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Abstract
Branch resolution time is a significant factor in the performance of wide-issue dynamically

scheduled superscalar machines. Some of that time is spent fetching, decoding, renaming, scheduling,
and moving operands of a correct-path instruction after a branch misprediction.

An alternate organization is described in which a trace-cache like front end provides identi-
cal streams of partially renamed instructions to a processor having two execution cores. A main
core completes the decode and renaming and passes instructions to conventional schedulers for dy-
namically scheduled execution. A fast core immediately executes at least some of the instructions,
providing early branch resolution. Instructions not handled by the fast core are completed in the
main core. The fast core can execute load instructions that hit the cache and one-cycle integer
instructions, subject to restrictions such as register value availability and the availability of cached
instruction information.

The fast core provides low-latency branch resolution and to some measure load prefetch, while
the main core can manage a large window. The performance of such a system running SPEC-
cpu2000 integer and floating-point programs was simulated. Despite limitations on instructions,
register availability, and disambiguation, the system was able to resolve a significant number of
branches, reducing the pipeline portion of resolution time by half and realizing as high as a 10%
average speedup for very deep pipelines.

1. Introduction

One cost a dynamically scheduled system pays to achieve out-of-order execution of instructions
from a large window (pool of un-executed instructions) is the number of stages an instruction must
pass through from fetch to execution. So long as branches (and other control transfers) are correctly
predicted this “cost” does not impact performance. On a misprediction however the flow of new
instructions into the window stops until the first correct-path instruction traverses the stages, the
amount of time is called the misprediction penalty.

In some dynamically scheduled processors the misprediction penalty is relatively short, in
the MIPS R10000 it is about five cycles [18], in the PA-8000 it is about six cycles [5], and in
the Alpha 21264 it is about seven cycles [10]. Assuming recent versions of these processors have
the same misprediction penalties then larger penalties are correlated with higher clock frequencies
and performance based on the SPECcpu2000 disclosures (The MIPS R14k at 500 MHz rates 500
SPECint2000, PA-8700+ at 875 MHz rates 875 SPECint2000, and Alpha 21264C at 1250 MHz
rates 928 SPECint2000).

The move to higher clock frequencies and the need for larger instruction windows to tolerate
load latency will both tend to increase the penalty. Recent gains in processor performance have
come primarily through increases in clock frequency and many believe this trend has not yet
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run its course. With larger instruction windows more time is needed for associative lookups in
the processors’ schedulers, increasing the number of stages in the misprediction penalty. Larger
windows also increase the time needed for movement of data between distant functional units. The
impact of these trends can be seen in the Pentium 4 which has both a high clock frequency (over 3
GHz) and a large window, 126 in-flight instructions [8]. For this it pays the price of a misprediction
penalty of twenty cycles (in part due to the use of a trace cache).

Though deeper pipelining has improved performance, the misprediction penalty is becoming
a larger barrier to improved performance. An alternative processor organization, the fast-core

processor, (FCP) is described here which reduces the misprediction penalty by providing a much
shorter path to execution for certain instructions.

The fetched instruction stream is passed both to the conventional decode pipeline in the main

core, and to a fast core which may execute the instructions much sooner. The fast core can resolve
branches and so initiate recovery much sooner than the long path, reducing the misprediction
penalty.

The fast core is made fast by limiting the kinds of instructions that can execute there, imposing
a fixed functional unit assignment, relying on cached dependency information, and limiting register
forwarding. These restrictions limit the number of instructions that can execute in the fast core,
to about 30% in the simulated systems. In addition to initiating branch misprediction recovery,
results from the fast core are forwarded to the main core after spending a fixed number of cycles
in the fast core.

Unlike other schemes for early resolution of branches [1,4,7,12,19], the FCP does not fork
instruction fetch ahead to some future point. Instruction fetch is always on the predicted path,
there is no duplication of fetch resources.

Some schemes for reducing branch penalty fetch, and perhaps execute, both sides of a branch,
duplicating at least some resources for the two paths [15]. As stated above, FCP fetches only on
the predicted path and avoiding wasted.

The remainder of this paper is organized as follows. Details on the fast core and front end
are presented in the next section. The simulator and benchmarks are described in Section 4.
Experiments are described and discussed in Section 5. Related work is in Section 6 and finally
conclusions appear in Section 7.

