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A major performance limiter in modern processors is the long latencies caused by data
cache misses. Both compiler and hardware based prefetching schemes help hide these la-

tencies and so improve performance. Compiler techniques infer memory access patterns

through code analysis, and insert appropriate prefetch instructions. Hardware prefetch-
ing techniques work independently from the compiler by monitoring an access stream,

detecting patterns in this stream and issuing prefetches based on these patterns. This

paper looks at the interplay between compiler and hardware architecture based prefetch-
ing techniques. Does either techniques make the other one unnecessary? First, compilers’

ability to achieve good results without extreme expertise is evaluated by preparing bina-

ries with no prefetch, one-flag prefetch (no tuning), and expertly tuned prefetch. From
runs of SPECcpu2006 binaries, we find that expertise avoids minor slowdown in a few

benchmarks and provides substantial speedup in others.
We compare software schemes to hardware prefetching schemes and our simulations

show software alone substantially outperforms hardware alone on about half of a selection

of benchmarks. While hardware matches or exceeds software in a few cases, software is
better on average. Analysis reveals that in many cases hardware is not prefetching access

patterns that it is capable of recognizing, due to some irregularities in the observed miss

sequence. Hardware outperforms software on address sequences that the compiler would
not guess. In general, while software is better at prefetching individual loads, hardware
partly compensates for this by identifying more loads to prefetch. Using the two schemes

together provides further benefits, but less than the sum of the contributions of each
alone.

1. Introduction

The performance of modern processors is significantly limited by long access laten-

cies to the secondary caches and especially to memory. A cache miss to the main

memory results in a latency of hundreds of cycles, and most of these cycles are often
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spent by the processor stalling. For example, the SPECcpu2000 benchmarks spend

more than half their time stalling for load instructions that access main memory 1.

Prefetching is a technique whereby data needed by a program is requested earlier

than it otherwise would, so that it is either already in the cache or on its way by

the time the instruction needing the data is executed. This makes it possible to

reduce or completely hide the cache miss latency.

Software prefetching is a compiler based technique, where special prefetch in-

structions are inserted into the program ahead of the original instruction requesting

the data. If the instruction is placed sufficiently ahead and is accurate, most or all of

the miss latency will be covered by the time the instruction in the original program

executes. While software prefetching has the potential to be very highly targeted

and very accurate, there are some drawbacks and limitations. Firstly, processor

resources have to be used to fetch, decode and execute these instructions. Hence,

these instructions not only increase the code size but also use up resources that

could otherwise be used by regular program instructions. For the benchmarks we

simulated, software prefetch instructions were 5.4% of all committed instructions.

This use of resources does not guarantee that the prefetch is useful because of the

possibility of the prefetched data already being present in the cache. In fact, the

prefetch can be damaging if it evicts an existing cache line that would otherwise

have been used in a different part of the program. Secondly, it is not always easy

for the compiler to place software prefetch instructions significantly ahead of the

instruction making the demand request. This reduces the extent to which software

prefetch instructions can hide miss latencies, particularly misses to main memory.

Hardware based prefetching techniques are independent of the compiler, and

work by monitoring the stream of requests within the memory hierarchy and de-

tecting patterns in this stream. Prefetches are issued directly by the hardware

based on these patterns. The main advantage of hardware prefetching is that it

works without increasing the code size or interfering with the underlying program

being executed. Hardware prefetchers are more flexible because they will automat-

ically stop issuing prefetches if data is consistently found in the caches. Since they

monitor patterns globally, hardware prefetchers can also detect patterns which are

not easily detectable by the compiler. The drawbacks of hardware prefetchers are

the increase in complexity of the processor and the strain they put on memory

bandwidth by creating additional memory traffic.

Since both techniques have their advantages and disadvantages, we focus on the

interplay between the compiler based software technique and hardware techniques.

We evaluate one simple hardware prefetcher and one advanced hardware prefetcher

implemented in real-world state of the art processors as well as another advanced

prefetcher proposed by computer architects in literature. We examine the software

vs. hardware prefetch question starting from commercial hardware and compilers,

and using code tuned for prefetch by motivated experts. Specifically, we look at the

SPECcpu2006 benchmarks, which were chosen to exercise the CPU and memory

system, and whose rules allow testers to prepare both baseline (or base) and peak



March 17, 2011 18:51 ws-jcsc

The interaction and relative effectiveness of hardware and software data prefetch. 3

(sometimes called result) tuning of the benchmarks. Base tuning is intended to

reflect typical effort in setting compiler and other options, whereas peak tuning

reflects thorough tuning of each program in the suite. If a tester is testing his

company’s processor, as is often the case, we can be sure the tester has all the

expertise and resources necessary to get the highest peak score on that particular

processor. Starting with these “config” files produced by motivated experts we

prepared binaries without software prefetch, having baseline software prefetch, and

the original peak software prefetch, with prefetch settings being the only difference

between the builds. Data was collected from native runs, in which the hardware

prefetch scheme is fixed, and also simulation runs, in which hardware prefetch

mechanisms of varying complexity were used.

