
Neighborhood Prefetching on Multiprocessors Using Instruction History∗

David M. Koppelman

Department of Electrical & Computer Engineering, Louisiana State University
koppel@ee.lsu.edu

Abstract
A multiprocessor prefetch scheme is described in which

a miss is followed by a prefetch of a group of lines, a
neighborhood, surrounding the demand-fetched line. The
neighborhood is based on the data address and the past be-
havior of the instruction that missed the cache. A neigh-
borhood for an instruction is constructed by recording the
offsets of addresses that subsequently miss. This neigh-
borhood prefetching can exploit sequential access as can
sequential prefetch and can to some extent exploit stride
access, as can stride prefetch. Unlike stride and sequential
prefetch it can support irregular access patterns. Neigh-
borhood prefetching was compared to adaptive sequential
prefetching using execution-driven simulation. Results
show more useful prefetches and lower execution time for
neighborhood prefetching for six of eight SPLASH-2 bench-
marks. On eight SPLASH-2 benchmarks the average nor-
malized execution time is less than 0.9, for three bench-
marks, less than 0.8.

1. Introduction

One solution to the growing disparity between CPU
and memory speed is to prefetch, move lines into a
cache that might soon be accessed. In hardware prefetch
schemes added hardware determines which lines to pre-
fetch and then moves them to the cache (or to a special
prefetch buffer). If a load or store instruction subsequently
accesses such lines, and they are still present, a cache miss
is avoided. By hiding substantial miss delays hardware
prefetching has vast potential to improve the performance
of systems running code that has not been specially pre-
pared. This is especially true for multiprocessors where
miss delays can be hundreds of cycles or more.

Existing schemes do a good job of prefetching lines that
will be accessed soon. In many schemes the selected line is
the one that would be accessed if an observed sequential or
stride memory reference pattern would continue [5,6,26].
However such schemes have no mechanism for detecting
the end of a sequence, so some prefetched lines are ac-
cessed much later, if at all. The problem is particularly
bad when the address reference stream consists of mostly
short sequences of sequential or stride accesses.

The prefetching of these unused (or not soon used) lines
∗Appears in the proceedings of PACT 2000 [18].

can slow other activity by consuming resources such as
busses and cache ports. The unused lines may replace
other lines that will be accessed, and, in multiprocessors,
may contribute to false sharing.

A prefetch scheme is described here in which the lines
prefetched more closely match the lines that are actually
used. On a miss prefetches are issued for a set of lines
surrounding the line that was missed, the neighborhood.
The choice of lines to prefetch is based on the identity
of the instruction that missed and the effective address it
used.

This neighborhood prefetch provides the benefits of se-
quential prefetching, speculative exclusive access, and to a
limited extent, stride prefetching. Execution-driven simu-
lations were performed of multiprocessors using neighbor-
hood prefetch, a sequential prefetch scheme, and no pre-
fetching, running programs from the SPLASH-2 bench-
mark suite [29]. The simulations show that this is not
merely a sequential prefetch mechanism with an on-off
switch but that prefetches are issued for non-contiguous
lines. The history information that specifies prefetch can-
didates also detects contended areas of memory, avoiding
harmful prefetches.

The remainder of this paper is organized as follows.
Neighborhood and other prefetch schemes are described
in Section 2. Prefetch implementations are described in
detail in Section 3. Simulator details appear in Section 4
and Section 5. Simulation results appear in Section 6.
Related work is described in Section 7 and conclusions
follow in Section 8.

2. Prefetching

2.1. Prefetch Mechanisms

Hardware and software prefetch mechanisms specula-
tively bring data to a processor that is likely to be ac-
cessed soon. Hardware prefetch is typically initiated after
a demand fetch (the execution of an ordinary CPU load or
store instruction); in response prefetch requests are issued
if suitable prefetch addresses are found.

The data returned by prefetch requests may be placed
in a special prefetch buffer or in an existing cache. The
systems simulated here use the existing cache, this simpli-
fies the hardware and makes more efficient use of memory.

Prefetch mechanisms base their decisions on memory

http://www.ee.lsu.edu/koppel/koppel.html
http://www.ee.lsu.edu/
http://www.ee.lsu.edu/
http://www.lsu.edu/
http://www.lsu.edu/
mailto:koppel@ee.lsu.edu

Level 1
Cache

Level 2 Cache

Cache Controller Prefetch
Controller

Recent
Miss
Tbl (RMT)

Neighbr. History
Table (NHT)

Instr
ID

Data
Addr

NHT Entry

Prefetch
Addr

Figure 1. Cache and neighborhood prefetch hardware. The
RMT collects the offset of addresses from a nearby initiator
address that recently missed the level-two cache. The NHT,
indexed by instruction id, holds the offset data collected by
the RMT. When an NHT entry for a missing instruction is
found the offsets are used to construct prefetch addresses.

reference streams, they differ in which stream they ob-
serve: level-one, level-two, etc. The most aggressive ob-
serve all accesses to the level-one cache, the added hard-
ware can possibly add to hit latency. Prefetch mechanisms
that observe the level-two stream (misses to the level-one
cache) may leave the level-one cache unchanged, and so do
not add to level-one hit latency. The systems simulated
here (with a minor exception) observe the level-two miss
stream, minimizing the impact on hit latency and relaxing
speed constraints on the prefetch hardware.

2.2. Address Determination

Two common prefetch methods are sequential and
stride. Sequential prefetch is designed to exploit reference
(memory address) sequences of the form a · · · a + 1 · · · a +
2 · · ·. The prefetch mechanism may react to the use of an
address a by fetching just a + 1 or, for systems where the
fetch latency is high, by fetching a + 1, a + 2, . . . , a + d,
where d > 0 is the prefetch degree. Such sequences are of
course quite common; generated, for example, by sequen-
tial access to an array.

