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Abstract: An analysis of finite-input-buffered banyan networks offered traffic having geo-

metrically distributed message lengths is presented. This is one of the few multistage-network

analyses for networks offered non-unit-length messages and is the only one that the authors

are aware of for finite-input-buffered banyan networks. In the analysis, network switching

elements are modeled using two state-machines, one for queue heads (HOL’s), the other for

entire queues. A network is modeled using one switching-element model to represent each

stage. Together these model the effect that non-unit-length messages have on banyans. Solu-

tions are obtained iteratively. Network performance figures were obtained with this analysis

and compared to simulation results. The figures show that the analysis can predict the effect

of message length on throughput and delay, including the performance degradation caused

by longer messages.
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1 INTRODUCTION

Banyan networks, unique-path multistage interconnection networks [1], are widely con-

sidered for use in communication and parallel-computing systems. Performance analyses of such

networks are needed both for evaluation of system designs and for understanding the networks

themselves. Many banyan-network analysis methods have been reported; the bulk of the work was

for networks offered unit-length (single-packet) messages. For example, Patel analyzed unbuffered

banyans [8], Jenq, single-buffered banyans [3], Yoon, Lee, and Liu, finite-buffered banyans [9],

and Mun and Youn described a finite-buffered banyan analysis which works well at heavy traf-

fic loads [7]. (All of these analyses were for input-buffered networks.) As is readily observed

from simulation, message length has a strong effect on performance. Since networks used for

communication switches and parallel computers must carry messages having varying lengths, a

non-uniform-message-length analysis is needed.

Such an analysis had been performed by Kruskal, Snir, and Weiss [4] for infinite-buffered

networks. The networks they analyzed have output-buffered switching elements (SE’s) in which

queues can be simultaneously fed by any number of SE inputs. Exact first-stage switching-element

queue state distributions were found. An empirically derived formula was then used to find the

waiting time in subsequent stages. Because messages entering a queue are not blocked, a wide

variety of offered-traffic models can be analyzed, including those with geometrically distributed

message lengths. Their analysis of such traffic shows that delay increases as average message

length is increased (while holding traffic intensity constant) [5]. Their analysis, however, is not

applicable to many of the networks that might actually be used. Actual networks use finite queues

and may also use crossbars that block. These create a back pressure effect [6] which results in a

distribution of messages within the network very different than the networks Kruskal et al analyze.

The modeling of message distribution is an important part of analysis, and so a different model

must be used for finite-buffered, blocking-crossbar networks.
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The model used here captures the following behavior of non-unit-length messages in

these networks. A message, while passing from a queue in one SE to another, will be the only

message using its SE output. Message packets following the first packet enter the next-stage SE at,

what amounts to, an arrival rate of one, tending to fill the queue there. Thus, the probability that

the first packet of a message (the head packet) will find the next-stage queue full is lower than the

corresponding probability for other packets in the message.

To capture this behavior, each stage is modeled by two state machines. One for the

queue heads in a switching element, the head-of-line (HOL) model, the other for a single (entire)

queue, the queue model. (Combined HOL/queue SE models have been used earlier, for example

by Hui [2] to analyze networks with unit-length messages. The HOL and queue models here are

different.) The HOL model encodes the state of the queues’ head slots (whether the slot is empty

or has a head or non-head packet, as well as its destination). It is used to find the distribution of

these states, from which arrival and service rates for the queue models are computed. The queue

model has two sets of states: one set is for queues into which a message is entering (that is, the head

packet of the message has entered but the last packet, the [tail packet], has not yet entered), and

one set of states is for queues into which no message is entering. Transitions for the HOL model

are based, among other things, on the probability that a message using a switching-element output

will end. Transitions are also based on the probability that there will be space in the next-stage

queue given the type of packet, head or non-head. These space probabilities are determined from

the queue model. These model the behavior described above.

The remainder of this paper is organized as follows. In the next section network-

structure and other preliminaries appear. The analysis is described in Section 3 [p. 4], the analysis

is compared with simulation in Section 4 [p. 13]. Conclusions follow in Section 5 [p. 15].

