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Abstract—CPU performance is determined by the interaction
between available resources, microarchitectural features, the
execution of instructions, and by the data. These elements can
interact in complex ways, making it difficult for those seeing
only aggregate performance numbers, such as miss ratios and
issue rates, to determine whether there are reasonable avenues
for performance improvement. A technique called instruction-
level visualization helps users connect these disparate elements
by showing the timing of the execution of individual program in-
structions. The PSE visualization program enhances instruction-
level visualization by showing which instructions contribute to
execution inefficiency in a way that makes it easy to locate
dependent instructions and the history of events affecting the
instruction. A simple annotation system makes it easy for a user
to attach custom information. PSE has been used for microar-
chitecture research, simulator debugging, and for instructional
use.

I. INTRODUCTION

CPU performance is determined by a number of interacting
factors; this is particularly true for dynamically scheduled
processors in which instructions can start execution out of
order. For those tuning performance or designing the next
generation of processors, conventional methods of performance
evaluation do not present the information needed by program-
mers or architects to quickly grasp unexpected problems or
delve deeper into more subtle issues.

Popular existing tools, such as HPCToolkit [1], are cer-
tainly helpful for finding where possible bottlenecks might be,
even down to the source line, or with data-centric tools [2],
down to a variable. However, knowing that execution time,
cache misses, or branch mispredictions are associated with a
particular line of code or variable is not enough to identify
many issues.

For example, consider a high-level code expression that
uses variables of different sizes. A compiler might emit a long
sequence of instructions to ensure that the result is “correct” in
the case of overflow, rather than a short sequence which would
be correct for the program. The user would be unlikely to find
such an error using existing tools, let alone determine whether
these instructions were on a critical path and so costing one or
more cycles per instruction, versus a typical cost of a quarter
cycle for non-critical instructions.

This paper introduces PSE, an instruction-level visualiza-
tion system which enables the user to not just find areas of
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Fig. 1. PSE displaying a PED (pipeline execution diagram) plot from bzip2
program with the PED view zoomed to show detail.

inefficient execution, but to help in finding the underlying
cause. PSE, though in use for over ten years, is not the first
instruction-level visualization system. Stolte et al in 1999 [3]
and Weaver et al [4] in 2001 describe earlier systems, and
the popular SimpleScalar simulator collection has long had a
visualization tool, ss-vis [5].

In instruction-level performance visualization the events
occurring in the execution of individual dynamic instructions
are plotted over time. See Figure 1. Events correspond to
pipeline stages, load instruction progress (L1 lookup, L2
lookup, etc), non-pipeline states (e.g., awaiting operand, await-
ing commit), etc. In PSE these are displayed in a way
that highlights the interaction between instructions and brings
out the inefficiencies in execution. The instructions are plot-
ted alongside the disassembled code, and this disassembled
code includes procedure names and source line numbers (if
available). The instruction-level display is complemented by
an overview display that shows performance over the entire
execution of a program.

It is this display of assembly code and the use of dynamic
instruction dependence highlighting that would make problems
such as the unnecessarily long sequence of integer instructions

2014 First Workshop on Visual Performance Analysis

978-1-4799-7058-2/14 $31.00 © 2014 IEEE

DOI 10.1109/VPA.2014.11

36



easy to spot. Other problems stand out too; several examples
are discussed in Section V.

PSE has multiple features to help the user delve deeper
into understanding code execution, including multiple display
modes and animation, as well as an annotation mechanism
facilitating the collection of data for the investigation of ad-
hoc hypotheses. These enable, for example, the user to view
the recent past of an instruction under scrutiny (cache hits for
load instructions, mispredictions for branch instructions, etc.).

The goal for code tuning is both to quickly discover the
obvious such as the forgotten use of a restrict qualifier and the
subtle, such as predication’s benefit. PSE helps with both. For
computer architecture research it provides the complementary
benefit of showing inefficiencies that can be fixed not by code
tuning but by new instructions or microarchitectural features.

PSE has been used for some time for many architecture
investigations including SW v. HW prefetch, out-of-order fetch
mechanisms, and branch predictions. It has also been used for
teaching classes in computer architecture at several levels.

The data for a PSE visualization is collected from a
CPU simulator. Currently PSE is being used with RSIML,
a simulation of a dynamically scheduled SPARC implemen-
tation. Simulation, rather than gathering data from a CPU, is
unavoidable because of the high volume of data that needs to
be recorded. (Impressive things can be done with event register
sampling [6], but these techniques still cannot capture an actual
sequence of events that might be important to characterize a
program.)