2. Fast-Core Processor

2.1. Overview

Figure 1 shows the overall organization of the FCP. A trace-cache like front end provides an
identical stream of partially renamed instructions to two cores, the main core and the fast core.
The main core prepares instructions for conventional dynamically scheduled execution while the
fast core is designed to execute instructions as soon as possible, especially those leading up to a
branch.

Branches that resolve in the fast core can initiate recovery, yielding a reduction in the branch
penalty. Instructions exit the fast core after a fixed amount of time, called the sojourn, at which
time any values they produced are forwarded to the main core, reducing the number of instructions
that must execute there. In the simulated systems the sojourn is chosen so the latest time an
instruction can execute in the fast core is one cycle before its earliest execution in the main core.

2.2. The Fast Core

The fast core is essentially a simple dynamically scheduled processor. It consists of two or
three register files, a set of integer functional units, and possibly a load unit. (The mix was chosen
to resolve control transfers.) It executes instructions that have been partially renamed; the partial
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Figure 1. A fast core processor showing details of the fast core.

renaming produces an index for each source and destination register, see the section on renaming
below. One register file, the index-addressed sojourn register file (SRF) holds results of instructions
as they complete in the fast core. The other, the register-addressed exit register file (ERF) is written
as instructions exit the fast core. The SRF is always properly updated, but the ERF is not and so
some instructions may not be able to execute in the fast core. The fast core may also use a commit

register file, updated when instructions in the main core commit. (Commit, also called retire, is
the last step in the execution of an instruction; instructions are commit in program order to enable
recovery.)

During their first cycle in the fast core instructions that had been renamed take operands from
either the SRF or ERF; the ERF value is used if the operand index is out of range (indicating the
writer has left the fast core), otherwise the SRF value is used. Instructions that were not renamed
do not execute in the fast core. It is possible to retrieve an invalid value from the ERF, that
indicates either that the writer has not completed or that it did complete in the main core but the
ERF was not updated. An instruction reading such an operand also does not execute in the fast
core.

During its second cycle in the fast core an instruction is copied to a reservation station at a
functional unit and if the unit is idle it can start executing at that cycle. For maximum performance,
the choice of functional unit is based solely on the instruction’s position in the group of instructions
provided by the front end.

When instructions complete they write the SRF; when they exit the fast core the result is
copied to the ERF. The result, if available, is also written to the main core’s physical register file
using a mapping provided by the main core. The main core’s scheduler can detect or compute
which fast core instructions have or will execute and so can schedule any dependent instructions
that do not execute in the fast core.
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At its simplest the ERF is updated only by instructions exiting the fast core. This limits fast-
core instructions to operands generated in the fast core, a significant limitation. Two variations
were used to update the ERF using values from the main core, Update and Recover.

In the Update variation instructions update the ERF one cycle after they complete in the main
core; the update completes if an expanded index stored in the ERF matches that of the instruction.
The values are also bypassed, with the one-cycle delay, to waiting fast-core instructions.

The Update variation is costly because it requires write ports and bypass paths for each main
core instruction that can simultaneously write back. The base configuration does not use the
Update variation.

The Recover variation can update the ERF with a full set of register values when mispredicted
branches (and other events requiring recovery) are resolved in the main core. In the Recover
variation a commit register file is maintained, written by instructions as they commit (from the
main core). The commit register file is copied to the ERF on a misprediction recovery if all
instructions before the mispredicted branch commit before correct-path instructions following the
branch reaches the main core. Otherwise, the ERF remains invalid. This recovery method is quite
effective, providing nearly the performance of perfect recovery. (Note that since the ERF is updated
as instructions exit the fast core a reorder buffer flush starting in the fast core does not affect the
ERF.) Though Recover is effective at recovering registers on a misprediction it does not perform
nearly as well as the Update variation at other times.

The Recover variation requires no extra ERF ports and has no direct connections to the fast
core functional units, and so it is less expensive than Update and has little performance impact. It
is used in most of the simulated configurations.