2 PRELIMINARIES

2.1 NETWORK STRUCTURE

Analyzed networks will be specified by a 3-tuple, (n, a,m). Such a network consists of
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n stages, numbered 1, the input stage, to n, the output stage. Each stage contains an−1 a-input,

a-output switching elements (SE’s). Each SE consists of a m-slot queues, each connected to the

crossbar inputs. Links connect SE’s in adjacent stages and first- and last-stage SE’s to network

inputs and outputs, respectively. The links can be connected in any pattern for which there is

exactly one path between all network input /output pairs. See [1,2,6] for details.

2.2 MESSAGE STRUCTURE AND FLOW CONTROL

Data arrives at network inputs in the form of messages. Each message consists of a

number of fixed-length packets which pass through the network as a unit. The first packet is called

the head packet and the last packet is called the tail packet; symbols H and T are used to refer to

head packets and tail packets, respectively. Symbols H and T refer to packets which follow the head

packet and precede the tail packet, respectively. Switching-element queues use a first-in, first-out,

service discipline. Each queue slot holds exactly one packet. The slot that holds, or would hold,

the next packet to leave is called the head-of-line (HOL) slot. A packet occupying the HOL slot is

called the HOL packet. Each message has a destination, the network output to which it is bound.

A HOL packet’s needed link is the link (connected to the SE output) on the path to the packet’s

destination. A HOL packet’s next-stage queue is the next-stage queue that is on the path to the

packet’s destination.

Time is divided into cycles. A HOL packet will move to the next-stage queue (or network

output) during a cycle if there is space and it wins contention for the needed crossbar output. There

is always space at a network output. There is space in a queue if there is at least one slot free during

the cycle. Any queue space vacated will be available at the next cycle. A non-head packet will

always win contention. Otherwise, for each SE output link, one winner will be randomly chosen

from those HOL packets needing the link.

2.3 TRAFFIC MODEL

The statistics of messages arriving at the network inputs are independent and identically
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distributed. During a cycle a network input can either be idle, have a head packet arriving, or

have a non-head packet arriving. Message arrival times and lengths are described by a three-state

discrete-time Markov chain, with states labeled I, (idle); S, (start); and A, (active). Let x → y

denote a transition from state x to y and let τx→y denote the corresponding transition probability.

An input not receiving a packet during a cycle is modeled by transitions x → I, x ∈ {I, S, A}.

A head packet arrival is modeled by transitions x → S, x ∈ {I, S, A}; a message continuing is

modeled by transitions x → A, x ∈ {S, A}. Transition probabilities are τI→S = λ, τI→I = 1 − λ,

τS→A = τA→A = 1 − µ, τA→S = τS→S = µλ, and τA→I = τS→I = µ(1 − λ). This traffic model

generates messages with an expected length of 1/µ packets and a flow rate of (µ/λ − µ + 1)−1

packets per cycle, where λ, µ ∈ (0, 1].

Message destinations are randomly chosen (once for each message) and uniformly

distributed over all outputs. As a consequence of this destination distribution and the banyan

network’s structure, the link needed by a head packet entering a HOL slot will be uniformly

distributed over the SE outputs.

3 ANALYSIS

3.1 OVERVIEW

A network is modeled by n Markov-chain pairs, each of which characterizes a stage.

One pair member, called the queue model, characterizes a switching-element queue. The other,

called the HOL model, characterizes a switching-element HOL system. All queue and HOL models

making up a network are statistically independent of each other. The state distributions are solved

by iteratively computing state distributions and transition probabilities.

The HOL model is important because messages are transmitted in several consecutive

packets which cannot be interrupted. If the correlation among packets by prior contention, captured

in the HOL model, is instead neglected, predictions will be inaccurate, especially for large message

lengths.

-4-



H((2,H),(φ,E),(4,H),(2,H))1

2

3

4

1

2

3

4
Element

Switching-

Outputs Destination of Non-Head Packet

Destination of Head Packet

Queue

HOL Slots

Figure 1. HOL State Example.

