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1 INTRODUCTION

Banyan networks, unique-path multistage interconnection networks[1], are widely con-
sidered for use in communication and parallel-computing systems. Performance analyses of such
networks are needed both for evaluation of system designs and for understanding the networks
themselves. Many banyan-network analysis methods have been reported; the bulk of the work was
for networks offered unit-length (single-packet) messages. For example, Patel analyzed unbuffered
banyans [8], Jenq, single-buffered banyans [3], Yoon, Lee, and Liu, finite-buffered banyans [9],
and Mun and Youn described a finite-buffered banyan analysis which works well at heavy traf-
fic loads [7]. (All of these analyses were for input-buffered networks.) Asis readily observed
from simulation, message length has a strong effect on performance. Since networks used for
communication switches and parallel computers must carry messages having varying lengths, a
non-uniform-message-length analysis is needed.

Such an analysishad been performed by Kruskal, Snir, and Weiss[4] for infinite-buffered
networks. The networks they analyzed have output-buffered switching elements (SE’s) in which
gueues can be simultaneously fed by any number of SE inputs. Exact first-stage switching-element
gueue state distributions were found. An empirically derived formula was then used to find the
waiting time in subsequent stages. Because messages entering a queue are not blocked, a wide
variety of offered-traffic models can be analyzed, including those with geometrically distributed
message lengths. Their analysis of such traffic shows that delay increases as average message
length is increased (while holding traffic intensity constant) [5]. Their analysis, however, is not
applicable to many of the networks that might actually be used. Actual networks use finite queues
and may also use crossbars that block. These create a back pressure effect [6] which resultsin a
distribution of messages within the network very different than the networks Kruskal et al analyze.
The modeling of message distribution is an important part of analysis, and so a different model

must be used for finite-buffered, blocking-crossbar networks.
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The model used here captures the following behavior of non-unit-length messages in
these networks. A message, while passing from a queue in one SE to another, will be the only
message using its SE output. Message packets following thefirst packet enter the next-stage SE at,
what amounts to, an arrival rate of one, tending to fill the queue there. Thus, the probability that
the first packet of a message (the head packet) will find the next-stage queue full is lower than the
corresponding probability for other packets in the message.

To capture this behavior, each stage is modeled by two state machines. One for the
gueue heads in a switching element, the head-of-line (HOL) model, the other for a single (entire)
gueue, the queue model. (Combined HOL/queue SE models have been used earlier, for example
by Hui [2] to analyze networks with unit-length messages. The HOL and queue models here are
different.) The HOL model encodes the state of the queues’ head dots (whether the slot is empty
or has a head or non-head packet, as well as its destination). It is used to find the distribution of
these states, from which arrival and service rates for the queue models are computed. The queue
model hastwo sets of states: one set isfor queuesinto which amessageisentering (that is, the head
packet of the message has entered but the last packet, the [tail packet], has not yet entered), and
one set of states is for queues into which no message is entering. Transitions for the HOL model
are based, among other things, on the probability that a message using a switching-element output
will end. Transitions are also based on the probability that there will be space in the next-stage
gueue given the type of packet, head or non-head. These space probabilities are determined from
the queue model. These model the behavior described above.

The remainder of this paper is organized as follows. In the next section network-
structure and other preliminaries appear. The analysisis described in Section 3 [p. 4], theanalysis

is compared with simulation in Section 4 [p. 13]. Conclusionsfollow in Section 5 [p. 15].

2 PRELIMINARIES
2.1 NETWORK STRUCTURE

Anayzed networks will be specified by a 3-tuple, (n, a, m). Such anetwork consists of
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n stages, numbered 1, the input stage, to n, the output stage. Each stage contains a™ ! a-input,
a-output switching elements (SE’s). Each SE consists of a m-glot queues, each connected to the
crossbar inputs. Links connect SE’s in adjacent stages and first- and last-stage SE’s to network
inputs and outputs, respectively. The links can be connected in any pattern for which there is

exactly one path between all network input /output pairs. See[1,2,6] for details.