In adaptive sequential prefetch [6] (ASP) the degree
is adjusted based on the success of past prefetches. The
hardware keeps track of the number of prefetched lines
that have been used. After some number of prefetches (15
was used in [6]) the number of used prefetches is checked
and the degree adjusted.

Stride prefetch is designed to exploit reference se-
quences of the form a · · · a+s, · · · a+2s · · ·, where s is the
stride of the prefetch. Such sequences might be generated
by accessing an array at some stride (every s’th element)
or by sequential access to an array of large elements, with
only a part of each element being accessed.

Neighborhood prefetch (NP) exploits sequences of the
form a · · · a+o1 · · · a+o2 · · · . . . · · · a+od, where o1, o2, . . . od

are small-magnitude integers individually called offsets
and collectively called a neighborhood. Such sequences

might be generated when accessing a few parts of a large
structure. Consider:

for(i=0; i<1000; i++)
{ a = str[i].member_a; s = str[i].member_s;
z = str[i].member_z; }

Three members of a structure are read; a cache miss
on an access to the first, member_a, might trigger a
prefetch to the other two members. Using the no-
tation above, if a is the address of the first member
read, &str[i].member_a, then o1 = &str[i].member_s
- &str[i].member_a and o2 =&str[i].member_z -
&str[i].member_a. If the maximum offset were large
enough then o3 =&str[i+1].member_a -
&str[i].member_a, and so data for the next iteration
could be prefetched.

Like sequential and stride prefetching, neighborhood
prefetching can exploit sequential and stride access pat-
terns. Let {o1, o2, . . . , od} specify the offsets in a neighbor-
hood. Neighborhood {1, 2, . . .} describes sequential access
and {s, 2s, . . .} describes stride access.

In neighborhood prefetching a neighborhood is found
for load and store instructions that miss the cache, iden-
tified by their program counter value. Details appear in
the next section. Ignoring finite neighborhood size, the
patterns exploitable by neighborhood prefetch are a su-
perset of stride prefetch, which are in turn a superset of
sequential prefetch. (Because prefetch mechanisms do not
precisely detect these access patterns, the relative effec-
tiveness might be different than this ordering.)

An advantage of sequential and adaptive sequential
prefetch is that they can issue prefetches for effective ad-
dresses and instructions which have not been seen before.
In contrast, stride and neighborhood prefetch must first
detect and store the access pattern.

Dahlgren and Stenström compared stride prefetch and
sequential prefetch on multiprocessors under conditions
similar to the ones considered here [7]. They find that se-
quential prefetch is at least as good as stride prefetch, indi-
cating that the benefit of detecting stride patterns is out-
weighed by learning time and inability to prefetch small
sequential sequences. Learning time can potentially hob-
ble neighborhood prefetch too, the results of this study
indicate that its effectiveness overcomes missed prefetch
opportunities due to learning time.

3. NP Implementation

A multiprocessor implementation of neighborhood pre-
fetching will be described. (A multiprocessor is a cached
shared-memory parallel machine. For background see
[4,21,27].) Neighborhood prefetching can also be applied
to serial systems, though the impact on execution time
would be smaller due to lower miss latency. In addition to
a greater potential for performance improvement, a mul-
tiprocessor implementation is more interesting since the

Table 1. Neighborhood History Table Fields

Name,
Bits

Description

Instr.
tag,
2

Part of the instruction address; used to check for
an NHT lookup miss.

Match
count,
3

Number of times tag matched. (Initialized to 1,
incremented on hit, decremented on miss, satu-
rates at zero and 4.) An entry is not replaced
when field is positive.

Neighb.,
160

Field divided into subfields, called offset counts,
for each possible offset (based on neighborhood
size) for both loads and stores. The count is re-
lated to the number of times that an effective ad-
dress was encountered at the corresponding off-
set plus adjustments for hits to, evictions of, and
invalidations of prefetched lines. In the base con-
figuration, the subfield size is five bits and the
neighborhood size is 16 offsets, including zero.

In
Neighborhood?

Stale?

Compute
Offset

Addr. Ins. ID Time Offsets

Update
Contr.

Zeros

Initialize

Replace
Data

Data Address

Instruction ID

Time

Update

Hit

RMT Entry

Figure 2. Recent miss table updating. When a level-two
miss occurs, the data address is compared to each entry
in the RMT (eight entries were used in the simulations). If
a non-stale entry is found the offset from the entry’s base
address is written. If an entry is not found one is evicted
and a new one is initialized.

prefetch mechanism must minimize accesses that cause or
aggravate contention for shared data and because data can
be prefetched in either the shared or exclusive states.

The description that follows is of the base system used
to obtain the results described in Section 6. The base
machine is a multiprocessor in which each CPU has two
levels of cache. Each processor is paired with a mem-
ory module, which implements part of the shared address
space. The mechanism handling protocol messages and
controlling the cache and network interface will be called
the cache controller. (For brevity a single name is used
for what may be implemented as several controllers.) A
full map directory coherence protocol is used [4].

Prefetching is initiated by a level-two cache miss. The

cache controller will dispatch a request to the appropri-
ate memory module for this demand fetch (as in a con-
ventional system) and follow it with prefetch requests.
Depending on the prefetch scheme used, addresses for
these may be based on the demand fetch effective ad-
dress, the demand address for short, the past behavior of
the instruction missing the cache, called the triggering in-
struction here, and the presence of some other cache line.
To avoid wasting resources by prefetching a line already
present, the prefetch mechanism checks whether a line to
be prefetched is already present using a tag store port
shared with the processor and cache controller. Prefetched
data is placed in the level-two cache.