We show that while software based prefetching schemes have the potential to be

very effective, their effectiveness is often limited in practical settings by the need

for significant human effort and expertise during compilation. Under conditions of

real world constraints, software developers may not have the time to tune their

programs for software prefetching or the availability of experts who have a detailed

understanding of the architecture and compilers used for the target system. Never-

theless, software prefetch schemes often outperform hardware prefetch schemes. The

reasons for these performance differences, whether they favor hardware or software,

are investigated for the three hardware prefetch schemes, looking at the natural

strengths of each. Programs that are well tuned for software prefetching benefit

further from hardware prefetching. Hence, the best prefetching solution is one that

involves both compiler and hardware based techniques. We look into the reasons for

the observed performance by analyzing prefetcher coverage and accuracy data, and

observe that both correlate well with performance. By analyzing average coverage

data and comparing it to coverage for only the most commonly prefetched loads, we

conclude that while software is more effective at prefetching important individual

loads, hardware partly compensates for this by identifying more loads to prefetch.

2. Background

In this section, we look at related work done on hardware prefetching schemes,

compiler based software prefetchers and work related to combined hardware and

software prefetching.

The simplest hardware prefetching schemes are sequential schemes which

prefetch the next cache lines 2 3 if a sequential access pattern is detected. Stride

prefetching schemes 4 5 issue prefetches if a constant stride in the memory access is

detected. A table stores the most recent stride as well as the most recent memory

address that was issued for a load instruction. A stride is computed by calculat-

ing the difference between the memory address value of the current access and the

previous address value that is stored in the table entry. If the stride is the same

between consecutive access’, a two-bit status field is incremented. The limitations of

basic Stride prefetchers are their use of program counters which may not be easily
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accessible at the L2 cache level and their reliance on detecting per instruction pat-

terns instead of global memory patterns. Stride Stream Buffer Czone prefetching
6 overcomes these issues by dividing the memory space into fixed size partitions

(Czones). The accesses in each Czone are monitored to determine stride patterns,

avoiding the need for a program counter.

More complex address patterns are considered in correlation prefetching meth-

ods such as Markov predictors 7 which predict repeated and irregular address se-

quences. Instead of directly accessing a table, Global History Buffer based schemes
8 9 utilize entries which store an address and a link to a previous entry. The GHB

is a FIFO table of the most recent addresses and can be used to create a time

ordered linked list of addresses. In C/DC prefetching 8, an index table holds an

initial pointer to an entry in the GHB. The index table is accessed using the tag of

the Czone memory region and delta correlation address patterns are detected.

Nesbit et al. 8 also propose an adaptive component in which the CZone size and

prefetch degree of the C/DC predictor is varied dynamically based on the detection

of a change in program phase. Adaptive hardware prefetch schemes adjust the ag-

gressiveness of prefetching based on some type of data. Dahlgreen et al. 10 propose

an adaptive prefetching scheme for sequential access’ by monitoring the percent-

age of useful prefetches and adapting aggressiveness if this percentage is above a

threshold. Hur and Lin 11 propose Adaptive Stream Detection which adjusts the

aggressiveness of a Stream prefetcher based on stream length histograms. Ramos

et al. 12 propose low cost solutions for adjusting sequential prefetcher aggressive-

ness and Srinath et al. 13, adjust aggressiveness based on certain feedback metrics

collected at intervals during program execution.

Hardware Prefetchers are used in real systems. The Sun Ultrasparc IV system

and the IBM Power 4 system use stream based sequential prefetchers. The Intel

Core Microarchitecture used in multi-core systems has stride based prefetchers at

both the L1 and L2 level.