2.2 MESSAGE STRUCTURE AND FLOW CONTROL

Data arrives at network inputs in the form of messages. Each message consists of a
number of fixed-length packetswhich pass through the network as a unit. Thefirst packet is called
the head packet and the last packet is called the tail packet; symbols v and T are used to refer to
head packets and tail packets, respectively. SymbolsH and T refer to packets which follow the head
packet and precede the tail packet, respectively. Switching-element queues use a first-in, first-out,
service discipline. Each queue slot holds exactly one packet. The ot that holds, or would hold,
the next packet to leaveis called the head-of-line (HOL ) slot. A packet occupying the HOL dlotis
called the HOL packet. Each message has a destination, the network output to which it is bound.
A HOL packet’s needed link is the link (connected to the SE output) on the path to the packet’s
destination. A HOL packet’s next-stage queue is the next-stage queue that is on the path to the
packet’s destination.

Timeisdividedinto cycles. A HOL packet will moveto the next-stage queue (or network
output) during acycleif thereis space and it wins contention for the needed crossbar output. There
isaways space at anetwork output. Thereisspacein aqueueif thereisat least one sot free during
the cycle. Any queue space vacated will be available at the next cycle. A non-head packet will
always win contention. Otherwise, for each SE output link, one winner will be randomly chosen

from those HOL packets needing the link.

2.3 TRAFFIC MODEL

The statistics of messages arriving at the network inputs are independent and identically
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distributed. During a cycle a network input can either be idle, have a head packet arriving, or
have a non-head packet arriving. Message arrival times and lengths are described by a three-state
discrete-time Markov chain, with states labeled 1, (idle); s, (start); and A, (active). Let z — y
denote atransition from state = to y and let 7,._,,, denote the corresponding transition probability.
An input not receiving a packet during a cycle is modeled by transitions z — 1, € {I,s,A}.
A head packet arrival is modeled by transitions z — s, = € {I,s,A}; a message continuing is
modeled by transitionsz — A, x € {s,A}. Transition probabilitiesare s = A, 7., = 1 — A,
Ton = Tasa = 1 — lly Tamss = Ts—s = pA, and 74—, = 75—, = u(1 — A). This traffic model
generates messages with an expected length of 1/ packets and a flow rate of (/X — pu +1)~t
packets per cycle, where A, i € (0, 1].

Message destinations are randomly chosen (once for each message) and uniformly
distributed over al outputs. As a consequence of this destination distribution and the banyan
network’s structure, the link needed by a head packet entering a HOL slot will be uniformly

distributed over the SE outputs.

3 ANALYSIS

3.1 OVERVIEW

A network is modeled by n Markov-chain pairs, each of which characterizes a stage.
One pair member, caled the queue model, characterizes a switching-element queue. The other,
called the HOL model, characterizes aswitching-element HOL system. All queueand HOL models
making up a network are statistically independent of each other. The state distributions are solved
by iteratively computing state distributions and transition probabilities.

The HOL model is important because messages are transmitted in several consecutive
packetswhich cannot beinterrupted. If the correlation among packets by prior contention, captured
inthe HOL model, isinstead neglected, predictionswill beinaccurate, especialy for large message

lengths.
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Figurel. HOL State Example.

3.2 HOL MoDEL

HOL-model states are labeled H((d1,l1),(d2,l2) (dasla)) where d; € {1, 2,...,a, gb}

and [; € {n,H,e} for 1 < i < a. Pair (d;, ;) indicates the state of the HOL slot in SE queue
1. Slot contents is indicated by /;; H denotes a head packet, H denotes a non-head packet, and E
denotes an empty queue. The switching-element output needed by the HOL dlot is indicated by
d; € {1,2,...,a, ¢}, wherean integer refersto aswitching-element output and ¢ denotesan empty
queue. A HOL-modéel state is made up only of pairs {(¢,E)} U{(d,l) | d € {1,2,...,a},l €
{H,H}}. An example of aHOL-model stateisillustrated in Figure 1.