To simplify things and to limit instructions to those leading to a branch the fast core includes
only integer ALUs and in some variations a connection to the load/store unit. As simulated, the
fast core cannot execute floating-point instructions, any instruction requiring more than one cycle
(except loads), any instruction updating more than one register (not including the condition codes),
and store instructions. The result of a load instruction is only used if it hits the level-1 cache or
its result is bypassed from a store in the main core, otherwise dependent instructions must execute
in the main core. There is no way to bypass a value from a store in the fast core to a load; a
dependence predictor prevents loads from executing ahead of unresolved stores (which includes all
stores in the fast core). Instructions that were not retrieved from a BTC hit also cannot execute.
(This rule could be relaxed for zero-source operand instructions.) Instructions which can execute
in the fast core are called candidates.

2.3. Renaming

The FCP exploits a two-step, cached-dependency, register renaming scheme. Though such a
renaming scheme is not necessary for FCP it simplifies the design and helps the realizability of the
eight-way and wider systems for which FCP is targeted. The first step, index generation, maps
register names to indices, essentially a serial number of the instruction writing the register. The
fast core uses these indices directly while the main core, in a second step, maps them to physical
register numbers. Critical paths in the two-step renaming hardware are short and are independent
of the number of dependencies present.

The front end maps instructions in units called block groups; in the systems simulated these
span two basic blocks. Destination registers (in effect instructions) are assigned indices sequentially.
Cached information on block groups is used to map source registers, this is retrieved from a PC-
addressed block tree cache (BTC). A BTC entry stores the register number and a distance for each
source operand of each instruction in the block group. The distance identifies which instruction in
the block group (if any) wrote the corresponding source register. A zero means the writer precedes
the block group, a distance of one indicates that the immediately preceding instruction wrote the
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value, etc. If the distance is non-zero it is used to generate the index, otherwise the index is
retrieved from a register-number-addressed register to index map (RIM). A valid index from the
RIM identifies the instruction that wrote the register, while an invalid index indicates that either
the instruction is beyond the fast core’s window or precedes the current run of BTC cache hits,
whichever is shorter.

The register index map is updated using the block group’s live-out registers (registers written
but not overwritten); a RIM entry that is not written may be invalidated. An entry is invalidated if
its index is in the range of indices to be assigned in the next cycle. Note that this requires an adder
for each entry in the RIM, either to generate the new index (instruction position plus a base index)
or determine if the old one needs to be invalidated. With a limit of 56 instructions in the fast core,
only six-bit adders are needed, much less costly than a 64-bit ALU using carry-look-ahead logic.

The new RIM computed in one cycle is reused in the next cycle and is also saved for mispre-
diction recovery.

The main core can use the indices to map source registers using two tables, a register-addressed
register map (RMAP) (a conventional register map) and an index-addressed index map (IMAP).
If the index for a source register is valid the IMAP is used otherwise the RMAP is used. The
RMAP is updated one cycle earlier using the destination register index and a free physical register.
If indices for source operands are not available then the processor falls back to a conventional
register mapping scheme and passes dependency information to the front end for caching. On the
simulated systems this mapping proceeded at half speed (e.g., four instructions per cycle in an
eight-way system).

2.4. Front End

FCP requires for its operation cached instruction dependency information. There are many
ways of maintaining this, the chosen method is perhaps a hybrid between a branch address cache

[17] and a trace cache [9]. A branch address cache is part of a multiple branch predictor; its
predictions are fed to a multiported cache for instruction retrieval. In a trace cache instructions
are retrieved from the trace cache itself, avoiding the extra step at the cost of storage for the trace
cache.

In the system chosen here instruction information, though not complete instructions, is stored
in the branch address cache, renamed a block tree cache (BTC). The BTC is smaller than a trace
cache, both because unneeded instruction information is omitted and because information in interior
tree nodes is shared by all paths through them (there would be a separate trace cache entry for
each). Nevertheless a conventional trace cache (one predicted path per entry) could also be used.

Briefly, the BTC works as follows: Starting with a program counter (PC), an entry in the PC-
addressed block tree cache is retrieved; it provides information on the tree of blocks reachable from
the PC. That information includes the length of each block, the type of control-transfer instruction
(CTI) at its end, and the CTI’s target (if not indirect). A branch predictor, using information in
the BTC and separate pattern history tables (PHTs) (indexed using information computed in the
previous cycle) is used to predict a path through the tree of blocks. The path provides instruction
cache lookup addresses, the PC for the next BTC access, and instruction information. For the
systems simulated here a YAGS predictor is used. The systems simulated predict the target of
an indirect branch in the next cycle (introducing a bubble) using a global-history-register–indexed
table and predict returns using a return address stack. For more information see [3,6,11,17].