The idea of software prefetching was originally proposed by Callahan et al. 14

who discuss a simple compiler based strategy to select prefetches and some ba-

sic optimizations to eliminate unnecessary prefetches. Ghosh et. al 15 explain that

accurately determining which loads to prefetch requires precise representation of

cache misses in the program, and propose a mathematical framework to provide

this representaiton. Mowry et. al 16 use locality analysis, loop splitting and soft-

ware pipelining to efficiently insert prefetches in scientific code dealing with dense

matrices. Their algorithm factors in parameters such as cache line size, cache size

and the size of loop bounds in its decision making. Klaiber et al. 17 estimate cache

miss latencies and instruction execution rates in their compiler based software con-

trolled prefetching scheme. Ranganathan et. al 18 study the effectiveness of software

prefetching in shared-memory multiprocessors built from ILP processors. They ob-

serve that while software prefetching provides significant benefits in terms of execu-

tion time reduction, the benefits are lower than those achieved for multiprocessors

built from previous generation, non-ILP processors. Vanderweil and Lilja 19 survey
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several approaches, including combined hardware/software schemes, and discuss

the design tradeoffs involved in implementing a strategy.

Wang et. al 20 propose a combined Hardware and Software prefetching approach

in Guided Region Prefetching, in which hints placed in load instructions by the

compiler indicate presence of pointer structures, spatial locality indirect array ac-

cesses, indirect pointer and size hints. While the hardware does the prefetching, it is

kept simple. For example, instead of using complex hardware to recognize pointer

traversal patterns or store pointer correlations, this prefetching scheme greedily

generates a prefetch for any fetched value that falls within the ranges of legiti-

mate heap memory addresses. Gornish and Veidenbaum 21 propose an integrated

scheme where software is used to decide the number of contiguous blocks that the

hardware should prefetch upon a miss. Baer and Chen 4 have the compiler deter-

mine address and stride information and provide it to a hardware prediction table.

Karlsson et. al 22 use compiler generated prefetch arrays to assist the hardware in

doing pointer prefetching in linked data structures. Lu et al. 23 implement runtime

prefetching by using a dynamic trace based optimization system which selects and

profiles traces and uses the profiled information to assist prefetching. Son et. al 24

observe that the benefits of data prefetching are significantly reduced as the number

of cores is increased, largely due to harmful prefetches. They propose a compiler

directed scheme for on-chip cache based CMP’s. The scheme reduces the number

of prefetches issued by having the compiler identify program phases, followed by

dividing the threads into phase based groups and assigning a customized prefetcher

thread for each group. Badawy et al. 25 propose a locality optimization based soft-

ware prefetching scheme and evaluate the impact of combining hardware prefetch-

ing with their scheme. They observe that locality optimizations enable stride based

hardware prefetching for benchmarks that normally do not exhibit striding.

Some real-world systems also use some type of combined software/hardware

prefetching. The IBM Power 4 uses compiler hints to enable its Stream prefetcher

to prefetch more aggressively. In most cases, the hardware waits for several cache

misses before initiating a prefetch. However, the software can tell the hardware to

initiate a prefetch early in some cases without waiting for the higher number of

cache misses. The Ultrasparc IV+ has special prefetch instructions called strong

prefetches which will not be dropped even in the case of a TLB miss or if the

prefetch queue is full.

This paper focuses on the interaction and relative performance differences be-

tween hardware prefetching and the software prefetching schemes implemented by

a state of the art compiler. In prior work in the area of hardware prefetching, the

affect of software prefetching on the implemented hardware prefetchers is not dis-

cussed. Infact, it is rarely mention whether software prefetch instructions are built

into and/or honored by the simulators.
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3. Software Prefetching

Software prefetch is the use of prefetch instructions provided in most modern in-

struction sets. A typical prefetch instruction has an address argument and a hint

argument. The hint indicates something about the expected future access to the

address such as whether it will be read but not written, or that it will be accessed

just once. In response hardware can move the addressed data towards the CPU, per-

haps placing it in the level-2 cache. Hardware can also ignore prefetch instructions,

perhaps in response to congestion, or always for a low-cost design.

When coding in a high-level language, prefetch instructions can explicitly be

placed by the programmer using some language extension (such as a library of

macros expanding to inline assembler statements), or they can be placed by the

compiler. Programmer placement of prefetch instructions is tedious and can slow

down execution if not done well. Compilers too can slow down execution of code

by ill-chosen prefetch instructions, and so many compilers do not emit prefetch

instructions unless a prefetch compile option is used. If a prefetch instruction is not

needed (because the data is already cached) it can slow down execution by delaying

the fetch of useful instructions. Worse, it can bring in data which is never accessed

but evicts other data therefore inducing a cache miss rather than avoiding one.