II. BACKGROUND

A. Dynamically Scheduled Processors

A statically scheduled CPU core starts execution of in-
structions in program order, whereas dynamically scheduled
(also called out-of-order) cores start the execution instructions
when their operands are ready, often avoiding stalls that would
occur in statically scheduled cores. Dynamically scheduled
cores make sense for code with less predictable branch and
cache behavior, and are the dominant organization for general-
purpose CPUs. Both organizations can be n-way superscalar,
meaning that they can sustain execution at a rate of up to
n instructions per cycle on certain code sequences under
favorable conditions.

For a number of reasons, the out-of-order scheduling
in dynamically scheduled cores makes it difficult for many
programmers to connect program characteristics to their per-
formance impact, something which PSE helps with.

Here we will briefly describe execution in such a processor.
Those less familiar with dynamic scheduling might consult
some early descriptions of dynamically scheduled processors
[7], [8], more recent designs [9], and a study of the inherent
differences between static and dynamic designs [10]. The front
end of the core is responsible for fetching, decoding, and
enqueuing an instruction for execution, a process which takes
several cycles and which here will be referred to as fetch/
decode; see Figure 1. When an instruction’s source operands
are available and a functional unit is available the instruction
can start execution, which can take one or more cycles.

The last step in an instruction’s lifetime is called commit,
which must be performed in program order. At any one time
there can be many instructions in flight (over 100 on some
processors). If there is a problem with one in-flight instruc-
tion, such as a misprediction or exception, the execution of
following instructions must be squashed (erased, or undone).
In flight instructions are kept in a reorder buffer (ROB), and
consume other resources. When the ROB is full, fetch stalls.
Instruction progress through a pipelined core is often hand-
analyzed using a pipeline execution diagram, in which each
instruction occupies a horizontal line and short abbreviations
indicate instructions’ location in the pipeline. Such diagrams
can be extended to track instructions in dynamically scheduled
systems. PSE uses the term PED to refer to such a diagram.

The latency of a chain of dependent instructions (or just one
instruction) can affect the efficiency of dynamically scheduled
systems in two ways: it can cause the the ROB to fill, stalling
fetch, or it can end at a frequently mispredicted branch [11]. In
both cases reducing the latency (even at the cost of additional
instructions) will improve performance.

B. Instruction Set for Code Examples

The examples in the following sections show execution of
code on an implementation of the SPARC v8b architecture, a
RISC instruction set [12]. For the most part the code should be
readable by someone familiar with some assembly language.
SPARC v8b has 32 general purpose 64-bit registers named g0
to g7, o0 to o7, l0 to l7, and i0 to i7 (for general, output,
local, input). (A register windowing scheme allows these to be
mapped to different sets of 24 registers, facilitating procedure
calls and returns.) There are 32 64-bit floating point registers,
f0, f2, to f62. In SPARC assembly language the destination
register is last.

C. Hardware Configuration for Code Examples

The execution examples below are taken from the simu-
lation of a 4-way superscalar SPARC implementation, based
loosely on a Fujitsu SPARC VI processor [13]. The processor
has an 80-slot ROB and uses gshare branch prediction. It can
issue up to 4 integer and 2 floating-point instructions per cycle.
The L1 data cache is 128 kiB and the L2 cache is 4 MiB, the
line size in both caches are 64 bytes.

III. PSE COMPONENTS AND OPERATION

PSE consists of the PSE library for use in CPU simulators,
and the PSE visualization program. Calls to the PSE library
are used to collect events needed for instruction visualization,
other time-sampled performance data, and any other infor-
mation that one may want preserved such as the time the
simulation was run. All of this information is written to a
dataset file, which the PSE visualization program reads.

