
LSU EE 4755 Homework 2 Due: 11 October 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw02.v.html.

Problem 0: If necessary, follow the instructions at https://www.ece.lsu.edu/koppel/v/proc.html
to set up your class account, copy the assignment, and run the Verilog simulator and synthesis pro-
gram on the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g.,
password doesn’t work) are minor problems.

Background
The flurry of activity machine learning is due to the success of deep neural networks (DNNs) in
providing much improved solutions to otherwise hard-to-tackle problems such as natural language
translation and image recognition. Deep neural network consists of multiple layers (more than
two or three, otherwise they would not be deep). A fully connected layer computes matrix/vector
products. The matrix coefficients are called weights, and in typical computations there are a large
number of weights, so many that performance is limited by the time needed to move them around.
Normally with ni input neurons and no output neurons, there would be nino weights, one for each
input/output pair. One way to reduce the number of weights is to not require a weight for each
input/output pair. In trained networks many weights are close to zero, so their removal ought to
have little effect. If inference hardware (the hardware that computes the output of a layer) supports
sparse weights then the network can be trained taking into account that some weights will be zero.

Sparsity is easier said than done because it makes the task of moving inputs and their weights
to a functional unit (a multiply/add unit) more difficult. One way of lessening the difficulty is
limiting which weights can be set to zero. NVidia Volta-generation GPUs support sparsity in
which each group of four inputs used to compute one output is limited to two non-zero weights.
Two inputs will go unused for that output (but may be used for others.)

In this assignment a module for sparse computation will be completed, nn_sparse. Like the
Nvidia design it will operate on four inputs. But unlike the Nvidia design it can operate in both
sparse and dense modes, determined by a fmt input. In dense mode there are four weights, but
those weights have a very low precision. In sparse mode there are two weights with higher precision.

There are two challenges. One is a Verilog coding issue: instantiating an nn2 module (see
problem description) for the sparse case, and connecting it to the correct inputs, and making sure
the nn2 output reaches the module output. The other challenge is to do this in a way that maintains
high performance. That is, the wider multipliers used for the sparse case will take more time and
so we want to take care to not increase the critical path more than is necessary.

Testbench Output
The testbench will instantiate the nn_sparse module with several different parameter sets. It will
then present dense and sparse patterns and check for the correct outputs. In the unmodified code
all of the dense patterns should pass but nearly all of the sparse patterns should fail.

The testbench will show details on the first four errors for each configuration, followed by a
tally of the total. Here is a sample showing the last error and the tally:
Error tn=4 for fmt 0101 084cca0 = 4.7993 != 4.4000 (correct)

1.0000 2.0000 + 1.2000 2.0000

2.0000 + 2.4000

acc1 = 0806640 = 2.1997

Done with ex6,ac18,in12,wd3 5000 tests, 2555, 0 sp, den errors found.

For ex6,ac18,in12,wd3 max diff 21132739836.039532, 0.097594 sp, den.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

Here is what is shown for each reported error: tn gives a test number, fmt shows the value of
the fmt input. Note that fmt[0] is the least significant big. After the format the error line shows
the output value in hexadecimal and decimal. In the sample above they are 084cca0 = 4.7993.
After that the correct (or at least what the testbench assumes is correct) value is shown: 4.4000

(correct). The next line shows the expression to be computed, which will consist of four terms if
the error is for a dense calculation and two terms for a sparse calculation. The example above is
for a sparse calculation. The next line, 2.0000 + 2.4000, shows the products.

Finally, the value of an object in the module is shown, acc1. It is shown in hexadecimal, and
in decimal. Note that acc1 is floating point, so that the hexadecimal value will let you see the sign,
exponent, and significand. In most cases though, it will let you see if the value has any x or z bits.

You are encouraged to add code at this point to print out values of other signals in your
module. The code to do that is:

// Feel free to modify or add to this to help with your solution.