Compilers typically emit prefetch instructions for array accesses inside of loops,

when a future array index can be determined, as it easily can in many cases, such

as when the array index is the loop index. An estimate of the ratio of memory la-

tency to loop body time provides the prefetch distance. More sophisticated prefetch

schemes exist and are being developed. Often a compiler can make better prefetch

decisions with knowledge of the number of iterations in each loop, and other infor-

mation about the shape and access frequency of the data. It analyzes data from a

profile run and inserts prefetch instructions with the goal of getting them started

early enough so that most or all of the miss latency of a future instruction is hidden.

An application developer compiling a program has to select from a wide variety

of prefetch options which determine, amongst other things, the aggressiveness and

type of software prefetching that will be compiled into the program. The selection

of these parameters is not trivial because one needs to know not only which parts of

the code need prefetching, but how to set the flags to achieve prefetching in those

parts but not others. A set of poorly selected options (such as making prefetching

too aggressive) will not provide the optimal performance benefit and can easily hurt

performance. The following are the set of prefetch options from the Sun Studio 12

compiler that we used in our simulations.

xprefetch - If set to “yes” or “auto, explicit”, allow generation of prefetch instruc-

tions.

xprefetch level - Determines the aggressiveness, i.e, how much effort the compiler

puts in to finding prefetch opportunities.

xprefetch auto type - Determines whether or not the compiler generates indirect
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prefetches for data arrays accessed indirectly.

xprefetch=latx:n - Adjust the compilers assumptions about prefetch latency by a

factor of n.

4. Importance and Practicality of Software Prefetcher Tuning

To measure the impact of expert prefetch tuning separate SPECcpu2006 peak-

tuning binaries were generated for a Fujitsu M5000 26. This is a dynamically sched-

uled system that implements the SPARC V9 instruction set, including prefetch

instructions. It includes a large L1 data cache, 128 KB, and a large L2 cache,

6 MB, and uses a simple stream hardware prefetcher. The SPECcpu2006 bench-

marks were built using configuration files based on one prepared by Fujitsu and

disclosed to SPEC. Three sets of binaries were generated as described below.

1. Prefetching is explicitly turned off, but expert tuning is available for other com-

ponents of the benchmark code.

2. Expert tuning is not available for prefetching, but available for other components

of the benchmark code (referred to as base prefetch tuning).

3. The original configuration file (with minor changes that do not affect code gen-

eration), where expert tuning is available for prefetching and for other components

of the benchmark code (referred to as peak prefetch tuning).

Of the 17 benchmarks presented here, 7 had non-default prefetch flags. Figure 1

demonstrates the impact that expert software prefetcher tuning has on performance

by comparing the three configurations above. These results are obtained from runs

performed on a Fujitsu M5000 configured with eight 2-core SPARC64 VI proces-

sors. The performance ratio is the improvement ratio over a reference system 27

that SPEC uses to normalize performance metrics. The reference system is a Sun

machine with a 296 MHz UltraSPARC II processor.

Expert tuning for prefetching had a major impact on three of the seventeen

benchmarks, yielding speedups of 20%, 6%, and 6% respectively. The results demon-

strate the importance of expert (peak) for software prefetching. Peak prefetch tun-

ing outperforms a system with base prefetch tuning by an average of 6% and a

system with no software prefetching by an average of 23%. These speedups are

significant given that they are achieved without any increase in hardware costs.

For benchmarks sjeng, omnetpp and astar, base prefetching tuning has a negative

impact on performance but the decline for sjeng and astar is minimal. A bigger

potential issue for benchmarks that do not benefit from software prefetching is that

any software prefetch instructions in these benchmarks take up code space and may

waste energy when they are fetched, decoded and executed. This waste of energy

is an important consideration in current generation processors, where conserving

power has become an important a design consideration as maximizing performance.

For the benchmarks that we simulated in the next section, software prefetch instruc-
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Fig. 1. Impact of Expert Tuning on Performance

tions represented 5.4% of all dynamic instructions under base tuning. There are a

total of nine benchmarks (including the three mentioned in this paragraph) in the

above chart where expert tuning simply consists of turning software prefetching off.

Instead of choosing a generic prefetch setting for all benchmarks, turning prefetch-

ing off on a selective basis can save code space and energy and can even prevent a

performance drop.