The neighborhood prefetch hardware consists of a
neighborhood history table (NHT) and a small recent miss
table (RMT); see Figure 1. The NHT, direct-mapped and
indexed by an instruction id, stores neighborhoods and
other data needed for prefetching. The RMT, normally
accessed using a demand address, is used for finding neigh-
borhoods.

On a level-two cache miss the prefetch hardware deter-
mines a set of candidate prefetch addresses at the same
time as a request is prepared for the demand fetch. First,
the instruction id of the triggering instruction is used to
retrieve an entry from the NHT. (The low-order bits of
the instruction address are used as the instruction id.)

The NHT entry holds the neighborhood used for con-
structing prefetch candidates and an instruction tag and
tag match fields used to detect NHT misses and determine
replacement. See Table 1 for a complete list of fields, de-
scriptions, and typical sizes.

The instruction tag is a portion of the instruction ad-
dress and is used to detect NHT misses. Some misses
are not detected, degrading performance but not affecting
correctness. On an NHT miss prefetching is aborted.

Most of the entry’s space is devoted to the neighbor-
hood field, consisting of two arrays of offset count sub-
fields; one array for loads and one for stores. Prefetch
candidates are found by adding the demand address to
those offsets with counts exceeding a threshold value.

The order in which prefetch requests are issued is based
on the order of the offsets: first offset 1, then 2, up to
the highest offset, followed by -1, -2, down to the lowest.
(Other orderings tried, such as 1,-1,2,-2,. . ., were not as
effective.) The level-two cache is checked for the presence
of a prefetch candidate, if not present a prefetch request
is sent. The level-two cache latency determines the max-
imum prefetch request rate. Demand-fetch accesses take
priority, slowing prefetch requests further.

Prefetch requests can congest memories. To limit
congestion prefetch requests are not issued to congested
memory modules. Cache controllers learn of congestion
by congestion-on and -off protocol messages returned by
memories in response to other messages.

Prefetch requests are handled by memory in the usual

Table 2. Recent Miss Table Fields

Name,
Bits

Description

Initiator,
10

Identity (hash of PC or index into instruction
cache) of instruction creating this entry.

Base
address,
26

Effective address accessed by initiator. Size based
on 64-byte lines. Offsets are relative to this ad-
dress.

Init.
time,
20

Time that entry created.

Weight,
4

Sum of bin values up to 4-bit saturation.

Neighb.,
128

Field divided into offset count subfields for each
possible offset (based on neighborhood size) for
both loads and stores. An offset count is the
number of times that an effective address was en-
countered at the corresponding offset. In the base
configuration, subfield size is four bits and the
neighborhood size is 16 offsets, including zero.

Contention?

Above
Thresh.?

Ins. ID
Upd.
Count

Offsets

Offset
Iterator

Adder Prefetch
Address

Address
Valid

Don't
Prefetch

Miss
Address

Neighborhood
History
Table
(NHT)

Instruction
ID

Offset
(Number)

Figure 3. Prefetching using an NHT entry. When a level-two
miss occurs the instruction id is used to look up an NHT
entry. If the load and store zero offsets are both nonzero
(indicating contention) no prefetching is done. Otherwise,
each offset is compared to a threshold; if higher a prefetch
address is constructed by adding the shifted offset to the
current miss address.

way, however prefetch and demand fetch requests are (usu-
ally) queued separately. Once dequeued the memory con-
troller handles demand and prefetch requests identically.

The cache controller stores arriving data for demand
and prefetches in the same way, except that a prefetch bit
will be set for a prefetched line. The prefetch bit is reset
when the line is accessed. (The prefetch bit is the only
additional per-line storage needed, and is needed by both
NP and ASP.)

Two mechanisms are used to avoid causing or aggra-
vating contention by prefetching: a simple mechanism is
based on the zero offset count, a more elaborate method
tracks the fate of prefetched lines. The simple mecha-
nism detects multiple misses to the same line, evidence of
contention. The more elaborate method detects eviction
and invalidation of unused prefetched lines, if found offset
values in the RMT and NHT are adjusted.

See Figure 2 for the following discussion. Data for con-
structing neighborhoods is collected in the RMT, a small,
fully associative table using a memory address as a key.
Each entry has a field for the instruction id of the initiator
(the instruction creating the entry), the base address (the
effective address generated by the initiator), the time the
entry was created, a weight field, and a field for each load
and store offset count. Fields along with descriptions and
typical sizes are listed in Table 2.

When a miss occurs the RMT is searched for an en-
try holding a neighborhood that can contain the demand
address (by checking if the base address falls in a cer-
tain range), an eviction candidate, and an empty entry (if
any). The eviction candidate is evicted if no empty RMT
entry was found. The eviction candidate choice is based
on its weight (sum of offset values), age, and whether it
was initiated by the accessing instruction. An evicted en-
try is combined with an existing entry in the NHT or is
used to initialize a new NHT entry. Further details on NP
hardware appear in [17].

3.1. Cost

Neighborhood prefetching does add complexity and
cost. Here cost and performance effects will be estimated
and those estimates will be used in Section 6 to pair sys-
tems using neighborhood prefetching with lower-cost ASP
and conventional systems.

The cost measure used will be the amount of additional
storage needed for neighborhood prefetching. Though a
fair amount of logic is also used, estimating its cost is more
difficult. The performance comparisons will be conserva-
tive in that the storage used by the neighborhood prefetch
systems (cache plus tables) will be lower, however no at-
tempt will be made to argue that the margin covers other
implementation costs.

