
LSU EE 4755 Homework 1 Due: 24 September 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Problem 1: The partially completed insert_at module below and in the homework assignment
file has three inputs, a wa-bit input ia, a wb-bit input ib, and a dlg(wa+1)e-bit input pos, and there
is one output, a wa+wb-bit output o. Complete the module following the coding requirements given
further below so that o consists of the bits of ia with ib inserted at pos. That is, o[pos-1:0]
should be set to ia[pos-1:0], o[wb+pos-1:pos] should be set to ib, and o[wa+wb-1:wb+pos]

should be set to ia[wa-1:pos].
For example, let wa=6 and wb=2, ia=111111, ib=00, and pos = 2. Then o=11110011. For

pos=5, o=10011111. For those still not 100% sure of what o should be set to should look at how
o_shadow is computed in the testbench module. Also, the testbench will show what the output
should be when it isn’t.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

// The line assigning mask_low must be replaced with a mask module.

uwire [wo-1:0] mask_low = (1 << pos) - 1; // REPLACE ME!

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

assign o = ia & mask_low | ib_at_pos;

endmodule

The insert_at module must be synthesizable and must not use procedural code and must
not use shift operators. (That includes the line assigning mask_low, it must be replaced.) Instead,
rely on instantiations of the provided shift and mask modules.

The testbench will test your module and report the first few errors. For example, here is the
testbench output for the unmodified module:

Error for ia=11111111 ib=000 pos= 0 00000000000 != 11111111000 (correct)

Error for ia=11111111 ib=000 pos= 1 00000000001 != 11111110001 (correct)

Error for ia=11111111 ib=000 pos= 2 00000000011 != 11111100011 (correct)

Error for ia=11111111 ib=000 pos= 3 00000000111 != 11111000111 (correct)

Error for ia=11111111 ib=000 pos= 4 00000001111 != 11110001111 (correct)

Done with 27 tests, 15 errors found.

The text 00000001111 != 11110001111 (correct) shows the output of insert_at to the left
of the != and the correct answer to the right. So in this case 00000001111 is the module output

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

and 11110001111 is what the module output should have been. Only the first few errors are shown,
but the total number of errors is reported at the end, 15 in this case.

Synthesizability can be checked by running the synthesis script using the command genus

-files syn.tcl. If the module is synthesizable (though not necessarily correct) a table of area
and delay will be shown, for example:
Module Name Area Delay Delay

Actual Target

insert_at 51832 0.987 1.000 ns

insert_at_1 97968 0.616 0.100 ns

Normal exit.

One common problem encountered by beginners is setting the correct port sizes. For example,
the shift_left module the port sizes are wi, wo, and wolg:

module insert_at #(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

So the first connection to a shift_left instantiation must be wi bits, the second must be wo

bits, and the third wolg bits. In the unmodified insert_at these parameters to insert_at were
set explicitly to match the connection sizes. Sometimes it may be necessary to use an intermediate
object or to cast in order to get the correct connection size. For example, if we wanted to shift by
pos+1 the following would not work:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos + 1);

because the 1 in the pos+1 expression implicitly expands it to 32 bits. (This results in a warning,
but it’s not good to clutter compiler output with ignorable warnings.) The problem can be solved
using a cast:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, walg’(pos + 1));

2