5. Hardware Prefetchers

We test three prefetch mechanisms of varying complexity: sequential, stride, and

C/DC. The sequential prefetcher is a simple but effective design that easily exploits

spatial locality and sequential access. Most general-purpose processors have some

variation of sequential prefetch, including the SPARC64VI. The stride prefetcher

exploits accesses at some regular stride, the design tested here is more capable than

stride prefetchers present in real systems 28. The difference correlated predictor

(C/DC) 8 9 is the most complex and powerful, it can prefetch repeated address

sequences as well as repeated patterns. It has not been incorporated in real designs.

All simulated hardware prefetch schemes monitor the stream of addresses that

miss the L1 and L2 caches. Streams that hit the L2 cache will generate L2 to L1

prefetches, and those that hit memory will generate memory to L2 prefetches. Hard-

ware prefetches are rejected or later dropped if cache/memory request resources are

fully occupied, to avoid interference with demand requests.
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5.1. Sequential Prefetch

The simplest evaluated scheme is an aggressive sequential prefetcher. Sequential

prefetch mechanisms predict the sequence a,+a+L, a+2L, . . ., where a is a memory

address and L is the line size. Prefetch is initiated on a cache miss to either the L1

or L2 cache and prefetch requests are generated for up to the next d lines, where d is

the prefetch degree. Arriving lines are tagged as having been prefetched and access

to such a line at address a triggers the prefetch of a line at address a+ d×L. That

is, a miss initiating prefetch brings d lines, while hits bring in one each. Sequential

prefetch requires only a tiny amount of storage, one bit per line, but some increase

in cache controller complexity, including logic to drop prefetches when the system

is busy.

5.2. Stride Prefetch

Stride prefetchers predict sequences of the form a, a+s, a+2s, . . ., where s is called

the stride. A challenge in the design of stride prefetchers is to determine just what

the strides are. The implemented scheme discovers strides by separately tracking

misses in each region of memory. Two tables are used, a direct-mapped correlation

table for finding address strides, and a set-associative stream table for generating

prefetch requests based on discovered strides.

The correlation table is accessed on a cache miss, but only if the address also

misses the stream table. The correlation table is indexed using higher-order address

bits (thus correlating strides by memory region). An entry holds the address of the

last miss and a delta (the difference between the previous two miss addresses).

(Some designs include a count of how many consecutive times the delta appeared).

A new delta is computed and if it matches the prior one an entry is created in the

stream table using the delta. Otherwise, to discover and filter out sequential access

patterns, a stream table entry is created using a delta of one line. The correlation

table is updated with the new address and delta.

The stream table is accessed on each cache lookup and is indexed by address.

An entry contains a tag, delta, distance, and state information. Using this entry

the next prefetch address is a + c× ∆, where a is the miss address, c is a distance,

and ∆ is the delta. The system will generate several prefetches, a + x × ∆, x =

c, c+1, c+2, . . ., until a maximum degree is met (the default is 4, shared by all other

prefetch schemes) or until a prefetch is rejected. If p prefetches were generated the

entry is written back with c changed to c−1 +p. A stream table entry is initialized

with a distance of one. Note that the distance field provides flexibility in how far

ahead prefetch reaches. During busy times c will be low as prefetch requests are

rejected. During quiet times it can build a reserve.

5.3. C/DC Prefetch

The most elaborate prefetch mechanism used is one based on difference his-

tory, essentially the C/DC prefetcher presented by Nesbit et al. 8. The differ-
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ence history of address stream a0, a1, a2, . . . is the sequence ∆1,∆2,∆3, . . ., where

∆i = ai − ai−1. Given some difference history . . . ,∆t−1,∆t the prefetcher will pre-

dict ∆t+1,∆t+2, . . . and use these to generate prefetch addresses, at + ∆t+1, at +

∆t+1 + ∆t+2, . . .. To predict ∆t+1, . . . the CD predictor scans the difference for a

prior occurrence of the two most recent deltas, that is, it finds the largest x < t

such that ∆x−1 = ∆t−1 and ∆x = ∆t. Difference ∆x+1 is thus the predicted ∆t+1,

etc.

C/DC 8 is implemented using two tables, a small correlation table and a larger

global history buffer (GHB). The correlation table is indexed by region and provides

a GHB index as well as the previous address in the region. On a miss or prefetch

hit a correlation table entry is retrieved, it is used to initialize a new GHB entry

(these are allocated sequentially), using the delta in this and the older entry, the

GHB is scanned for prior consecutive occurrence of these deltas, if a match is found

the following deltas are used to predict prefetch addresses. Normally, C/DC is used

for L2 prefetch so that there is time for the sequential scan of the GHB.