In the base system the RMT has 8 entries, each entry
is 188 bits for a total of 188 bytes. (See Table 2 for base
values.) The NHT in the base system has 256 entries,
each taking 165 bits for a total size of 4448 bytes. (See
Table 1 for base values.) The base system uses a 65,536-
byte 8-way level-two cache, so that storage is only 8.3%
of the level-two cache size. In the experiments described
below NP uses 7-way caches while ASP and conventional
systems use 8-way caches. The storage needed for a 7-way
cache (57,344 bytes) plus the storage needed for NP is less
than the storage used by 8-way caches, 65,536 bytes.

4. Evaluation
4.1. Proteus

The simulations were performed using a modified ver-
sion of the Proteus simulator [3]. Modifications were made
to simulate the prefetch scheme described here, other un-
related modifications were made; that is, they impact the
reported performance of systems that do not use the spec-
ulative hardware. For details on the changes see [16].

Table 3. Base Con£guration Parameters

Simulation Parameter Value

System Size 16 processors
Network Topology 4 × 4 mesh

VM Page Size 212 bytes
TLB Capacity 64 entries
TLB Replacement LRU, fully assoc.

Cache Size 27 sets
Cache Associativity 8, LRU Repl.
Cache Line Size 64 bytes
L1 Cache Hit Latency 1 cycle
L2 Cache Hit Latency 7 cycles
Total L2 Miss Latency 50 (min), 135 (typ)

Directory Size full map
Completion Buffer 5 stores
Raw Memory Latency 10 cycles

Protocol Message Size 8 bytes (plus data)
Network Interface Width 4 bytes
Network Link Width 4 bytes
Hop Latency 20 cycles (plus waiting)

Neighborhood Size 16 offsets
NHT Size 256 entries
RMT Size 8 entries

Proteus is an execution-driven parallel computer sim-
ulator which simulates a network, memory system, and
processors running parallel programs. The modified ver-
sion of Proteus runs on Sparc systems, and was run on
Solaris 2.5.1, and so the simulated system implements the
SPARC V9 ISA (though only a 32-bit subset is used).
Maximum issue rate is four instructions per cycle, control
transfer and memory instruction end instruction decode
groups.

The simulated system runs user (the benchmarks), li-
brary, and some OS code. The OS code includes a TLB
miss handler and other virtual memory management pro-
cedures, so VM management timing is accurate.

Two-level, virtually mapped caches are simulated. The
level-one cache is direct mapped, the level-two cache is set-
associative with the same number of sets as the level-one
cache. LRU replacement is used. The level-one cache hit
latency is one cycle, the level-two hit latency is seven cy-
cles (total). Miss latency is determined by network inter-
face, network, memory, cache latencies, and the protocol
actions needed to complete the accesses. Minimum miss
latency is 50 cycles (local, no contention), typical values
are 135 cycles. Further information can be found in [16].

The interconnection network is simulated at the packet-
transfer level; 2-dimensional meshes are used for the work
reported here. Network nodes effectively consist of a single
shared infinite buffer. Waiting time within the network is
insignificant but there is some waiting at network output
buffers.

The simulated system provides virtual memory, us-
ing 212-byte pages and 64-entry, fully associative TLBs.
Memory allocation routines can return a single contigu-
ous block distributed over all memory modules. Stores

are nonblocking but complete in program order with re-
spect to other stores; up to five stores per processor can
be simultaneously active. Loads do not complete in order
with respect to stores, but of course can read values to be
written by pending stores, maintaining thread-specified
data dependence. The simulated memory system uses
a full-map directory similar to the one described in [4],
for differences see [16]. Each processor has an associated
memory module, sharing the network interface queue with
messages bound for the processor.

4.2. SPLASH-2 Suite

The SPLASH-2 suite consists of a representative sam-
ple of scientific shared-memory parallel programs for use
in testing shared memory systems [29]. Three SPLASH-
2 kernel programs ran for the results reported here are
Cholesky, FFT, and LU. The fourth kernel, Radix, was
used in modified form. (The modifications improved the
efficiency of the prefix sum used in the kernel.) Radix is
an integer sorting program, Cholesky factors sparse ma-
trices, FFT performs a 1-dimensional fast-Fourier trans-
form using a “radix-

√
N , six-step” algorithm, and LU is a

dense-matrix LU factorization program. Four SPLASH-2
applications were also run, Barnes, FMM, Ocean (contigu-
ous partitions), and Water N2. Barnes simulates parti-
cle interactions in three dimensions using the Barnes-Hut
method and FMM simulates particle interactions in two
dimensions using the Adaptive Fast Multipole Method;
both use tree-based data structures, though of different
types. Water N2 simulates forces on water molecules and
Ocean simulates ocean currents [29]. The programs were
run using the base problem sizes specified in the distri-
bution. The programs’ comments specify where statistics
gathering might start and stop; the statistics described
below are collected in those intervals. The base prob-
lem sizes are used except for LU, 128 × 128 matrix and
Cholesky which was run with input file tk14.O.

4.3. Configurations

The experiments tested several different system config-
urations. The table gives parameters for the base system
configuration; experiments will be described as modifica-
tions to this system.

5. ASP Implementation

The adaptive sequential prefetch of Dahlgren, Dubois,
and Stenström as described in [6] was simulated, with the
following changes to tune performance for the configura-
tions used. The maximum prefetch degree is limited to
four (with 64-byte lines). The lookahead count (degree) is
updated after every 40 prefetches and is reset if prefetched
lines are invalidated. Lines are prefetched in the exclu-
sive state or preupgraded if the demand fetch is a store.
Prefetches are aborted under the same conditions as in
the NP implementation (presence, TLB miss, etc.) except

6 2

Chl FFT LU Rdx Bar FMM Ocn WSQ Avg

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(a)

Chl FFT LU Rdx Bar FMM Ocn WSQ Avg

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

(b)
Figure 4. Performance of SPLASH-2 benchmarks on conventional, neighborhood prefetch, and adaptive sequential prefetch
systems using base parameters. The fraction of computation time taken by memory access stall cycles shown in pie charts
above (a); the numbers below the bow ties show the number of benchmarks for which respective system fastest. ∗Prefetch
outcome per original miss that would occur on a conventional system.

where NHT data is used. Memory input congestion con-
trol is identical.