The number of HOL statesislarge, even for systemswith small switching elements. For
purposes of analysis, the set of HOL states can be partitioned into amuch smaller set of equivalence
classes such that only one member of each class need be considered. See the appendix for details.

The probability that astage-j HOL model isinstate H (4, 1,),(ds 1), ...,(d. 1..)) 1S denoted
P (H((d1 1), (d2,ls),....(du,10)))- LEL Hy @nd Hy be two equivalent states. State transitions will be
defined so thet p; (H,) = pj(Hp) for 1 < j < n, aswill be explained below.

HOL-model transition probabilities will be specified as a product of HOL factors. For
each HOL-model transition probability there are « HOL factors, onefor each of the queuesin a SE.
Let the HOL factor associated with queue ¢ in stage j for atransition from H, to H;., be denoted
fj(H¢, Hiqq, 1) and let the HOL-model transition probability be denoted T, (H,, H¢+1). Then,

Tj(Hy, Her) = | [ fi(H, Higa ). (1)
1=1
Let p;(H;) bethe probability of stage-j HOL-mode! state H at timet. Then the state probability
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is defined to be

pi(Hesr) = Y pi(H)T;(Hy, Hypa),
H:eH

foral H,11 € H, where’H isthe set of al HOL-model states.

The value for aHOL factor is determined by the queue'srolein thetransition. A queue
issaid to be activein atransition from state H; to H,, if it contains at |east one packet in H; and
could have won the contention or retains control of the port in the transitionto H;, ;. (Note that it
isnot aways possible to determine if a queue wins contention in a transition between HOL-model
states.) Define A(H,, Hy1,1) to betrueif queuei is active and false otherwise. Then A is given

by the logical expression

A(H((dy,11),(ds,l12),.r(dasla))s H((D1,01),(Da,La)se s (DasLa))s 1) = (2)

(lz 7& E) A vwE{l,Z ..... i—1,i+1,...,a} (da: = dz) = [(laz =L, = H) A (da: = Dm)]

where A isthe conjunction operator, x =y isthelogica implication operator, and V isthe universal
quantifier. (E.g., expression Vo;<9 x; isequivalenttoz; A xzo A --- A xg.)

HOL factors for active queues are determined by the probability of space in the next
stage, the probabilities that a HOL slot contains a head packet, non-head packet, or is empty, and
the number of queues needing the same port. A queue which is not active is either empty or did
not win contention. The HOL factor for the former case is based on the probability of an arrival to
the queue, the HOL factor for the later caseis 1. HOL-factor expressionswill be given after arrival
and space probabilities are introduced.

Define 0y, ; to be the probability that a head packet in the HOL slot of an active stage-;
queue will find space in its next-stage queue. Similarly, define oy; ; to be the probability that a
non-head packet in the HOL dlot of an active stage-j queue will find space in its next-stage queue.

Define ve ; to be the probability of head-packet arrival to an empty stage-j queue.
Similarly, define vy ; to be the probability of head-packet arrival to astage-;j queue HOL slot given

that the slot held atail packet in the previous cycle.
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The queue-i HOL factor for a transition from state H (4, 1,),(da is),...,(da 1)) O State

H(Dy.L1).(D2.L2).....(Da . La)) isgiven by

JiMH (1 10),(do,12), . (da la)) s (D1, L1), (D2, o)y (Das o)) 8) = [ (Hyy Hyg1,0) =