In the implementation simulated here, the scan is instantaneous, though limited

to 100 entries. Also, if ∆t− 1 = ∆t a stride sequence is assumed, and so the GHB

is not scanned. GHB entries are also used to infer a sequential direction, that is

used if the deltas are not found.

6. Evaluation of Hardware Based Prefetchers

6.1. Experimental Framework

We use an extensively modified version of the RSIM simulator 29. The simula-

tor does detailed simulation of a dynamically scheduled superscalar processor and

memory system and implements a subset of the SPARC V9 ISA 30. The parameters

of the simulator are adjusted so that it matches the Fujitsu M5000 system used to

evaluate the software prefetching schemes described previously as closely as possi-

ble. It fetches a maximum of four instructions and one branch instruction per cycle,

and has an L1 cache of size 128 KB and an 4 MB L2 cache. Since these benchmark

inputs are very large, we use periodic sampling to select a set of samples for simu-

lation. Specifically, 100 samples are selected for data collection at regular intervals

throughout the program, up to a maximum of the first 700 billion instructions in

the program. Each sample has a warmup period of 500K instructions (no statistics

are collected during warmup), followed by a segment of 3.5 million instructions

over which statistics are collected. We simulate a prefetcher friendly subset of 10

benchmarks from SPECcpu2006.

6.2. Performance comparison of Hardware Only with Software

Only Prefetching

In the charts presented in this sub-section and the next sub-section, speedup is mea-

sured against a system which has no prefetching and is compiled using base settings.
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Figures 2 and 3 compares the speedup obtained with hardware only prefetching

schemes for base and peak tuning respectively with the speedup obtained from

the respective software only prefetching schemes. As one might expect, hardware

prefetching schemes provide a clear performance benefit over a system with all
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prefetching turned off. However, it is surprising to observe that the software only

prefetching scheme outperforms all of the hardware based prefetchers for the ma-

jority of benchmarks in both charts. We see this phenomenon in the benchmarks

GemsFDTD, mcf, milc, lbm and cactusADM in the Figure 3 (peak tuning). The dif-

ference is more pronounced in Figure 2 (base tuning) where software only prefetch-

ing outperforms the hardware prefetchers in almost all cases. The reader may be

wondering if and why these results are different from the ones presented in Figure 1,

where base prefetch tuning hurt performance in some benchmarks. The differences

are because of variations between the real system we used in the previous section

and the simulated one in this section and also the subset of benchmarks evaluated.

The benchmarks selected in this section are a prefetcher friendly subset. Our goal

in this section is to compare the prefetch ability of the different hardware schemes

and software prefetching while the goal in the previous section was to discuss the

impact of expert tuning on all benchmarks.
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Fig. 4. Performance of Hardware Prefetchers with Software Prefetching (Base Tuning)

6.3. Performance of Hardware Prefetching with Software

Prefetching Support

Figures 4 and 5 show the speedup of the hardware prefetchers with software

prefetching turned on for base and peak settings respectively. In the base setting, the

benchmarks are compiled with the generic options for both the software prefetching

and non-prefetching components of the programs (i.e, no expert tuning is available).

For the benchmarks in peak setting, all aspects of the program, including the soft-
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ware prefetching component are compiled with expert tuning. Unlike the results

in the previous section, we see that all of the hardware prefetchers now outper-

form the software only prefetching schemes for almost all benchmarks (the only

exception is the Sequential prefetcher for mcf). The C/DC prefetcher is the best

prefetcher on average, and it outperforms the software only prefetching scheme by

approximately 5% in both figures, a relatively modest improvement. The results

here and in the previous subsection demonstrate that consistent and effective bene-

fits from hardware prefetching are only possible with software prefetching support,

although the improvement over software only prefetching is relatively modest for

many benchmarks and on average.

Figure 6 compares the best pure software solution (expertly tuned software

prefetching) with combined hardware and software prefetching compiled under

different settings. For each hardware prefetching bar, we select the best individ-

ual hardware/software prefetcher for the given compilation setting. The combined

prefetcher under base settings represents a situation where no effort is made to

tune the compiler settings, either for the prefetcher or for the other components of

the program. When we compare it to software only prefetching on an individual

benchmark basis, this configuration significantly outperforms software only in some

cases (for example, soplex) while it significantly underperforms in other cases (for

example, lbm). On average, it outperforms software only even though the software

prefetcher has both the advantage of expert tuning in its prefetching component

and the additional advantage of expert tuning in its non-prefetching component. In

other words, the combined prefetcher under base settings “jumps two hurdles” to

catch up with and outperform software only prefetching on average. The combined
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Fig. 6. Comparison of peak software prefetching with combined schemes

prefetcher under peak settings outperforms, or atleast matches the best software

solution for all benchmarks. This demonstrates that the best overall performance

is obtained by combining expert software tuning with a good hardware prefetcher

and that hardware and software prefetching are complimentary approaches.