6. Experiments

6.1. Performance

The effectiveness of neighborhood prefetching and adap-
tive sequential prefetching can be seen in Figure 4(a),
where normalized execution time (bow ties) and normal-
ized memory access stall cycles (bars) are plotted for each
benchmark running on the base system. The additional
hardware needed for NP is compensated for by using a
smaller, lower-associativity (7-way), cache, as described
in Section 3.1. The caches in conventional and ASP sys-
tems are the same size.

On average the normalized execution time using NP
is 0.89, with two benchmarks below 0.80. Average nor-
malized execution time using ASP is only slightly worse
at 0.91 however NP is better for 6 out of 8 benchmarks.
For half the benchmarks prefetching had almost no im-
pact on execution time. The reasons vary, though in all
cases prefetching removed a substantial number of misses.

Prefetch performance depends upon how many misses
are avoided by prefetch, how few misses are added by pre-
fetch, how little prefetching slows normal accesses, and
how sensitive the system is to the resulting changes in
access latency. These factors and the way they impact
execution are shown in Figure 4(a) and (b).

Potential performance improvement originates with
avoided misses, shown by the white segments (above the
axis) in Figure 4(b). The height gives the fraction of origi-
nal misses that were avoided, so for example, the first bar
indicates that NP on a system running Cholesky avoided
45% of the misses (that occur on a conventional system).
The segments labeled Sl Hit show accesses to lines that had

been prefetched but have not yet arrived, their latency is
between that of a hit and a miss. The segments labeled Sl
Upg show accesses to lines that are begin upgraded (con-
verted to an exclusive state) by a prefetch. Overall NP
avoids about half the misses while ASP avoids about 35%.

Only a small number of misses are added by prefetch-
ing. The segment closest to the axis, +Inv, shows un-
used prefetches that were invalidated (possibly increasing
miss latency at another processor), the middle segment,
+Miss, shows unused prefetches that evicted a line that
was needed (probably adding a miss). There are few such
accesses because both prefetch schemes can usually detect
such misses and slow down or turn off. The bottommost—
and usually largest—segment, Unused, shows harmless un-
used prefetches. On average, NP retrieves fewer unused
lines and fewer lines that cause misses even while pre-
fetching more lines. ASP prefetches fewer lines because it
cannot detect where a sequence stops, and so must slow all
prefetching when a few prefetches turn out to be harmful.

The sensitivity to miss ratio improvement and the ac-
tual and expected reduction in access latency are plotted
in Figure 4(a). The pie charts and bars describe stall cy-
cles, the time the processor is stalled due to a cache miss.
(Stalls occur on all load misses and on write misses that
fill the store buffer.)

The bars in Figure 4(a) show memory access stall cy-
cles normalized to the conventional system. On average
stall cycles are about 62% for NP but only 72% for ASP.
Stalls are due to misses, so the reduction in misses also re-
duces stall cycles. The relationship would be proportional
if miss latency were constant and prefetch affected all in-
structions equally. If this were so stall cycles would be
reduced to 50% (not 62%) for NP and to 65% (not 72%)
for ASP. Lines starting at the bar tops lead to these ideal

Table 4. Prefetching Behavior of Selected Instructions

Benchmark ASP NP
Name File:Line Rate Acc. Rate Acc. Neighborhood

(1) Radix radix.c:476 2.3 100% 6.7 100% -------!99999999
(2) Radix radix.c:530 0.2 98% 1.3 98% -------!91------
(3) Radix radix.c:531 0.2 8% 0.0 3% -------!9----1-1
(4) FMM interactions.c:168 0.8 49% 1.0 99% ------9!--------
(5) FMM box.c:90 1.0 69% 2.5 88% -------!97----79
(6) WSQ interf.c:71 0.0 91% 6.8 100% 8999999!1111111-

values which are usually lower (better) than the one mea-
sured. The difference is due to the higher miss latency
caused by prefetching.

The fraction of computation time in the conventional
system taken up by stalls, sensitivity, is shown by the pie
charts at the top of Figure 4(a). These show how much the
62% stall cycle time reduction can impact performance.
(Computation includes the time the programs are active
but excludes time in barriers.) Sensitivity is small for
FMM and Water N2, explaining why execution time is
little changed.

Sensitivity and stall cycle reduction can be used to pre-
dict an execution time. The lines originating at the bow
ties lead to such a predicted normalized execution time.
For most of the benchmarks the prediction is close but
Cholesky and Barnes run faster while Ocean is slower. In
these benchmarks prefetch favors instructions either on
(runs faster than expected) or off (runs slower than ex-
pected) the critical path.

6.2. Neighborhood Examples

NP was designed to discover access patterns on a per-
instruction basis. Examples of such patterns appear in
Table 4. The table shows prefetch rate (lines prefetched
per miss, some values rounded to zero) and accuracy (per-
centage used) as well as neighborhoods for selected in-
structions. The neighborhoods are shown using one digit
per offset, with an exclamation point at the zero position.
The digit indicates the relative number of misses observed.

In the first example Radix is sequentially accessing
a long array without generating many other misses; the
neighborhood clearly shows the sequential access pattern.
Both NP and ASP do well, NP is closer to its maximum
prefetch rate of 8 because the RMT discovers the pattern
after 9 misses while ASP’s prefetch degree is incremented
(by one) only after a window-full of prefetches (40) have
been issued. ASP would work better on (1) with a larger
maximum degree, but 4 gave the best overall performance.

