LSU EE 4755 Homework 2 Due: 8 October 2019

For instructions wvisit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://wuw.ece.lsu.edu/koppel/v/2019/hw02.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Correction (December 2019)
When assigned in October 2019 this assignment defined clz backward, starting at the least-significant
bit. That has been corrected in this version and in the posted code.

Homework Overview

A count leading zeros (clz) operation returns the number of consecutive zeros starting at the most
significant bit of an integer’s binary representation. For example, the clz of 001015 is 2, the clz of
1015 is 0, and the clz of 32-bit number 05 is 32. The Verilog module below computes the clz of its
input:

module clz
#(int w = 19, int ww = $clog2(w+l))
(output var logic [ww-1:0] nlz, input uwire logic [w-1:0] a);

uwire [w:0] aa = { a, 1 };
always_comb for (int i=0; i<=w; i++) if (aalil) nlz = w-i;
endmodule

The module was written as behavioral code, but it does turn out to be synthesizable. Nev-
ertheless, one may wonder if the synthesis program will do a good job with this. (Later in the
semester we will learn what kind of hardware will be inferred for the description above.) One way
to find out is to design a module which should be efficient and see how well it compares to what
the synthesis program does with the module above. That, and the use of generate statements, is
the subject of this assignment.

Testbench Code

The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing , tests the clz_tree module at several different widths. All should
initially fail. A shortened sample of the testbench output appears below:

ncsim> run

** Starting tests for width 1.
Error for width 1: input 1:
Error for width 1: input O:
Error for width 1: input 1: != 0 (correct).
Error for width 1: input O: I= 1 (correct).
Width 1, done with 10 tests, 10 errors.

** Starting tests for width 2.

Error for width 2: input 3: =z != 0 (correct).
Width 2, done with 20 tests, 20 errors.

** Starting tests for width 5.

1= 0 (correct).

z
z !'=1 (correct).
z
z

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

[snip]
Error for width 17: input 08959: z != 0 (correct).
Width 17, done with 170 tests, 170 errors.
ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit
Total number of errors: 610

The testbench prints the details of the first four errors it finds, and after that prints just one
detail time per width. A total for each width and a grand total are printed, see the transcript
above.

Use Simvision to debug your modules. Feel free to modify the testbench so that it presents
inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize clz (for reference) and clz_tree (your solution).
Each module will be synthesized at three widths, and with two delay targets, an easy 10ns and a
un-achievable 0.1ns. If a module doesn’t synthesize —.001s is shown for its delay. The script is
run using the shell command genus -files syn.tcl, which invokes Cadence Genus. If you would
like to synthesize additional modules or sizes edit syn.tcl near the bottom.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log.

Problem 1: Complete module clz_tree so that it computes the clz of its input in a tree-like
fashion. For the non-terminal case it should instantiate two clz_tree modules and each should op-
erate on part of the input, a. The outputs of these two modules should be appropriately combined.
To help you get started, a recursive solution to Homework 1, mult_tree, is in hw02.v.

An easy mistake to make is using the wrong sized variable in a module port connection.
Previously the Verilog software (ncelab to be precise) would issue a warning which was easy to
miss. Now a port size mismatch is a fatal error.

For maximum credit do not use adders in your design. Adders can be avoided if the size of
the low module is always a power of 2.

See the Verilog code check boxes for additional items to check for.

Problem 2: Run the synthesis program and indicate how your module compares to the behavioral
module, clz. Indicate which results are expected, and which are not expected, and explain why.

	Problem 0
	Problem 1
	Problem 2

