors.

Avg cyc Cmd_Rot_To 4.2 (57) Cmd_Write 8.2 (18)

The lines starting Avg cyc report timing. The number in parentheses is the number of times
the command was issued. So for the first set of tests Cmd_Rot_To was tried 67 times, and the
average number of cycles taken to complete it was 5.5.

A lower number for Avg cyc can indicate a good design, or that certain rules were not followed.
It is very important that debugging tools are used. Take advantage of the testbench messages

to see what is going wrong. Run SimVision to get a detailed look at what your module is doing.

The solution has been copied to the homework directory, and an htmlized version has been posted at

https://www.ece.lsu.edu/koppel/v/2021/hw04-sol.v.html. For the discussion below the solution is

shown in pieces, shorn of most comments. Following that is the complete solution. The solution starts by specifying

rotate amounts for the two rotation modules, followed by their instantiation.

localparam int rot_amt_a = 1;

localparam int rot_amt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,rot_amt_a) rl1(ra,bits);

rot_left #(wb,rot_amt_b) rl8(rb,bits);

The rotate amount of the first module is set to 1, but a localparam is used for its value. To minimize the number

of rotations the rotate amount for the second module, rot amt b, should be set to the square root of wb. To minimize

delay it should be set to a power of 2. Here it is set to a power of 2 close to the square root of wb.

Rotations are to be done over several cycles. As stated in the problem commands are presented at the inputs for just

for one cycle, and are then replaced with a Cmd Nop until the ready returns to 1. To remember what needs to be done

three registers will be used, rot to do, rot to return, and wval. Register rot to do is set to the number of

bits of rotation that still need to be done. For Cmd Rot To it is initialized to pos and for Cmd Write with pos!=0

it is initialized to wb - pos. Register rot to return is set to the amount of rotation needed after the write is

performed. Register wval is the value to write.

The ready output is set to 1 when both rot to do and rot to return are both zero.

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

logic [ws-1:0] rot_to_return; // Amount of rotation needed after write.

3

https://www.ece.lsu.edu/koppel/v/2021/hw04-sol.v.html

logic [wi-1:0] wval; // Value to write.

assign ready = rot_to_do == 0 && rot_to_return == 0;

The main always ff has just a single case statement. Cmd Reset is straightforward:

always_ff @(posedge clk) begin

case (cmd)

Cmd_Reset: begin

bits = 0;

rot_to_do = 0;

rot_to_return = 0;

end

For Cmd Rot To the rotate amount is saved in rot to do. The work of rotating is done when cmd is Cmd Nop.

Cmd_Rot_To: begin rot_to_do = pos; end

What Cmd Write does depends on pos. If it’s zero the write is done immediately. Otherwise rot to do is set

to an amount that will bring bit pos to the least-significant position. Variable rot to return is set to the rotation

to use after the write completes, one which moves the least-significant bit back to where it was. Also, the write value is

saved.

Cmd_Write:

if (pos == 0) begin

bits[wi-1:0] = din;

end else begin

rot_to_do = wb - pos;

wval = din;

rot_to_return = pos;

end

The work of rotating is done when cmd is set to Cmd Nop. If rot to do is non-zero (which means ≥ rot amt a)

then bits is set to the output of the appropriate rotation module and rot to do is decremented. Note that the rotation

being performed can be for one of three purposes: a Cmd Rot To, the rotation before a write, or the rotation after a

write.

Cmd_Nop: begin

if (rot_to_do >= rot_amt_b) begin

bits = rb; // Use output of larger rot module.

rot_to_do -= rot_amt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= rot_amt_a) begin

bits = ra; // Use output of smaller rot module.

rot_to_do -= rot_amt_a; // Decrement remaining rot amt.

end

// More Cmd_Nop code below

Next, Cmd Nop needs to check whether a write needs to be done now. (A write needs to be done if rot to return

is non-zero and it needs to be done now if also rot to do is zero.) If so, the write is performed and rot to do is set

so that bits is rotated back to its original position.

if (rot_to_do == 0 && rot_to_return !=0) begin

bits[wi-1:0] = wval;

rot_to_do = rot_to_return;

rot_to_return = 0;

4

end

The entire solution with more comments appears below.

Grading Notes: In many solutions there were three separate pieces of code to perform rotate: one used for

Cmd Rot To, one used before a write, and one used after a write. That code duplication makes it harder for humans to

read, and could also lead to more costly and slower designs.

module bit_keeper
#(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits,

output uwire ready,

input uwire [3:0] cmd,

input uwire [wi-1:0] din,

input uwire [ws-1:0] pos,

input uwire clk);

/// SOLUTION

// Specify Rotation Amounts

//

localparam int rot_amt_a = 1;

localparam int rot_amt_b = 1 << (ws >> 1);

//

// To minimize the number of rotations, rot_amt_b should be set to

// the square root of wb. But, to minimize delay it should be set

// to a power of 2. Here it is set to a power of 2 close to the

// square root of wb.

// Instantiate Rotation Modules

//

uwire [wb-1:0] ra, rb;

rot_left #(wb,rot_amt_a) rl1(ra,bits);

rot_left #(wb,rot_amt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

logic [ws-1:0] rot_to_return; // Amount of rotation needed after write.

logic [wi-1:0] wval; // Value to write.

// The module is ready if there is no remaining rotation to do.

//

assign ready = rot_to_do == 0 && rot_to_return == 0;

5

always_ff @(posedge clk) begin

case (cmd)

Cmd_Reset: begin

//

// Perform Reset

bits = 0;

rot_to_do = 0;

rot_to_return = 0;

end

Cmd_Rot_To: begin

//

// Set Amount of Rotation

//

// The rotation will be performed in subsequent cycles.

rot_to_do = pos;

end

Cmd_Write:

if (pos == 0) begin

//

// Perform Write Immediately

bits[wi-1:0] = din;

end else begin

//

// Perform Write Later

// Set amount of rotation needed before the write, ..

//

rot_to_do = wb - pos;

//

// .. save the value that will be written, ..

//

wval = din;

//

// .. and save the amount of rotation needed after the write.

//

rot_to_return = pos;

end

6

Cmd_Nop: begin

//

// Continue Executing a Cmd_Rot_To or Cmd_Write.

// If necessary, set bits to a rotated value.

//

if (rot_to_do >= rot_amt_b) begin

//

// Still need to rotate by at least rot_amt_b bits.

bits = rb; // Use output of larger rot module.

rot_to_do -= rot_amt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= rot_amt_a) begin

//

// Still need to rotate by at least rot_amt_a (1) bit.

bits = ra; // Use output of smaller rot module.

rot_to_do -= rot_amt_a; // Decrement remaining rot amt.

end

// Check whether a write is pending and can now be performed.

//

if (rot_to_do == 0 && rot_to_return !=0) begin

//

// Write value, and set amount of rotation to return to

// original positioning.

bits[wi-1:0] = wval;

rot_to_do = rot_to_return;

rot_to_return = 0;

end

end

endcase

end

endmodule

7

	Problem 0
	Problem 1