Instructions (2) and (3) are in Radix’s permute loop.
Instruction (2) sequentially reads from a single array while
(3) writes to multiple locations, each sequentially. Both
instruction accesses are sequential however writes by (3)
are to smaller areas and so prefetches are more likely to
overshoot and retrieve another processor’s data. ASP ad-
justs by nearly stopping prefetch to both instructions (the

rate rounded down to zero), while NP prefetches for (2)
but not for (3). The neighborhoods are small because
RMT entries are quickly replaced by execution of instruc-
tion (3).

Instruction (4), for benchmark FMM, accesses a struc-
ture element placed near the end of the structure; subse-
quent instructions access members that fall on a preceding
line. Instruction (5) shows an example of stride access.

Instruction (6), for benchmark Water N2, shows an
example of backwards sequential access that is arguably
pathological. The code initializes a multidimensional ar-
ray using ordinary nested loops with increasing indices.
Data storage for the array was allocated in extremely
small (12-byte) chunks using a dynamic memory allocator
based on Gnu malloc. Gnu malloc obtains small chunks
from the end of a block of memory, so consecutive small
allocation addresses are descending. (Larger allocations,
which most programs use, are in ascending order.) NP
has no trouble with backward access, while ASP stops
prefetching.

6.3. Cache Characteristics

Changing the cache size changes the mix of miss types,
strongly affecting prefetch performance. Ignoring varia-
tion in parallel program execution, the number of cold and
sharing misses is constant with cache size, and dominate at
large cache sizes. As cache size is reduced conflict and ca-
pacity misses are added. Two effects hinder performance
at small cache sizes. First, if only a few lines of a neighbor-
hood or sequence are missing the prefetch hardware will
waste time on a miss to one of those lines checking for the
presence of already cached prefetch candidates. (Though
demand fetches are given priority, they cannot preempt an
in-progress access to the level-two cache by the prefetch
hardware.) Second, prefetched lines may be replaced be-
fore being used. These effects can be seen in Figure 5(b)
where conventional and ASP cache sizes were varied from
24 sets (213 bytes) to 211 sets (220 bytes), while NP cache
sizes were 7

8 these sizes. (The handicap was made a con-
stant fraction of cache size for comparison.) At smaller
cache sizes there are fewer useful prefetches per miss and
more unused ones. Figure 5(a) shows that performance is
best at middle sizes and that at large cache sizes sharing
misses are still a substantial part of execution time (based
on stall time).

5 2
6

1
5

2 6
2

6 2 6
2 7

1 6
1

4 5 6 7 8 9 10 11

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a)

4 5 6 7 8 9 10 11

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

(b)
Figure 5. Performance v. cache size; x-axis labels give log2 number of sets. In (a), normalized execution time and stall
cycles and (b), prefetch outcome. See caption on Figure 4 for more on (a) and (b). ∗Prefetch outcome per original miss that
would occur on a conventional system.

33 44 55 66 77 88 99 1010

No Pref. Neighb. Pref. Adap. Seq. Pref.

E
xe

cu
tio

n
T

im
e

/ M
eg

ac
yc

le
s

10

15

20

30

(a)

33 44 55 66 77 88 99 1010

No Pref. Neighb. Pref. Adap. Seq. Pref.

Le
ve

l T
w

o
M

is
s

R
at

io

0.006

0.008
0.010

0.015

0.020

0.030

0.040
0.050
0.060

0.080
0.100

(b)
Figure 6. Performance v. line size; x-axis labels give log2 line size. In (a), geometric mean of execution times and (b), miss
ratio (including level-one accesses).

Since lines are (usually) larger than a word size they
provide something of a passive prefetch mechanism, but
one without any means to stop harmful prefetches. The
base line size minimizes the average execution time, as
can be seen in Figure 6(a) where the harmonic mean of
execution times is plotted on a logarithmic scale. Line size
was varied from 8 to 1024 bytes while holding cache size
constant. To improve performance the maximum degree
for ASP is set so that the maximum prefetch amount is
256 bytes for line sizes below 128 bytes, and one line for
larger sizes. NP parameters were not tuned for line size
(the neighborhood size is fixed at 16 lines).

For smaller line sizes the prefetch mechanisms do com-
paratively better, at large line sizes the performance of
all systems is about equal. NP is better than ASP for
all but the largest line sizes. The best performance, with
or without prefetch, is with 64-byte lines, the base size.
The prefetch systems perform nearly as well with 32-byte

lines, an advantage since such systems are less susceptible
to false sharing. That sequential access occurs on a small
scale is evident in Figure 6(b) where miss ratio is plotted
on a logarithmic scale. The nearly straight lines below
27 bytes indicate that each doubling of line size removes
a constant fraction of misses, as would be expected with
sequential access. Additional graphs appear in [17].

7. Related Work

Both software and hardware prefetch mechanisms have
been studied. Software prefetch is initiated by special
software prefetch instructions (available, for example, in
SPARC V9 and IA-64 [13,28]) inserted by the compiler
or programmer. In contrast, hardware prefetching re-
quires no code modification and suffers no code expansion.
See [15,22] for software prefetching on serial systems and
[10,20,23] for parallel systems.

7.1. Hardware Prefetching

Work on hardware sequential prefetching for serial sys-
tems dates back to the 70’s, when the number of instruc-
tions that could execute in a miss delay was much smaller
than it is today. Sequential prefetching schemes were in-
vestigated by Bennett et al [1,2], Gindele [11], and Smith
[25] and are summarized and evaluated by Smith in [26].
These schemes vary in how prefetching is initiated, for ex-
ample, on all accesses, all misses, or on all misses and first
hits to prefetched lines. Always prefetching and tagged
prefetch reduced half or more misses, while prefetch on
miss was less effective.