3.2 HOL MODEL

HOL-model states are labeled H((d1,l1),(d2,l2),...,(da,la)), where di ∈ {1, 2, . . . , a, φ}

and li ∈ {H, H, E} for 1 ≤ i ≤ a. Pair (di, li) indicates the state of the HOL slot in SE queue

i. Slot contents is indicated by li; H denotes a head packet, H denotes a non-head packet, and E

denotes an empty queue. The switching-element output needed by the HOL slot is indicated by

di ∈ {1, 2, . . . , a, φ}, where an integer refers to a switching-element output and φ denotes an empty

queue. A HOL-model state is made up only of pairs {(φ, E)} ∪ {(d, l) | d ∈ {1, 2, . . . , a}, l ∈

{H, H}}. An example of a HOL-model state is illustrated in Figure 1.

The number of HOL states is large, even for systems with small switching elements. For

purposes of analysis, the set of HOL states can be partitioned into a much smaller set of equivalence

classes such that only one member of each class need be considered. See the appendix for details.

The probability that a stage-j HOL model is in state H((d1,l1),(d2,l2),...,(da,la)) is denoted

pj(H((d1,l1),(d2,l2),...,(da,la))). Let Hα and Hβ be two equivalent states. State transitions will be

defined so that pj(Hα) = pj(Hβ) for 1 ≤ j ≤ n, as will be explained below.

HOL-model transition probabilities will be specified as a product of HOL factors. For

each HOL-model transition probability there are aHOL factors, one for each of the queues in a SE.

Let the HOL factor associated with queue i in stage j for a transition from Ht to Ht+1 be denoted

fj(Ht, Ht+1, i) and let the HOL-model transition probability be denoted Tj(Ht, Ht+1). Then,

Tj(Ht, Ht+1) =
a∏
i=1

fj(Ht, Ht+1, i). (1)

Let pj(Ht) be the probability of stage-j HOL-model state H at time t. Then the state probability
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is defined to be

pj(Ht+1) =
∑
Ht∈H

pj(Ht)Tj(Ht, Ht+1),

for all Ht+1 ∈ H, whereH is the set of all HOL-model states.

The value for a HOL factor is determined by the queue’s role in the transition. A queue

is said to be active in a transition from state Ht to Ht+1 if it contains at least one packet in Ht and

could have won the contention or retains control of the port in the transition to Ht+1. (Note that it

is not always possible to determine if a queue wins contention in a transition between HOL-model

states.) Define A(Ht, Ht+1, i) to be true if queue i is active and false otherwise. Then A is given

by the logical expression

A(H((d1,l1),(d2,l2),...,(da,la)),H((D1,L1),(D2,L2),...,(Da,La)), i) = (2)

(li 6= E) ∧ ∀x∈{1,2,...,i−1,i+1,...,a}(dx = di)⇒ [(lx = Lx = H) ∧ (dx = Dx)]

where ∧ is the conjunction operator, x⇒y is the logical implication operator, and ∀ is the universal

quantifier. (E.g., expression ∀0<i<9 xi is equivalent to x1 ∧ x2 ∧ · · · ∧ x8.)

HOL factors for active queues are determined by the probability of space in the next

stage, the probabilities that a HOL slot contains a head packet, non-head packet, or is empty, and

the number of queues needing the same port. A queue which is not active is either empty or did

not win contention. The HOL factor for the former case is based on the probability of an arrival to

the queue, the HOL factor for the later case is 1. HOL-factor expressions will be given after arrival

and space probabilities are introduced.

Define σH,j to be the probability that a head packet in the HOL slot of an active stage-j

queue will find space in its next-stage queue. Similarly, define σH,j to be the probability that a

non-head packet in the HOL slot of an active stage-j queue will find space in its next-stage queue.

Define vE,j to be the probability of head-packet arrival to an empty stage-j queue.