A. The PSE Library and Collected Data

The highest-resolution data that PSE collects is event data.
Each event item has a timestamp and can be associated with an
instruction or a group of instructions. They are used to identify
points in the execution of an instruction, such as entering the
decode stage, and to associate information with the instruction
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or group of instructions, such as the instruction address. There
are pre-defined events that PSE recognizes, such as events for
commit and squash. Others can be user defined. PSE uses
events to control plotting in the PED and ROB views, usually
to switch the displayed color.
General information about a dynamic instruction can be

attached using an annotation. An annotation can be used to
place a marker in the plot area, a message in the message
area, or to mark up the assembly code for the instruction. The
markup can change the color and font style of the assembler
code, and can add text before or after the disassembled
instruction. Uses include displaying branch outcome history
or prefetch effectiveness. It is easy to define new annotations
and a UI is provided select which ones are displayed.
This high-resolution data is collected during periods of time

called segments. Experience has shown that 2000-cycle seg-
ments work well. This data undergoes two types of compres-
sion, counter-type values such as timestamps and instruction
serial numbers are difference coded, then the resulting data is
compressed using the bzip2 library. Even so, the amount of
data is too large for segments to cover all of execution, even
though simulations themselves sample a program’s execution.
In the examples given here segments are aligned with the
samples used by the simulator.
The PSE library also has calls to collect performance

data covering each segment. The intent is to characterize the
performance over the segment as an aid to the user in locating
segments of interest.
PSE also collects non-temporal data, which can be orga-

nized hierarchically. When used with RSIML in the simula-
tions reported here and elsewhere PSE collects all simulator
output, even stdout, facilitating the archiving of simulation
results.

B. The PSE Visualization Program
The PSE visualization program is written in C++ and

uses the GTK windowing library. It builds on Intel 64
(x84 64) versions of Red Hat Enterprise Linux 6 and Fedora
20. The name PSE is a pseudo abbreviation of Processor
Simulation Elucidator, an earlier name was SEE which was
changed to PSE about the time people started using search
engines as their primary means of finding things. Development
versions can be obtained using Subversion from the link
https://svn.ece.lsu.edu/svn/dmk/trunk/pse. A large collection of
datasets can be found under “Simulation Data Repositories”
at http://svn.ece.lsu.edu/. The benchmarks for these are at
/svn/dmk/trunk/benchmarks/simtools/.Benchmark Archive in
the same repository.
The PSE visualization program reads the dataset file and

also tries to locate the executable file of the simulated program
which is needed for disassembly and providing source infor-
mation. PSE can setup and maintain a benchmark archive for
the executables, in which they will be named with an MD5
hash of their contents. For a description of functionality see
Section IV.

IV. USING PSE
The PSE visualization program is used to browse the results

of a simulation (possibly in progress) recorded in a dataset

Fig. 2. PSE displaying an overview plot for the gcc benchmark. The black
series is execution rate in instructions per cycle (maximum value is 4), the
blue series shows the branch prediction ratio.

Fig. 3. PSE displaying PED plot for bzip2 benchmark. The x axis is time,
each instruction occupies a different y position with wraparound. The message
window (yellow background) in this example shows outcome and prediction
history for a branch (the one with the yellow background in the disassembly
window and at the bottom of the small boxed area in the PED plot).

file. When the file is first loaded the user is presented with
an overview plot which shows values of various performance
measures over time, see Figure 2. All are plotted on the same
axis, which by convention is scaled so that the maximum y

value indicates 100% efficiency.

The user can choose which series to show. Initially one
might choose execution rate (IPC) along with those series with
a major impact on performance such as branch prediction ratio
and cache hit ratios. The plot is initially shown in time order,
the plot can also be sorted by execution rate, enabling one to
visualize how the other series correlate with performance, and
by code location, allowing users to compare similar areas. The
plot in Figure 2 is sorted by time.

The overview plot helps the user characterize execution
over time and to quickly determine where the program is
inefficient or exhibiting other behaviors of interest.
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Fig. 4. PSE displaying ROB plot for bzip2 benchmark. The purple in the band
along the top indicates an instruction entering decode. Light purple indicates
decode of an instruction that will later be squashed (discarded). Gaps are
due to a number of factors such as misprediction recovery and instruction
alignment. If execution were occurring at the peak rate the band would be
solid purple. Colors below the purple band show the status of instructions that
have passed through decode.

Clicking on one of the points displayed in the overview
plot brings the user to the segment window, see Figure 3. The
segment window has three major panes, the instruction plot
pane (lower left) initially shows timelines in the execution of
instructions over the period covered by the pane, the disassem-
bly pane (lower right) shows disassembled code corresponding
to the displayed instructions (or instructions nearby), and the
message pane (center, with yellow background) shows textual
information items (called annotations) corresponding to an
instruction, time, or other entity.