Fu and Patel [8] have investigated a fixed sequential
prefetch mechanism for parallel vector machines; the num-
ber of lines prefetched is fixed. They show improved per-
formance over systems having larger line sizes, though
on vector programs for which sequential prefetch is well
suited. More recent sequential prefetch work has ad-
dressed the problem of having the hardware fetch far
enough in advance so that lines arrive before they are
needed, a growing problem because of increasing processor
speed with respect to miss delay. As described earlier, the
adaptive sequential prefetching of Dahlgren, Dubois, and
Stenström [6] adjusts the number of prefetched lines based
on the fate of recently prefetched lines. Unlike fixed se-
quential prefetch, their scheme can fetch far enough ahead
that lines arrive when needed and can also reduce the de-
gree of prefetching or stop it altogether when prefetches
are not accessed [6]. They do not address the problem
of prefetching lines in the exclusive state or preupgrading
cached lines that might be accessed.

An extensive amount of work has been devoted to pre-
fetching data at some stride. Fu and Patel [8] describe
a stride prefetch for a parallel vector machine (the same
one they used for sequential prefetching) which uses the
stride information already present in vector instructions.
In [9] Fu, Patel, and Janssens describe a stride detection
mechanism for serial processors which finds patterns in
access addresses. In an early work Sklenár proposes a
stride prefetch unit for serial machines which records the
stride history of accesses issued by each instruction [24],
performing stride prefetch without having the stride spec-
ified. Sklenár’s analysis did not include simulation; such
schemes were evaluated via simulation by Chen and Baer
[5], also for serial systems, and by Dahlgren and Stenström
for multiprocessors [7]. Like neighborhood prefetch they
record access history for individual instructions, including
a guessed stride and two state bits to describe the status
of that guess. Prefetches are only issued when the same
stride has been encountered multiple times. The upcom-
ing Sun Microsystems UltraSPARC-III processor incorpo-
rates an instruction-correlated hardware stride prefetcher
as well as software prefetch [12].

Chen and Baer describe an instruction lookahead mech-
anism for use with their stride prefetch scheme [5]. A

shadow program counter is designed to run ahead of
the processor’s program counter so load instructions can
be identified for prefetch. Because useless prefetches
do not lead to incorrect execution, the shadow program
counter can boldly advance without concern for recovering
from mispeculation, using a branch target buffer to find
branches and other control transfers. One problem with
such an approach is the need to either dual-port or shadow
the branch target buffer. However much of the substantial
reduction in miss latency of their stride prediction can be
attained without program counter lookahead.

Joseph and Grunwald describe a prefetch mechanism
designed to identify previously resident lines to a level-
one cache, called the Markov predictor [14]. A history
table has entries for recent misses, indexed by the ad-
dress missing the cache. Each entry stores several ad-
dresses which had missed the cache following the key ad-
dress, along with something similar to a probability in a
Markov chain. These probabilities are used to prioritize
prefetches when a miss to the key address is encountered.
The Markov predictor was designed to prefetch items back
into a level-one cache, unlike other prefetchers designed
to fetch new data. Like neighborhood prefetching, the
Markov predictor prefetches a number of addresses in re-
sponse to a miss. However an entry in a Markov predictor
will always prefetch the same lines, while neighborhood
prefetching prefetches lines relative to a miss using the
instruction address as a key.

In an independent work Kumar and Wilkerson [19]
have applied neighborhood prediction to a sectored level-
one cache. Rather than prefetch, the cache uses a large
line divided into sectors. Normally in a sector cache sec-
tors are loaded at demand fetch misses; using a spatial
footprint predictor (SPF) a predicted set of sectors (anal-
ogous to a neighborhood) is loaded. The technique is less
flexible than NP since base addresses must be aligned to
entire neighborhoods rather than individual lines. Foot-
prints are correlated with both instruction and data ad-
dresses.

SPF was evaluated for serial systems running integer
programs. They show an 18% improvement in miss ratio
which is not directly comparable with the 50% achieved
here on prefetch-friendly scientific programs. They exam-
ined fetch bandwidth but did not evaluate execution time.

8. Conclusions

A technique of prefetching an area around a demand
fetch based on instruction history has been presented.
Prefetching based on a neighborhood covers more access
patterns than sequential or stride prefetch. Both adap-
tive sequential and neighborhood prefetch provided us-
able speedup, but NP outperformed ASP for six out of
eight benchmarks under most test conditions. The higher
performance of NP is due to its higher prefetch rate, at-
tainable because a larger fraction of prefetched lines are

used. Prefetch-on-miss schemes were tested here. Addi-
tional performance improvement (for both ASP and NP)
could probably be attained with schemes that also pre-
fetch on hits to prefetched lines.

Prefetching was tested on multiprocessor systems in
part because of their high miss latencies. With much
smaller hit latencies encountered on present serial systems
the speedups would be much smaller, probably not worth
the trouble. If the gap between CPU and memory perfor-
mance continues to widen prefetching might be useful on
serial systems too.

9. Acknowledgment

This work was supported in part by the National Sci-
ence Foundation under Grant No. MIP-9410435.

10. References

[1] B.T. Bennett and P.A. Franaczek, “Cache memory with pre-
fetching of data by priority,” IBM Technical Disclosure Bulletin,
vol. 18, pp 4231-4232, May 1976.

[2] B.T. Bennett, J.H. Pomerene, T.R. Puzak, and R.N.
Rechtschaffen, “Prefetching in a multilevel memory hierarchy,”
IBM Technical Disclosure Bulletin, vol. 25, p. 4103, June 1982.