Similarly, define vT,j to be the probability of head-packet arrival to a stage-j queue HOL slot given

that the slot held a tail packet in the previous cycle.
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The queue-i HOL factor for a transition from state H((d1,l1),(d2,l2),...,(da,la)) to state

H((D1,L1),(D2,L2),...,(Da,La)) is given by

fj(H((d1,l1),(d2,l2),...,(da,la)),H((D1,L1),(D2,L2),...,(Da,La)), i) = fj(Ht, Ht+1, i) =

(1− vE,j), if Li = li = E;

σH,j(di)
C(Ht,i)

µ(1− vT,j), if Li = E, li = H, A(Ht, Ht+1, i);

σH,j(di)µ(1− vT,j), if Li = E, li = H, A(Ht, Ht+1, i);

vE,j

a , if Li = H, li = E;

1, if Li = li = H, Di = di, A(Ht, Ht+1, i);[
(1− σH,j(di)) + σH,j(di)µ

vT,j

a

] 1
C(Ht,i) , if Li = li = H, Di = di, A(Ht, Ht+1, i);

σH,j(di)
C(Ht,i)

µvT,j

a , if Li = li = H, Di 6= di, A(Ht, Ht+1, i);

σH,j(di)µ
vT,j

a , if Li = H, li = H, A(Ht, Ht+1, i);

σH,j(di)
C(Ht,i)

(1− µ), if Li = H, li = H, Di = di, A(Ht, Ht+1, i);

1− σH,j(di)µ, if Li = li = H, Di = di, A(Ht, Ht+1, i);

0, otherwise;

(3)

where C(Ht, i) is the number of queues with head-slot packets bound for output port di in

state Ht, σH,j(di) = σH,j , and σH,j(di) = σH,j . A space-conditional HOL factor will be used

in the computation of arrival rates. The stage-j space-conditional HOL factor, f ′j(Ht, Ht+1, i),

is given by (3) when σH,j(di) = σH,j , di 6= 1; σH,j(1) = 1, and σH,j(di) = σH,j , di 6= 1;

σH,j(1) = 1. The corresponding space-conditional transition probability is given by T ′j(H1, H2) =

Πa
i=1f

′
j(H1, H2, i).

3.3 QUEUE MODEL

Queue-model states are labeled Ix,y where 0 ≤ x ≤ m, and y ∈ {T, T, φ}. The symbol

x denotes the number of packets in the queue. The symbol y = T if the last occupied slot holds the
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tail packet of a message, y = T if the last occupied slot holds a non-tail packet of a message, and

y = φ if x = 0. The probability that stage-j queue will be in state Ix,y is denoted pj(Ix,y).

Queue-model transition probabilities are a function of arrival rate, service rate, and

expected message length. Define sj to be the service rate, the probability that a stage-j HOL

packet is able to move forward. Let ri,j , 0 ≤ i ≤ m, denote the arrival rate, the probability a new

message will be ready to move into a stage-j queue given that the queue is in state Ii,T or I0,φ. Four

distinct values of ri,j will be computed per queue: r0,j for an empty queue, rm,j for a full queue,

rm−1,j for a queue with one slot free, and rN,j for a queue with 1 to m− 2 packets. For notational

simplicity, ri,j , 0 < i < m− 1, will be used for rN,j; this will be called the normal queue arrival

rate.

The stationary probabilities must satisfy the following equations:

pj(I0,φ)= pj(I0,φ)(1− r0,j) + pj(I1,T)sj(1− r1,j)

pj(I1,T)= pj(I0,φ)r0,jµ+ pj(I1,T)[(1− sj)(1− r1,j) + sjr1,jµ]+

pj(I1,T)sjµ+ pj(I2,T)sj(1− r2,j)

pj(I1,T)= pj(I0,φ)r0,j(1− µ) + pj(I1,T)sjr1,j(1− µ) + pj(I1,T)sj(1− µ)

pj(Ii,T)= pj(Ii−1,T)(1− sj)ri−1,jµ+ pj(Ii−1,T)(1− sj)µ+

pj(Ii,T)[(1− sj)(1− ri,j) + sjri,jµ]+

pj(Ii,T)sjµ+ pj(Ii+1,T)sj(1− ri+1,j)