The instruction plot pane shows what will be called a
PED view (for pipeline execution diagram). It can be switched
to a ROB view in which an instruction’s vertical position is
based on its position in the reorder buffer (a FIFO structure),
see Figure 4. The ROB view emphasizes the number of
instructions in flight, and it is plotted in a way that also
emphasizes fetch/decode (front-end) efficiency.

The transition between the ROB view and PED view is
animated, helping the user see the connection between the
ROB view, which emphasizes resource usage, and the PED
view, which emphasizes instruction interaction.

Each dynamic instruction occupies a horizontal line, with
horizontal positions corresponding to time. This can be clearly
seen in Figure 1 where the PED view has been zoomed and
labels have been added. In the PED and ROB views colors
indicate events and states. In the figure there are labels for
those colors which are needed for understanding the examples
provided here. The colors pointed to by Fetch/Decode include
all of the processing steps needed to prepare for execution,
Wait indicates an instruction is waiting for a source operand,
Execute indicates that an instruction is executing (load instruc-
tions use additional colors to indicate their progress), Commit
indicates that an instruction will no longer be needed, and
Squash indicates that an instruction was fetched by mistake

and its effects must be undone. The colors for an instruction
are tinted red if that instruction will be squashed, as are the
instructions at the bottom of the figure.

Instructions in the plot pane can be highlighted by markers,
and instructions in the disassembly pane can be highlighted in
a number of ways (such as by background color).

A user-movable instruction cursor points to a dynamic in-
struction, it is labeled Cursor Insn in Figure 1. The correspond-
ing instruction is highlighted in the plot pane (with a yellow
marker) and disassembly pane (with a yellow background).

Markers and highlights are applied to instructions that
the cursor instruction depends upon (pink in the figure), and
instructions that depend on the cursor instruction (brown in
the figure). This includes dependencies through memory. Other
dataflow related information is shown. For example, a register
is shown in italic if that is the last use of its value, and dead
instructions (those that write values that are never used) are
shown crossed out.

Additional markers and disassembly highlighting can be
added by user-defined annotations: PSE API calls which attach
information to an instruction or time. Annotations can also
place a message in the message pane. Annotations are used
for showing information related to branch prediction and for
both hardware and software prefetch, for example. In Figure 3
an annotation is used to show branch behavior. Annotations
were designed to be easy to use so as to encourage ad-hoc
investigation.

V. EXAMPLES

To show what can be done with instruction-level visu-
alization the execution of three programs will be analyzed,
bzip2, gcc, and milc, all as packaged with the SPECcpu2006
benchmarks. The execution will be on a four-way superscalar
dynamically scheduled processor implementing the SPARC
v8b instruction set.

The programs will be analyzed from the point of view of
code tuning and of processor design. In both cases we will
be searching for areas of execution that are underutilizing
resources. For code tuning the term resources refers to the
hardware as it is, for processor design it refers to the hardware
that could be designed.

Like many programs, each suffers moderately from branch
misprediction and cache misses, and so executes well below
the four instruction per cycle peak of the machine. Numbers
such as the branch prediction ratio or the L1 cache miss rate are
of little help in finding sources of inefficiency. The best modern
tools will either attribute such numbers to high-level code
items, such as source lines or variables [1], or plot timelines
[14]. This will show the user where inefficiencies are occurring
but will not provide enough information to clearly identify the
issue.

In the examples below execution inefficiencies are discov-
ered using PSE. The user starts in the overview plot, looking at
performance measures sampled over program execution, sorted
by time, value, or program location. The user then chooses
a segment with disappointing performance. The segment plot
should quickly tell the user the basic cause: branch mispredic-
tion, cache misses, or instruction latency. But by examining
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Fig. 5. A code sequence that ends with the misprediction of a late-resolving
branch. Examination of the code reveals opportunities to reduce the number
of instructions leading to the branch.

instruction execution details the user can determine whether
these are avoidable.

The issues in the examples that follow could certainly have
been discovered by other means, but with PSE these problems
can be discovered without specifically looking for them.

A. BZIP2 Branch Latency

Figure 5 shows a PED view for an area of bzip2, the
same code covered in Figure 1. Towards the bottom execution
ends in a squash. One thing that stands out here is that the
mispredicted branch is resolving late, in fact, later than it has
to. The yellow blocks denoting execution suggest a dependence
chain leading to the branch, and that can be verified in the
disassembly window, where the instruction cursor is in the
middle of the chain of instructions producing a result. Those
familiar with assembly language can note several ways the
dependence chain can be shortened. One way is to precompute
the sum g3 plus i1. The dependence highlighting lets us
quickly determine that g3 and i1 are not computed nearby
(no green markers in the visible instructions). The sub and
cmp instructions can be combined, and it may be possible to
hoist the lduw before the branch and use an offset.