[3] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook,
and William E. Weihl, “Proteus: a high-performance parallel-
architecture simulator,” in Proc. of the ACM SIGMETRICS
conference, May 1992.

[4] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant
Agarwal, “Directory based cache coherence in large–scale mul-
tiprocessors,” IEEE Computer, vol. 23, no. 6, pp. 49–59,
June 1990.

[5] Tien-Fu Chen and Jean-Loup Baer, “Effective hardware-
based data prefetching for high-performance processors,” IEEE
Trans. on Computers, vol. 44, no. 5, pp. 609-623, May 1995.

[6] Fredrik Dahlgren, Michel Dubois, and Per Stenström, “Se-
quential hardware prefetching in shared-memory multiproces-
sors,” IEEE Trans. on Parallel and Distributed Systems, vol. 6,
no. 7, pp. 733-746, July 1995.

[7] Fredrik Dahlgren and Per Stenström, “Evaluation of
hardware-based stride and sequential prefetching in shared-
memory multiprocessors,” IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 7, no. 4, pp. 385-398 April 1996.

[8] J. Fu and J.H. Patel, “Data prefetching in multiprocessor vec-
tor memories,” in Proc. of the 18th Annual International Sym-
posium on Computer Architecture, pp. 54-63, May 1991.

[9] J. Fu, J.H. Patel, and B.L. Janssens, “Stride directed pre-
fetching in scalar processors,” in Proc. of the 25th Annual Inter-
national Symposium on Microarchitecture, pp. 102-110, 1992

[10] Kourosh Gharachorloo, Anoop Gupta, and John L. Hen-
nessy, “Two techniques to enhance the performance of memory
consistency models,” in Proc. of the Intl. Conference on Parallel
Processing, August 1991, vol. I, pp. 355–364.

[11] J.D. Gindele, “Buffer block prefetching method,” IBM Tech-
nical Disclosure Bulletin, vol. 20, pp. 696-697, July 1977.

[12] Tim Horel and Gary Lauterbach, “UltraSPARC-III: design-
ing third-generation 64-bit performance,” IEEE Micro Maga-
zine, vol. 19, no. 3, pp. 73-85, May 1999.

[13] Intel, “IA-64 application developer’s guide,” Intel, May 1999.

[14] Doug Joseph and Dirk Grunwald, “Prefetching using
Markov predictors,” in Proceedings of the International Sym-
posium on Computer Architecture, June 1997, pp. 252–263.

[15] A.C. Klaiber and H.M. Levy, “An architecture for software-
controlled data prefetching,” Proc. of the International Symp.
on Computer Arch. May 1991, pp. 43–53.

[16] D.M. Koppelman, “Ver. L3.12 Proteus Changes” Depart-
ment of Electrical and Computer Engineering, Louisiana State
University, (simulator documentation),
http://www.ee.lsu.edu/koppel/proteus/proteusl 1.html
and http://www.ee.lsu.edu/koppel/proteus.

[17] D.M. Koppelman, “Neighborhood prefetching on multi-
processors using instruction history,” Louisiana State Univ.
Dept. of Elect. and Computer Eng. Technical Report,
http://www.ee.lsu.edu/koppel/pubs/prenpactfull.pdf.

[18] D.M. Koppelman, “Neighborhood prefetching on multipro-
cessors using instruction history,” in the Proceedings of the In-
ternational Conference on Parallel Architectures and Compila-
tion Techniques, October 2000, pp. 123-132.

[19] S. Kumar and C. Wilkerson, “Exploiting spatial locality in
data caches using spatial footprints,” Proceedings of the 25th
Annual International Symposium on Computer Architecture,
June 1998, pp. 357–368.

[20] R.L. Lee, P.C. Yew, and D.H. Lawrie, “Data prefetching in
shared memory multiprocessors”.Proc. of the Intl. Conference
on Parallel Processing. August 1987, pp. 28–31.

[21] David J. Lilja, “Cache coherence in large-scale shared-
memory multiprocessors: issues and comparisons,” ACM Com-
puting Surveys, vol. 25, no. 3, pp. 303–338, September 1993.

[22] T.C. Mowry, M.S. Lam, and A. Gupta, “Design and evalu-
ation of a compiler algorithm for prefetching,” Proc. of the Con-
ference on Architectural Support for Programming Languages
and Operating Systems. October 1992, pp. 62–73.

[23] Todd C. Mowry, “Tolerating latency in multiprocessors
through compiler-inserted prefetching,” ACM Transactions on
Computer Systems, vol. 16, no. 1, pp. 55-92, Feb. 1998.

[24] I. Sklenàr, “Prefetch unit for vector operation on scalar com-
puters,” Computer architecture news, vol. 20, no. 4, pp.31-37,
Sep. 1992.

[25] A.J. Smith, “Sequential program prefetching in memory hi-
erarchies,” IEEE Computer, vol. 11, no. 12, pp.7-21, Dec. 1978

[26] A.J. Smith, “Cache Memories,” ACM Computing Surveys,
vol. 14, no. 3, pp.473-530, Sep. 1982

[27] P. Stenström, “A survey of cache coherence schemes for
multiprocessors,” IEEE Computer, vol. 23, no. 6, pp. 12–24,
June 1990.

[28] David L. Weaver and Tom Germond (eds.), “The SPARC
architecture manual, Version 9,” Englewood Cliffs, New Jersey:
Prentice-Hall, 1994.

[29] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta,
“The SPLASH-2 programs: characterization and methodological
considerations,” Proc. of the Intl. Symp. on Computer Arch.
May 1995, pp. 24–36.

http://www.ee.lsu.edu/koppel/proteus
http://www.ee.lsu.edu/koppel/pubs/prenpactfull.pdf