(1 —vej), if L; =1; =k,
2ot (1 — v ), if L =€, 1; = H, A(Hy, Hyp1,1);
o (di) p(1 — vrj), if L; =€,l; =H, A(Hy, Hi41,1);
el if L, =H, [, =E;
1, if L; =1, =n, D; = d;, A(Hy, Hii1,1);
(1= 0 (ds)) + 0 (di) p 222 T00D | if L =1, = w, Dy = dy, A(Hy, Hy i), (3)
Zogldi) ) ora if L =1 =, D; # di, A(Hy, Hyy 1, 0);
oy ;(d;) u%, if L; =wH,l; =H, A(H, Hiy1,1);
B (1 — ), if L =, li = u, Ds = dy, A(Hy, Hysn, i):
1 — o (ds) s if L; =1, =n, D; =d;, A(H,, Hyi1,1);

L 0, otherwise;

where C'(Hy,i) is the number of queues with head-slot packets bound for output port d; in
state Hy, oy j(d;) = o5, and oy ;(d;) = o ;. A space-conditional HOL factor will be used
in the computation of arrival rates. The stage-j space-conditional HOL factor, fi(H;, Hiy1,1),
is given by (3) when o5 ;(d;) = o5, di # 1; o5,;(1) =1, and oy ;(d;) = onj, di # 1;
ow,j(1) = 1. Thecorresponding space-conditional transition probability isgiven by T (Hy, Ha) =

4, f1(Hy, Ha, ).

3.3 QUEUE MODEL
Queue-model! states are labeled I, , where0 < z < m, andy € {1,T, ¢}. The symbol

x denotes the number of packetsin the queue. The symbol y = T if thelast occupied slot holdsthe
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tail packet of a message, y = T if the last occupied slot holds a non-tail packet of a message, and
y = ¢ if = 0. The probability that stage-j queue will bein statel,, ,, is denoted p; (1, ).
Queue-model transition probabilities are a function of arrival rate, service rate, and
expected message length. Define s; to be the service rate, the probability that a stage-j HOL
packet is able to move forward. Letr; ;, 0 < i < m, denotethe arrival rate, the probability a new
message will be ready to moveinto a stage-j queue given that the queueisin statel; ; or Iy . Four
distinct values of r; ; will be computed per queue: r, ; for an empty queue, r,, ; for afull queue,
rm—1,; fOr agqueue with one slot free, and r, ; for aqueue with 1 to m — 2 packets. For notational
simplicity, r; ;, 0 < i < m — 1, will be used for ry_;; thiswill be called the normal queue arrival
rate.
The stationary probabilities must satisfy the following equations:
p;i(lo,g)= pj(log)(1 = 7o) +pj(hir)s;(1 —7r15)
pi(hr)=p;j(log)ro p + pj(lo)[(1 = s5)(1 —r15) + s5r1m]+
pi(hz)sip+ pj(lar)s;(1 —ra;)
pi(h7)=pj(log)ro (1 —p) +pj(hir)s;r;(1—p) +pj(h7)s;(1— )
pi(lie)=pi(lic1)(1 = s5)ri1 ju+pi(hiog 7) (1 — s5)pt
pi (i) [(1 = s5)(1 = 7ig) + s5miml+
pi(i7)sip+pi(livre)si(1—1iv1 )
piliz)=p;(lic17)(1 = s5)ric1;(1 — p) +pj(lio17) (1 —s5) (1 — )+
pj(liz)s;rii(1— p) +pj(liz)s;(1— p)
Pj(bn—1,1)=pj(lm—21)(1 = 8)rm—2,i10 + pj(ly—237)(1 — s;)p+
Pi(m—10)[(1 = 8;)(1 = Pm—1,5) + 8jrm—1,;1]+
Pj(lm—17)sipt + pj(ln1)s;
Pi(bn—17)=Pj(bn—27)(1 = 8j)rm—2,;(1 — ) + pj(bn—27)(1 — 5;)(1 — p)+
pi(lm—1,7)87m—1,;(1 — p) + pi(lp—17)55 (L — p) + pj (L 7)s85
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pj(lmyT): pj(lm—l,T>(1 - 3j>7dm—1,jﬂ +pj(|m—1,?>(1 - 3j>,u +pj(|m,T>(1 - Sj)
il 7)=Dpj(bm—17)(1 = 85)rm—1,;(1 — p)+
pi(bn17) (1 —85)(1 — p) + pi(ln7) (1 — s5)

for2<i<m-2and1<j<n.