7. Analyzing the Performance Results

An important question is whether the observed differences in prefetcher perfor-

mance are due to inherent strengths and weaknesses or merely to factors that can

be improved with further tuning and development. In particular, does software

prefetch benefit from the ability of the compiler to perform extensive analysis, and

does hardware prefetch benefit from adaptation to run-time conditions?

First, comparing hardware-only to software-only prefetch, simulations of the

base and peak-tuned benchmarks and the three hardware prefetchers show that

hardware prefetch is superior for two benchmarks, bzip2 (peak tuning) and soplex,

is about as good for three more, astar, bzip (base tuning), and mcf (base tuning),

but hardware prefetch is much worse than software for two benchmarks, cactus and

lbm, and for the remaining benchmarks hardware has about half the speedup of

software. These results can be seen as disappointing for hardware prefetch advo-

cates, the analyses below show that the hardware schemes could be improved to

match software, ignoring cost and other tradeoffs.

Measurements of prefetch coverage and accuracy give a sense of the mecha-

nisms’ abilities. As plotted here, prefetch coverage is the number of used prefetches

(on-time or late) divided by used prefetches plus L2 cache misses. Accuracy is the

number of used prefetches divided by the total number of surviving (not dropped)
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Fig. 7. Prefetch Coverage

prefetch requests. Figure 8 shows the coverage for selected benchmarks on the dif-

ferent systems. (Note that there is still some software prefetch in the no-software-

prefetch binaries due to prefetches in library code.) The first four bars per bench-

mark are for configurations with no software prefetching (indicated by SW PF - N)

and the last bar is a configuration with software prefetching (indicated by SW PF

- Y). The lower segment of each bar counts on-time prefetches, the upper segment

counts late prefetches.

If overheads, such as congestion and cache pollution are low, coverage should

match performance. We can get performance data by looking at figure 3 and figure 5.

For the tested systems, coverage matches performance for all but three benchmarks,

the exceptions are astar, cactusADM, and mcf. Note that for libquantum coverage

is high but much of that is late coverage and so performance suffers. This can be

seen by comparing C/DC to Stride. The C/DC prefetcher has less than half the

number of timely prefetches, and as such its speedup is relatively lower.

Prefetch accuracy is plotted in Figure 9. Notice that hardware prefetch accuracy

exceeds software prefetch accuracy for every benchmark, except for the aggressive

sequential prefetcher. This is what one would expect, since there was no mechanism

to throttle ineffective software prefetch, whereas hardware prefetch requires misses

or prefetched data hits to continue prefetching.

As mentioned, coverage is a key performance factor, and so the reasons for the

differences in coverage will be analyzed for selected benchmarks. The analysis is

performed by finding frequently missing (or prefetched) loads and determining why

they weren’t benefiting, or benefiting more, from prefetch. The simulator provides

a table of the loads that most often hit prefetched data, and simulator output can
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also be visualized showing cycle-by-cycle instruction events. Many of the tested

benchmarks have small kernels, and so such hand analysis can explain a substantial

amount of their observed performance.

Hardware prefetch is able to squeeze a respectable 20% speedup out of soplex,

while software prefetch achieves almost none, despite use of the prefetch flag. This

was true also in the peak runs, which had the benefit of profiling. Soplex is a

C++ benchmark that includes a mixture of direct strided and indirect (through

an index array) array access. The hardware prefetch schemes were able to prefetch

strided accesses that the compiler was too shy to prefetch for, such as a negative

loop index increment in SPxSteepPR::selectLeaveX. Here hardware prefetch has a

natural advantage, since it can exploit patterns not easily discoverable from the

code.

At the other end of the spectrum hardware prefetch does much worse on cactus

and lbm. In both of these programs the loads that miss the cache access data using a

relatively stable stride, something both the stride predictor and CDC should have

captured. For lbm the stride was a constant 160 (in performStreamCollide), but

because loads accessed a base address at varying offsets, the stride predictor was

confused. A PC-indexed stride predictor might have done better. Here, hardware

prefetch could be improved by better filtering the access stream. Such improvements

could approach software on these codes, but at the cost of complexity that software

prefetch does not share.