In the base systems simulated a BTC entry holds three nodes and is limited to 16 instructions
(distributed any way), with at most 12 instructions from root to leaf, thus limiting rename to 12
instructions. Other configurations were simulated.
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Table 1. Base Configuration Parameters
Base Parameters Value

Decode Width 8-way Superscalar
Reorder Buffer 256 instructions

Front End Rename 12 insn per cycle (BTC hit).
Main Core Rename 4 insn per cycle (on a BTC miss).
ID to EX 8 cycles (1 cycle for Ideal).

BTC 213 entries, height 2, 16 insn per entry.
Global Branch History 16 branches
Return-Address Stack 8 entries
Integer Units 4 × 2 clusters
Floating-Point Units 4

L1 ICache 256-B Line
L1 ICache 4-way, 256 kiB
L1 DCache 4-way, 64 kiB
L1 DCache Hit Latency 1 cycle
L1 ICache Ports 4.
L2 DCache 8-way,64-B Line, 256 kiB
L2 Hit Latency 11 cycles
L2 DCache Miss Latency ≈ 100 cycles

Memory Units 4
Load/Store Queue 32 entries

Miscellaneous Configurations Value

4-Way BTC 213 entries, height 2, 16 insn per entry.
4-Way Front End Rename 12 insn per cycle (BTC hit).
16-Way BTC 213 entries, height 3, 32 insn per entry.
16-Way Front End Rename 18 insn per cycle (BTC hit).

3. Evaluation

3.1. Simulator

The systems were analyzed using RSIM [13], a detailed microarchitecture simulator. Modifi-
cations were made to simulate fast core processor and other unrelated modifications were made;
that is, they impact the reported performance of systems.

RSIM is a microarchitecture simulator which simulates a dynamically scheduled superscalar
processor and memory system. The processor implements a subset of the SPARC V8 ISA [16].
Benchmark programs are compiled exactly as they are for a real system. Linking is identical except
for the use of static libraries (though still the system’s libraries, not specially prepared versions)
and a special startup file. System calls are not simulated.

Dynamic execution is aggressive: The register map used for renaming is checkpointed when
branches or jumps are decoded so that recovery can start when mispredicted instructions resolve.
Exception recovery is initiated when the faulting instruction is ready to commit.

3.2. Benchmark Programs

The simulated programs come from the SPECcpu2000 suites, though using reduced input sizes
to reduce simulation time, and other sources. The seven programs used are bzip2, gcc (cc1), gzip,
mcf, perl, TEX, and mesa. Benchmark bzip2 is used to compress a copy of the GNU General
Public License; gcc is used to compile (with O3 optimization) the integrate.c program in the
gcc distribution, gzip is used to compress text, mcf uses the SPEC2000 test input, perl runs a
script that analyzes a Web server log, TEX is run on Chapter 17 of The TeXbook, mesa uses the
SPECcpu2000 reference input but at reduced size and frame rate. Benchmarks gzip, mcf, and
mesa are compiled using the SPEC CPU2000 makefiles, using code from that suite. The code for
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the other benchmarks was obtained from their standard distributions, compiled with optimization.
Optimization was targeted to an UltraSPARC II processor, so scheduling would not perfectly match
the wider-issue systems simulated here.

3.3. Configurations

The base system on which FCP is applied is a future-generation 8-way clustered dynamically
scheduled machine using the front-end described above. Eight-way fetch/decode was chosen because
most current machines are four way. The multiple branch predictor in the advanced front end
provides sufficient fetch bandwidth and also the dependency information needed to rename eight
instructions per cycle.