3.4 COMPUTATION OF RATES

The queue- and HOL -arrival rates, service rate, and space probabilities are a function of
HOL - and queue-model state probabilities.

The empty-queue arrival rate, v j, 1 < j < n, is computed from the stage-(j — 1)
HOL-model state distribution. Let Hy be the set of HOL states in which no HOL packets are
destined for a particular port, without loss of generality, 1. Thesetisgivenby Hy = {H | H =
H((dy,11),(do,l2) o (daria)) € H, Vici<adi # 1}. Similarly, let H; be the set of states in which
at least one HOL packet is destined for the port, Hy = { H | H = H((4, 1,),(ds,is),....(du,la)) €
H, Ji<i<a di=1}. Anempty stage-j queue at timet coincides with stage-(j — 1) HOL state Hy
at timet — 1. The empty-queue arrival rateis then

ZHleHT > myen, Pi—1(H1)Tj—1(H1, Ha)
ZHGHTp]_]-(H>

/I)Eh] =

for 2 < j < n. For thefirst stage ve, 1 = A, the arrival rate for new messages.

The quantity v ; is computed so that the flow rate into a HOL slot is the network
flow rate, p. This traffic is divided into three components. Flow entering: an empty HOL dlot,
a HOL dlot containing a head packet, and a HOL dlot containing a non-head packet. Let H.
be the set of states in which a particular queue HOL dlot, say 1, isempty, He = {H | H =
H((6.6).(ds.15),....(da 1)) € H }. Let H, bethe set of states in which the HOL slot has a head
packet that is not blocked by a messagein progress, Hy = { H | H = H((4, w),(da,l2),...,(du,la)) €
H, Vo<i<a (di=d1)= (l;=H) }. Let Hy bethe set of statesin which the HOL slot hasanon-head
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packet, Hg = { H | H = H((4, 7),(ds l2),...,(du,la)) € H }. Then v, ; ischosen so that

.....

o
Z pj(H)C(}HIJZl) (pvrj+1—p)+ Z p;i(H)og ; (porj +1 — p)+ Z pj(H)vej = p
HeH,, ’ HeH; HEeH,

holds. Solving yields

P— ZHGHH/ pj(H)%(l — ) - ZHeHﬁpj(H)Uﬁ,j(l — ) = ZHGHE pj(H)ve
oren, PilH) ap it + X e pi(H)ow 1 '

/I)Thj =

The stage-j queue-model service rate is equivalent to the stage-j HOL-model service
rate. The HOL-model service rate is the probability that a HOL packet will advance. A non-head
packet will advance if there is space; a head packet will advance if there is space and it wins
contention. The servicerate is given by

B D Hen, pj(H)% + ZHEH;pj(H)UﬁJ
> He -1, Pi(H)

Sj

The empty-queue arrival probability is equivalent to the corresponding probability used
in the HOL model, that is, ro ; = ve ;. The normal queue arrival probability, ry ;, is found by
considering the previous-stage HOL system. If a non-empty queue has lessthan m — 1 itemsand
the last occupied slot holds atail packet then any packet that had entered the queue in the previous
cycle was not blocked and had ended amessage. Thisfact is used to obtain a previous-stage HOL -
system distribution which is in turn used to find the arrival probability. Let H,_,; be the set of
statesin which at least one HOL dlot has a packet bound for a particular queue, say 1, and no HOL
ot has a non-head packet bound for the queue. Hy—1 = { H | H = H((4, 11),(ds,12),....(du,la)) €
H, Fi<i<adi=1, Vi<i<q (d; =1) = (l; =H) }. Let Hy_,; bethe set of statesin which no HOL
ot has a non-head packet bound for the queue, Hy_1 = { H | H = H((a,.11),(ds,12),....(du,la)) €
H, Vi<i<a (di =1) = (I; = n) }. Using the space-conditional transition probabilities,