All together these would save three cycles per mispredic-
tion. With PSE the late resolution stood out and dependence
highlighting made it easy to track the instructions involved. It
is much less likely that someone would discover this problem
by studying assembly language output of a compiler.

Using PSE annotations one can inspect performance history
of the branch predictor. The annotations for this branch, shown
below, show the 64 most recent outcomes of this branch on
the Ol (outcome local) line, and the 64 most recent outcomes
of any branch on the OG (outcome global) line. An x on the
line below indicates a misprediction. From the recent history
it appears that the predictor (which is gshare) could have done
better. If one wanted to investigate this branch further one
could search for all dynamic instances of this branch.

Fig. 6. Code suffering from full ROB stalls. These could be avoided by
better scheduling, which the compiler may have avoided due to caution over
aliasing.

t = 10,000,256 cyc tag = 34,858,455 --Branch/Info
Correct predict ratio (so far) 0.7687 for 52290 executions.
Ol: tntnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnt
Pl: x x xx x
OG: tnntntnntnnnttntntnntntnntntnnttnnntnntntnttnnntnntnntnntnntt
Pg: xx x xx x x x x x x x x x x

B. milc example

A different problem is revealed in the execution of milc in
Figure 6. Notice that fetch stalls regularly. This is because the
ROB is filling with instructions. A larger ROB would solve
the problem but would waste energy. There is a long latency
dependence path carried by fused multiply add instructions
(the wide yellow lines). The code appears to be the result of
unrolling a loop.

Dependence highlighting quickly reveals that the different
dependence chains are not dependent on each other. Had the
compiler overlapped the loop bodies the latency problems
would be avoided. Experienced readers may have identified the
prime culprit: the compiler was not sure if the loads and stores
overlapped. A solution would be to use a restrict qualifier (or
to use it properly).

One can easily verify that aliasing (address overlap) does
not occur in this portion because load and store addresses are
shown by PSE. The green “Ref” text indicates whether an
address is on the same cache line as the line accessed by the
cursor instruction, that’s true for the nearby store but not for
the loads. (Obviously, this is no proof that aliasing does not
occur.)

VI. RELATED WORK

PSE is not the first, nor is it the only instruction-level
visualization tool. Stolte et al, developed Rivet, an early visual-
ization system for dynamically scheduled processors [3]. This
tool presented visualizations that showed instruction positions
in core structures, such as the reorder buffer, over time. It did
not show the PED style diagrams used by PSE. Though this
might help in understanding how such processors worked it
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might make it difficult to grasp what was going on over time
since particular instruction events would be visible only for an
instant. Rivet does show views more like the PSE ROB plots,
but these do little to bring out instruction interactions.

Weaver, et al describe GPV (graphical pipeline viewer)
[4], a visualization tool that shows instruction execution in the
same PED style as PSE. A more refined visualization tool, ss-
vis, was added to the popular SimpleScalar simulator collection
[5]. PSE includes more features to help track interactions
between instructions, such as dependence highlighting, and
makes it easier to add annotations facilitating ad-hoc explo-
ration.

There has been relatively little work since on instruction-
level visualization. Instead, investigators have focused on vi-
sualization of parallel systems of one kind or another, and on
presenting information collected from event counters [1].

VII. CONCLUSION

This paper has described PSE, a program for presenting
instruction-level visualizations. Such tools are invaluable in
helping identify bottlenecks or other inefficiencies that might
go unnoticed with coarser views of execution. PSE encourages
exploration and presents data in a way which makes it easy to
discover a variety of problems.

ACKNOWLEDGMENTS

The authors would like to thank other contributors to PSE,
including Sheela Doshi, Lauren Hatchel, Kade Soprano, and
Nitin Srivastava.

REFERENCES
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent, “HPCTOOLKIT: Tools for performance
analysis of optimized parallel programs http://hpctoolkit.org,” Concurr.
Comput. : Pract. Exper., vol. 22, no. 6, pp. 685–701, Apr. 2010.
[Online]. Available: http://dx.doi.org/10.1002/cpe.v22:6

[2] R. Lachaize, B. Lepers, and V. Quéma, “Memprof: A memory profiler
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