$write(" acc1 = %h = %.4f\n",

nnsp.acc1, conv#(wexp,wsig_ac)::ftor(nnsp.acc1));

The nn_sparse instance is named nnsp, so nnsp.acc1 refers to an object in the module. The
function conv#(wexp,wsig_ac)::ftor(X) converts X from a floating-point format with exponent
length wexp and significand length wsig_ac into a real. The code for this function is in hw02.v.
Any object could be named, but remember to adjust the $write for data type, and the parameters
to conv if necessary.

To aid in debugging the testbench starts out with sparse patterns in which only one weight is
1 and the others are zero. It will then use weights of 2, 0.1, 10.1. It will repeat the pattern again
with two non-zero weights. After that it will use randomly chosen weights and formats. Feel free
to modify the testbench to aid in your debugging. Keep in mind that the ta-bot won’t test your
module using the testbench in your file so removing the tests that your module fails won’t help.

Synthesis Script
The synthesis script will synthesize the module at two different target delays. It takes a significant
amount of time to run, so only one set of parameters is included. Feel free to modify the script,
syn.tcl to add other sets.

Problem 1: Module nn_sparse, has one wo-bit output, o, four wi-bit inputs, i[0] to i[3], a
ww-bit input, w, and a four-bit input, fmt. Input w can carry either two or four values, called
weights. If fmt=4’b1111 then w carries four weights, each ww/4 bits. These are called dense
weights. Otherwise w carries two weights, each ww/2 bits, called sparse weights. To help get
started quickly the module assigns the dense weights to four-element net wd.

The module is to compute o in one of two possible ways, depending on the value of fmt.
When fmt=4’b1111 the module computes o using the dense weights and all four values of i:
o = i0w0 + i1w1 + i2w2 + i3w3, where i0 and w0 are values of i[0] and wd[0]. The Verilog code
to do this is already in the module.

The module should work for six additional values of fmt: 4’b0011, 4’b0110, 4’b1100, 4’b1010,
4’b0101, and 4’b1001, these will be referred to as the sparse formats. For each of these the module
should set the output to o = iaW0 + ibW1, where W0 and W1 are the two sparse weights and where
a is the position of the rightmost (least significant) 1 in fmt and b is the position of the leftmost
(most significant) 1 in fmt. For example, if fmt=4’b0011 then a = 0 and b = 1 and the hardware
should compute o = i0W0 + i1W1, and if fmt=4’b1010 then a = 1 and b = 3 and the hardware
o = i1W0 + i3W1.

All values are floating-point. They share a common exponent, specified by parameter wexp.
The width of the significand of the output is specified by parameter sig_ac, the width of the

2

significand of the inputs is specified by wsig_in, and the width of the significand of the dense
weights is specified by parameter wsig_wd. The layout follows IEEE 754: The most significant bit
is a sign bit, that is followed by the exponent, and that is followed by the significand. So the total
size of the output is 1+wexp+wsic_ac.

To compute the dense output nn_sparse instantiates three modules: two nn2 modules and
fp_add. The nn2 module computes i0w0 + i1w1. The nn2 module instantiates two hy_mult and
one fp_add (both described below). Details on the nn2, including parameters, can be learned by
inspecting the module (it is in the homework file).

The fp_add module is a convenience wrapper around the Chipware CW_fp_add module.

Module hy_mult wraps CW_fp_mult, but it provides functionality that you’d think would be
part of the Chipware library. Unlike the Chipware module, hy_mult can be instantiated so that
the multiplier, multiplicand, and product each have different significand sizes, though they all
share the same exponent size. (The hy is for hybrid, referring to the different sizes.) The module
instantiates the Chipware module using the product significand size. It then widens (or shrinks)
the significands of the multiplier and multiplicand inputs (called a and b). The inputs are widened
by placing zeros in the least significant bits of the widened significands. This was done with the
hope that the synthesis program, when performing optimization, would see that these bits were
zero and so optimize away the affected partial products. Experiments using Genus (version 211)
confirmed that optimization was occurring.

(a) The table below shows synthesis script output for the hybrid multiplier at a variety of sizes.
Based on this table there is a good and bad way to connect the hybrid multiplier. Design your
module taking this data into account. In the table the parameter values are concatenated with the
module name, and numbers are added on the end to avoid duplicating a name. Remember that
with a large delay target cost is the only goal, and with a 1ns goal speed is the primary goal.