B ZHteH ZHHlGHH_,I pj—l(Ht)Tj{fl(Hb Ht+1)

Tn.G =
" ZHtGH ZHHleH;_,l pj—l(Ht)Tgl'q(Ht,HtH)
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for 2 < j < n. Thearrival probability r,,,_; ; iscomputed so that the flow rate into the queueis p:

-2 —1
p—pilog)ro; — > mey Piller)Tes — >opey Pi(las)
pj(lm—l,T>

"m—1,7 = )

for 2 < j < n. Thefull-queue arrival probability isfound so that the fraction of time the previous-
stage HOL model has a head packet bound for a particular queue matches the corresponding

quantity in the queue model:

—1
o 2eber, Pt () = pi(log)ro, — 2ot Pilla )T,
" pj(lm,)

Y

for2 < j <n. For thefirst stage, r; ; = Afor0 < <m.

Stage-j space probabilities oy, ; and oy ; are computed so the flow rate leaving a stage-j
HOL dotisequal to theflow rate entering astage-(j + 1) queue. The probability that there will be
ahead packet ready to enter astage-(j + 1) queueis p;+1(lo.¢) Ve j+1 + Doy Pj+1 (o 1) 70 j41;
the probability that it is successful is

m—1

pj+1(lo.p)ve s+ Y pjsr(lo)ra i

r=1

Thisyields the head-packet space probability,

Pir1(bnr)Tm, 11
pir1(lo,g)ve 1 + D2y Pis1(ler)ra i1’

UHJ =1-

for1 < j <n— 1. Similar reasoning is used for the non-head space probability,

Pit1(bnz)
> pi1(les)’

om =1-

for1 < j <n — 1. Forthelast stage, oy, = o4, = 1.
The flow rate is determined by the arriving traffic and the fraction of time that traffic is
not blocked:

p=A (pl(l()’(ﬁ) + 2 pl('m)) + Z p1(liz)-

=1
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3.5 COMPUTATION OF DELAY

The delay of a message is defined to be the number of cycles that the head packet isin
the network. The normalized delay is defined as the delay divided by the number of stages. The
waiting time of a message in a queue is defined to be the number of cycles that the head packet
spends in the queue. (Thisincludes what others call service time.) The delay then is the sum of
the waiting times. The total time a message spends in the network is the delay plus the message
length minus one.

The expected waiting timeisfound by first computing, for 0 < i < m, thewaiting time,
w; ;, for ahead packet arriving at a stage-j queue that had i packets in the previous cycle. The
expected waiting timeis the weighted sum over i. Let

v >men, Pi(H)ow;/C(H,1)
! D He(H—He—r) Pi(H)

be the service probability of a HOL packet that is a head packet. The expected waiting time of a
head packet at astage-j queue HOL slot isthen 1/s,. The expected waiting time of aHOL packet
of unknown typeis 1/s;. If the queue had i packets in the cycle before a message arrived then

w; j =1/s; +1/s% — 1. The expected waiting time, w;, is then given by

pi(lo.p) 5

(i) (ifs; + 1/, — 1)

m—1
](hL¢>TOJ +'§:i:1 ]U(ILT)rLj

UU =

The normalized delay is then Z _Lwj/n.

3.6 ANALYSIS PROCEDURE
Stationary distributions for the HOL and queue models are obtained through iteration,
using thefollowing procedure. State probabilitiesareinitialized uniformly. That is, if astate model
has x states then the probability of each state is initialized to 1/z. Space, arrival, and service
probabilities are initialized to 0.5. Other initializations are possible; all those tested yielded the

same results. After the second iteration new values for the state probabilities, service and arrival
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Figure2. Throughput and delay v. messagelengthfor (5,2, 8) and (5, 4, 8) networks,
A=1.

rates, and space probabilities are computed using the average of values computed in the previous
two iterations. (At the first two iterations initial values are used.) Iteration proceeds until the

difference between values computed for quantitiesin consecutive iterationsis sufficiently small.