Five benchmarks had hardware prefetch speedup about half that of software

prefetch. Of these, mcf peak, milc, and libquantum were undermined by prefetch

lateness. This was especially large in libquantum. The base hardware prefetchers
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had a modest degree of four, and would not prefetch further. Limiting the distance

reduces damaging effects but results in lateness when the targeted load is executed

soon. More elaborate adaptive hardware prefetch would close the gap for these

benchmarks by adjusting degree based on, say, the number of damaging prefetches.

Benchmarks Gems, lbm (peak), and to a smaller extent mcf (peak) have lower

coverage in hardware than in software prefetch mechanisms, even counting late

prefetches. Gems has a substantial amount of stride and sequential access patterns,

however over a short interval of time loads accessing different parts of the address

space can miss, making it more difficult for stride and CDC to train, especially

because loads don’t miss consistently. As in the other cases, hardware could poten-

tially close the gap with more elaborate hardware to filter the access stream.

Many of the benchmarks with lower coverage also seem to suffer from miss

irregularity. That is, hardware prefetch of an access pattern can be stopped if one

item is cached. This too is potentially fixable, by having a stream design, like the

stride predictor used here, monitor all L1 accesses.
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7.1. Summary

Based on the software vs. hardware prefetch comparisons, it appears that when the

compiler is able to prefetch, it can prefetch well. In only one case was hardware

much better, though the selection of benchmarks might be biased towards compiler

analyzability. Hardware could conceivably catch up, if there were a reason to do so.

Turning on prefetch in the peak-with-base prefetch experiments only slows down a
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few benchmarks. However as mentioned earlier, even if software prefetches do not

hurt performance, they still result in wasted energy.

When software and hardware prefetch are combined there are further small per-

formance gains (average improvement of 5.5%). Figure 10 shows average coverage

data for all combinations of base and peak tuning, and software and hardware

prefetch. We observe that software only prefetching (the fifth bar per tuning) gets

much better coverage than any of the hardware only schemes (the first four bars) for

base tuning and roughly matches coverage for the peak tuning. For either tuning,

adding hardware to software prefetch increases coverage, as one might expect.

Figure 11 shows the coverage of only the 20 most benefited loads. Combined

prefetching achieves much higher coverage than hardware only prefetching. On the

other hand, when comparing software only prefetching to the combined schemes,

there is almost no increase in top-20 coverage for the combined schemes, suggesting

that for peak builds (which benefit from profiling) software prefetch is perfectly

prefetching some of the most important loads. This figure shows each configuration

at its best, meaning coverage of the 20 loads with the most prefetch hits. Since

software gets significantly better coverage than hardware prefetching, this data in-

dicates that software prefetching helps an individual load much more than hardware

prefetch. However if we go back to figure 10, we notice that the gap in coverage is

lower than that for the top 20 most benefited loads. Hence we can conclude that

while software prefetching is more beneficial on an individual load basis, hardware

atleast partly compensates for this by identifying more loads for prefetch.

8. Conclusions

This paper considers the interaction between state of the software prefetching tech-

niques used in a modern compiler with hardware based prefetching. We evaluate



March 17, 2011 18:51 ws-jcsc

The interaction and relative effectiveness of hardware and software data prefetch. 19

the ability of compilers to achieve good results without expertise by using bina-

ries with no prefetch, generic one-flag prefetch and expert tuning of the prefetcher.

Expert prefetching avoids minor slowdown in a few benchmarks and also provides

substantial speedup in two or three benchmarks. By omitting unneeded prefetch

instructions, it also avoids the waste in energy that the processing of such in-

structions would require. We evaluate several hardware only schemes and show

that these schemes underperform an expertly tuned software prefetching scheme.

Combined hardware/software prefetching is a significant improvement over hard-

ware only prefetching, but only modestly outperforms software only prefetching.

The best results are obtained when peak software tuning is combined with a good

hardware prefetcher, indicating that hardware and software prefetching compliment

each other. We look into the reasons for the obtained performance by analyzing ac-

curacy and coverage data and observe that they correlate well with performance.

While results for hardware prefetching seem disappointing, our analysis reveals that

the basic hardware prefetchers could be improved, but at increased cost and other

tradeoffs. By comparing average coverage data for all prefetched loads with data

for just the top 20 loads, we conclude that software prefetching is more beneficial

on an individual load basis, but hardware prefetching is able to identify more loads

for prefetch.
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