High clock frequencies make it difficult to bypass results between physically distant functional
units and large windows make it difficult to quickly schedule instructions. To reduce these effects
the integer functional units are clustered into two groups of four, and the floating-point units are
in their own cluster. Each cluster has an instruction queue which can issue only to functional units
in the cluster. Instructions are assigned to clusters in the decode pipeline based on the functional
unit needed, and when there is more than one cluster, on availability of operands and issue queue
space. Instructions are removed from issue queues when they are complete and there is no chance
of re-execution (as there is with loads executing ahead of unresolved stores). There is a one-cycle
delay when bypassing results between clusters. (The integer functional units in the Alpha 21264
are also clustered, though with a different issue queue (arbiter) organization [10].)

As described above, the earliest execution opportunity for an instruction in the simulated sys-
tem is eight cycles after decode. This number is longer than any of the dynamically scheduled
RISC processors, but shorter than the 11 cycles in the Pentium 4 (rename to execute, see [8]). The
number seems like a reasonable extrapolation of the delays for the RISC processors to future imple-
mentations and is conservative when applied to deeply pipelined processors such as the Pentium 4.
(The Pentium 4 translates its CISC instructions into micro-ops which are stored in a trace cache.
The 11-cycle pipeline length does not include the IA-32 to micro-op translation stages.)

The number of integer functional units in the fast core of the FCP systems is the same as the
cluster size, usually four. Issue queue size always refers to the size in each cluster, not the total for
the processor.

A full list parameters for the simulated configurations appear in Table 1.

4. Experiments

4.1. Base Set

The performance benefit of a fast core is evaluated by comparing such systems to conventional
systems using the same total number of ALUs, for roughly equal-cost systems and by comparing
it to conventional systems using fewer ALUs, showing the potential to boost performance.

The base system to which FCP is compared, C8, has two 4-ALU clusters, for a total of 8
ALUs. That is compared to FCP systems also having 8 ALUs, (one cluster of 4 in the main core
and four in the fast core), and FCP systems having 12 ALUs. The 8- and 12-ALU FCP systems
with a memory unit are labeled C4F4MR and C8F4MR, respectively, and those without are labeled
C4F4R and C8F4R, respectively. A system with the Update variation is also shown, C8F4MUR.
(The “R” indicates the Recover variation and a “U” indicates the Update variation.) Comparisons
were done for systems having 16- and 64-entry issue queues in each cluster. (The fast core has the
equivalent of 14-entry issue queues.) A conventional system in which instructions execute one cycle
after ID (versus 8 for the conventional system) is labeled C-Idl.

The CPI for each system is plotted in Figure 2, the percent speedup over C8 appears at the
top of the plot. The fast core systems are not effective when their 4 fast-core ALUs are “taken”
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Figure 2. Branch resolution times (a) and performance (b) of conventional systems, C8, C12, an
ideal system, C8-Idl, and fast-core processors in the base configuration with two issue queue sizes.
(a) shows CTI (branches and jumps) resolution time (ID to EX), the pies show the fraction of pipeline
delay avoided.
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Figure 3. Branch resolution times (a) and performance (b) of a conventional system, C8 and and a
fast-core processor, C8F4MR, on systems with varying pipeline delays from decode up to the earliest
execution opportunity, ID to SC.

from the main core, C4F4R and C4F4MR show little or now speedup. However, for systems in
which the main core “keeps” its eight ALUs, there is a 5% speedup without a memory unit and
7% with. The costly Update variation adds another point in speedup. In contrast, a conventional
system with 12 ALUs enjoys only a 1% speedup (or nearly 3% speedup omitting one benchmark).
The speedups on individual benchmarks vary, with three 10% or higher. The ideal system yields a
speedup of 15%.

As the data showed, for roughly equal-cost 16-entry issue queue systems FCP yields little
benefit, but if additional ALUs are to be added they are much more effective in a fast core than
the main core. The situation is different with 64-entry issue queues. The equal-cost systems yield
higher, though still modest performance improvement, while the higher cost systems, have a smaller
margin over the lower ones.
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FCP is designed to improve performance by reducing the impact of pipeline delay on the
resolution of branches. In fact, roughly half of those cycles are eliminated, as shown by the pies at
the top of Figure 2(b). The bars show the average resolution time for mispredicted CTI’s, of which
the pipeline delay is a small part.

Much of the improvement in pipeline delay on several benchmarks is due to procedure returns,
despite the presence of a return-address stack. One reason is that gcc and other programs have
subroutines that return to the callers, caller, confusing the return address stack. Branches also
show some improvement.