4 RESULTS

The analysis was tested by comparing its predictions against those of a simulator.
Comparisons of predicted throughput and delay were made for a variety of network and traffic
models. Network size, arrival rate, queue size, switching-element size, and message size were
varied.

The simulator uses the same network and traffic model as the analysis. Simulations
were performed for 100,000 cycles; simulator output includes delay and throughput. Confidence
intervals (95%) were computed assuming that simulator throughput and delay computed for a
seriesof identical runsare normally distributed. The confidence intervalsare extremely small. The
analysis was performed for less than 1000 iterations in most cases. The number of iterations was

chosen so that corresponding probabilities differed by less than 10~ in the last two iterations of
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each analysis.

The prediction of message-length effects on networks using 2 x 2 and 4 x 4 switching
elements can be seen in Figure 2. The figure shows the normalized throughput and delay for
networks offered saturating traffic, that is, A = 1. The effect of message size is clearly modeled.
As with other analyses of this type, the throughput is overestimated. The delay in simulated and
analyzed systems closely match.

The prediction of delay at varying arrival rates for an average message length of 8 are
plotted in Figure 3(a). The delay computed closely matches simulations. At higher arrival ratesthe
throughput computed (not shown) istoo high. Ascan be seen in Figure 3(b)the effect of queue size
on network performanceis predicted. Inthat figure, delay is plotted against queuesizefor (5,2, m)
networks. Note that the queue size ranges from smaller-than to larger-than the average message
length. Delay is accurately predicted for smaller queue sizes, but divergesfor larger queues.

The effect of network size was also tested. As with unit-message-length analyses, the
throughput prediction is increasingly overestimated as the number of stages increases. The delay

prediction, in contrast, remains close to the delays obtained from simulation.
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5 CONCLUSIONS

A geometrically distributed-message-length banyan-network analysis has been pre-
sented. This is one of the few banyan network analyses that consider anything other than
fixed-length messages. This is of value because in rea parallel computers and communication
networks message sizesvary. Inthe analysis, the banyan-network switching elements are captured
by two state models. one modeling a single queue, the other modeling al of a switching-element’s
gueue heads. Banyan networks with finite queue sizes and arbitrary switching-element size can be
analyzed.

The analysis was tested against smulations. The results show that message-length
effects are effectively modeled. In particular, the negative impact that long messages have on

network performance is predicted.

6 APPENDIX
Let 7, and 7, be permutations of switching-element input and output |abels, respectively.
Thenstates He, = H(d, ,1,),(da ls),...,(da 1)) @d H g aresaidto be equivaentif there existsan input-

label permutation 7, and an output-label permutation 7, such that II(H,) = Hg where

H(H((dl7l1)7(d27l2)7“~7(da7la))) = H((ﬂ'o(dﬂL(1))7l7rL(1))7(7]-0(d7rb(2))7l7n(2))7"'7(71-0(d7rb(a))vl‘irb(a)))

and 7 () isthe symbol to which x is mapped under permutation 7.
Lemma: Forall 1 < j < n and Hy, H, € H transition probability 7;(H;, H) =
T;(II(Hy ), I1(H2)) where IT isany of the switching-element mappings described above.
Inspection of equations (1-3) will revea that permuting switching-element labels will
have no effect. For example, consider predicate D; =d; in(3). Clearly D; =d; <= 7,(dx,(j)) =
To(Dr,(jy), Where 7, () = i. Other references to switching-element inputs and outputs are also
independent of absolute or relative position and so are unaffected by the permutations. A detailed

proof is omitted.
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