For purposes of interpreting the data below, assume your design will be instantiated with
parameters {wexp 5} {wsig_ac 14} {wsig_in 8} {wsig_wd 4}. (These can be found in the
synthesis script.)
Module Name Area Delay Delay

Actual Target

hy_mult_wsig_a5_wsig_b5_wsig_p20 62541 7.466 100.000 ns

hy_mult_wsig_a10_wsig_b10_wsig_p20 131839 12.799 100.000 ns

hy_mult_wsig_a10_wsig_b5_wsig_p20 84546 10.636 100.000 ns

hy_mult_wsig_a5_wsig_b10_wsig_p20 92111 9.851 100.000 ns

hy_mult_wsig_a15_wsig_b5_wsig_p20 108593 13.440 100.000 ns

hy_mult_wsig_a5_wsig_b15_wsig_p20 123209 12.643 100.000 ns

hy_mult_wsig_a4_wsig_b8_wsig_p14 71354 8.435 100.000 ns

hy_mult_wsig_a8_wsig_b4_wsig_p14 63890 9.007 100.000 ns

hy_mult_wsig_a14_wsig_b8_wsig_p14 131244 12.047 100.000 ns

hy_mult_wsig_a8_wsig_b14_wsig_p14 144388 11.824 100.000 ns

hy_mult_wsig_a3_wsig_b7_wsig_p12 59985 7.737 100.000 ns

hy_mult_wsig_a7_wsig_b3_wsig_p12 53501 8.081 100.000 ns

hy_mult_wsig_a12_wsig_b7_wsig_p12 110260 12.113 100.000 ns

hy_mult_wsig_a7_wsig_b12_wsig_p12 117097 11.660 100.000 ns

hy_mult_wsig_a5_wsig_b5_wsig_p20_22 130160 2.398 1.000 ns

hy_mult_wsig_a10_wsig_b10_wsig_p20_22 324729 3.046 1.000 ns

hy_mult_wsig_a10_wsig_b5_wsig_p20_22 189191 2.690 1.000 ns

hy_mult_wsig_a5_wsig_b10_wsig_p20_22 214533 2.684 1.000 ns

hy_mult_wsig_a15_wsig_b5_wsig_p20_22 248189 2.742 1.000 ns

3

hy_mult_wsig_a5_wsig_b15_wsig_p20_22 302877 2.900 1.000 ns

hy_mult_wsig_a4_wsig_b8_wsig_p14_22 171041 2.369 1.000 ns

hy_mult_wsig_a8_wsig_b4_wsig_p14_22 135568 2.232 1.000 ns

hy_mult_wsig_a14_wsig_b8_wsig_p14_22 296160 3.030 1.000 ns

hy_mult_wsig_a8_wsig_b14_wsig_p14_22 321123 3.232 1.000 ns

hy_mult_wsig_a3_wsig_b7_wsig_p12_22 127217 2.308 1.000 ns

hy_mult_wsig_a7_wsig_b3_wsig_p12_22 132936 1.994 1.000 ns

hy_mult_wsig_a12_wsig_b7_wsig_p12_22 263353 2.823 1.000 ns

hy_mult_wsig_a7_wsig_b12_wsig_p12_22 260279 2.951 1.000 ns

(b) Modify nn_sparse so that it computes the correct outputs for both sparse and dense inputs,
and is coded for higher speed. Since a sparse weight is larger than a dense weight a multiplier
designed to use sparse weights would cost more and take more time than one designed for dense
weights. But, when computing sparse weights only one addition operation is needed. Design your
module so that this benefit is realized.

Modify only nn_sparse to solve the problem, and use the provided FP units. (Contact me
if you feel modifying other modules is needed. (Note that you are free to modify the testbench
and related files to help with debugging. But the solution itself should only involve changes to
nn_sparse.)

Solving this problem requires good debugging skills. Use SimVision (see the course procedures
page) to view what is going on inside your module. Also take advantage of the testbench output,
and don’t hesitate to modify it so that it provides tests that will help you better understand your
module.

4

	Problem 0
	Problem 1
	Part char 97
	Part char 98