There are several reasons why only about half the achievable reduction in pipeline delay is
achieved. The primary culprit appears to be branch conditions depending on loads. Many loads
do not execute because of the presence of stores in the fast core (it would be too time-consuming
to insert them into the load /store queue).

Data from systems in which the pipeline depth was varied is plotted in Figure 3. The delay
from decode to just before the earliest execution was varied from 4 to 24 cycles (the base is 8).
Since instructions occupy reorder buffer slots staring at the first decode stage, the reorder buffer size
was adjusted so all systems could hold the same number of instructions in an executable state. As
expected, an FCP yields higher speedups with deeper pipelines, up to at 10% average improvement.

Due to several factors, the fast core will not be able to execute every instruction. In fact,
the fast core is executing about one third of committed instructions, as shown by the segments
in Figure 2(a);. The segments show how efficiently instructions are being executed by tallying
the instructions that pass through decode slots, or the reason for their absence. The segments
marked EM show instructions that will be executed in the main core; for the base processor this
is the ideal execution time (that is, all other segments represent some kind of degradation). The
segments marked ES show non-memory instructions executed in the fast core and MS show memory
instructions executed in the fast core. (In FCP’s, the three types of segments show the ideal
execution time.)

The segments labeled MP (misprediction) show slots occupied by instructions that will be
squashed. By resolving control transfers early FCP reduces the number of squashed instructions,
this can be seen in the figure. As one would expect from the branch resolution times, a FCP still
squashes a substantial number of instructions. Some of these are due to limits of the fast core,
for example, the inability to bypass stores, but many branches wait on missing loads to resolve,
something a FCP cannot help. (Loads are executed earlier, but so are most branches, so there is
no net advantage.)

The instructions executed in the fast core do not need to be placed in issue queues in the main
core, reducing the number of stalls due to full issue queues in systems retaining two main core
clusters. This effect can be seen by examining the IQ segments, which show stalls due to a full
issue queue. (Only the main core issue can fill, there are never enough instructions in the fast core
to fill its issue queues.) The effect however is slight because the fast core only avoids instructions
that would quickly leave the issue queues anyway.

A much larger effect is the increase in issue queue stalls when the main core has only one
cluster (and issue queue). This effect dominates performance with 16-entry queues, but with 64-
entry queues the issue queue stalls are replacing reorder buffer fills, shown by St.

Other performance limiters are unused decode slots (due to short basic block size or BTC
misses) shown by Un (unused); reorder buffer fills (mostly due to cache misses) shown by St (stall);
and miscellaneous flushes (exceptions, serialized instructions) shown by etc.

4.2. Fast Core Variations

The fast core is designed to be fast and inexpensive, requiring as few functional units and as
simple a register recovery scheme as possible. The performance of some variations of differing costs
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Figure 4. Branch resolution times (a) and performance (b) of conventional systems, C8, C12, an ideal
system C8-Idl, and several fast-core variations on two issue queue sizes.
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Figure 5. Branch resolution times (a) and performance (b) of conventional systems, C8, C12, an ideal
system C8-Idl, and two fast-core variations on 4-, 8-, and 16-way processors (DW) using two issue
queue sizes.

are shown in Figure 4. The first three FCP systems, C8F1MR, C8F2MR, and C8F8MR have 1, 2,
and 8 ALUs in the fast core, respectively. The 4-ALU version, C8F4MR is also plotted. There are
two-point improvements in speedup moving from 1 to 2 to 4 ALUs, but no improvement from 4 to
8. System C8F4 cannot get register values produced in the main core, it barely yields any speedup
at all, a memory, C8F4M, unit doesn’t help. Comparing C8F4R to C8F4MR shows the benefit
of the fast core memory unit, two speedup points. Allowing main-core instructions to send results
to the fast core, C8F4MUR, adds another point of speedup, at the cost of a much larger bypass
network in the fast core.

Figure 5 shows the performance of FCP on 4-, 8-, and 16-way superscalar systems. These
systems all have depth-3 BTCs, something the 16-way system needs. Programs running on wider
systems should have lower execution time but roughly the same number of branch mispredictions,
and so the benefit of reducing the time needed to resolve these branches should increase. That
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Figure 6. Branch resolution times (a) and performance (b) of a conventional system, C8 and a fast-
core system, C8F4MR, on systems with different block tree cache sizes. BTC Lg is the log2 of the
number of entries in the block tree cache.

effect is seen from 4- to 8-way systems, but not to 16-way systems, perhaps because they are only
slightly faster.

The fast core relies on cached dependency information in the BTC. Experiments in which the
BTC size was varied to determine sensitivity to BTC size, the data are plotted in Figure 6. With
a small BTC, 128 entries, the fast core can find few instructions to execute and so there is almost
no improvement. Large sizes yield better performance.

5. Related Work

A FCP resolves branches early by executing them in a streamlined processing element. There
has been much current interest in both early resolution of branches and partitioning processors into
smaller and faster sections.

5.1. Early Branch Resolution

Techniques for early branch resolution rely on either running or jumping ahead of the main
fetch stream to resolve, or at least speculate, a branch direction. The direction is communicated
to the main fetch stream in time.

Farcy, Teman, Espasa, and Juan identify branches that are frequently mispredicted, as well
as instructions producing its condition [7]. When these instructions are fetched they are executed
using predicted values using the processor’s existing functional units, and their results (other than
the branch outcome) are not used by instructions in the main stream.

They exploit, in part, data prediction to reduce branch resolution time. This has the advantage
of greater reduction in resolution time but also makes it more difficult to use results for the main
stream. In contrast, FCP executes instructions without predicted values (except for performing
loads ahead of unresolved stores), so results can be used by the main stream. Farcy’s scheme
requires advance identification of branches, something the FCP does not need to do (other than a
BTC hit). The results reported by Farcy do not include execution times (since they consider only
certain types of branches).

Annavaram, Patel, and Davidson, describe a system in which the front end pre-computes load
addresses to be used for prefetching [1]. The loads and instructions generating their addresses are
identified and later executed by a pre-computation engine. The fetch unit feeds the pre-computation
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engine, taking advantage of the ability of fetch to get ahead of the main processor. No attempt is
made to merge with the main program stream and early branch resolution is not investigated.

The techniques above rely on the main instruction stream being fetched. Others have looked
at jumping ahead to prefetch loads and resolve branches. A set of instructions leading to a load, a
slice is identified and fetched based on some trigger. Methods of finding the slice vary; examples
of such schemes are in [4,12,19].

The difficulty in all of the schemes above is in good identification of code for advance execution.
The only value is for prefetching or anticipating branches, so executing code which does not generate
useful prefetches or predictions only consumes resources, potentially slowing down other operations.
In contrast, the results of FCP’s execution are used, potentially lowering the hardware requirements
for the main core. There is no requirement for identifying code, eliminating such hardware or
software mechanisms.

5.2. Fetching Both Branch Directions

Several investigators have looked at fetching both directions of a predicted branch, the schemes
differ in how far one goes down the predicted wrong path.

In a scheme described by Pierce and Mudge fetch down the wrong path only goes as far as the
instruction cache [14]. In constrast, Uht, Sindagi, and Hall [15] fetch, decode, and execute both
branch directions, discarding the direction that turns out to be incorrect. Klauser, Paithankar, and
Grunwald refine this eager execution using branch prediction confidence estimation []. Between the
two extremes, Aragon, Gonzales, Gonzales, and Smith fetch, decode, and sometimes schedule, but
do not execute predicted wrong path instructions [2].

Each of these schemes makes inefficient use of resources by having some parts of the processor
process instructions that are guaranteed to be on the wrong path. Another limitation of these
schemes is the number of branches they can speculate on. With branch resolution easily taking
over 10 cycles on deeply pipelined systems, with 8-way fetch, and with branches occurring every
five or six instructions, any system that goes down both branch directions would have to fan out in
way too many directions to cover the resolution time. In contrast FCP resolves branches as early
as possible.

6. Conclusions

A FCP design provides early resolution of branches while allowing for a large instruction
window in the main core. The technique yields from 7 to 10% performance improvement, not fully
realizing the 15% improvement of an ideal system. Perhaps the biggest impediment to performance
is the execution of load instructions. Something closer to the full potential may be realized if a
workable scheme could be found for bypassing stores to loads in the fast core without slowing the
fast core.
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