pj(Ii,T)= pj(Ii−1,T)(1− sj)ri−1,j(1− µ) + pj(Ii−1,T)(1− sj)(1− µ)+

pj(Ii,T)sjri,j(1− µ) + pj(Ii,T)sj(1− µ)

pj(Im−1,T)= pj(Im−2,T)(1− sj)rm−2,jµ+ pj(Im−2,T)(1− sj)µ+

pj(Im−1,T)[(1− sj)(1− rm−1,j) + sjrm−1,jµ]+

pj(Im−1,T)sjµ+ pj(Im,T)sj

pj(Im−1,T)= pj(Im−2,T)(1− sj)rm−2,j(1− µ) + pj(Im−2,T)(1− sj)(1− µ)+

pj(Im−1,T)sjrm−1,j(1− µ) + pj(Im−1,T)sj(1− µ) + pj(Im,T)sj
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pj(Im,T)= pj(Im−1,T)(1− sj)rm−1,jµ+ pj(Im−1,T)(1− sj)µ+ pj(Im,T)(1− sj)

pj(Im,T)= pj(Im−1,T)(1− sj)rm−1,j(1− µ)+

pj(Im−1,T)(1− sj)(1− µ) + pj(Im,T)(1− sj)

for 2 ≤ i ≤ m− 2 and 1 ≤ j ≤ n.

3.4 COMPUTATION OF RATES

The queue- and HOL-arrival rates, service rate, and space probabilities are a function of

HOL- and queue-model state probabilities.

The empty-queue arrival rate, vE,j , 1 < j ≤ n, is computed from the stage-(j − 1)

HOL-model state distribution. Let H1 be the set of HOL states in which no HOL packets are

destined for a particular port, without loss of generality, 1. The set is given by H1 = {H | H =

H((d1,l1),(d2,l2),...,(da,la)) ∈ H, ∀1≤i≤a di 6= 1 }. Similarly, let H1 be the set of states in which

at least one HOL packet is destined for the port, H1 = {H | H = H((d1,l1),(d2,l2),...,(da,la)) ∈

H, ∃1≤i≤a di = 1 }. An empty stage-j queue at time t coincides with stage-(j − 1) HOL stateH1

at time t− 1. The empty-queue arrival rate is then

vE,j =

∑
H1∈H1

∑
H2∈H1

pj−1(H1)Tj−1(H1, H2)∑
H∈H1

pj−1(H)

for 2 ≤ j ≤ n. For the first stage vE,1 = λ, the arrival rate for new messages.

The quantity vT,j is computed so that the flow rate into a HOL slot is the network

flow rate, ρ. This traffic is divided into three components. Flow entering: an empty HOL slot,

a HOL slot containing a head packet, and a HOL slot containing a non-head packet. Let HE

be the set of states in which a particular queue HOL slot, say 1, is empty, HE = {H | H =

H((φ,E),(d2,l2),...,(da,la)) ∈ H}. Let HH′ be the set of states in which the HOL slot has a head

packet that is not blocked by a message in progress, HH′ = {H | H = H((d1,H),(d2,l2),...,(da,la)) ∈

H, ∀2≤i≤a (di=d1)⇒ (li= H) }. LetHH be the set of states in which the HOL slot has a non-head
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packet,HH = {H | H = H((d1,H),(d2,l2),...,(da,la)) ∈ H}. Then vT,j is chosen so that

∑
H∈HH′

pj(H)
σH,j

C(H, 1)
(µvT,j + 1− µ)+

∑
H∈H

H

pj(H)σH,j (µvT,j + 1− µ)+
∑
H∈HE

pj(H)vE,j = ρ

holds. Solving yields

vT,j =
ρ−

∑
H∈HH′

pj(H) σH,j

C(H,1) (1− µ)−
∑
H∈H

H

pj(H)σH,j(1− µ)−
∑
H∈HE

pj(H)vE,j∑
H∈H

H′
pj(H) σH,j

C(H,1)µ+
∑
H∈H

H

pj(H)σH,jµ
.

The stage-j queue-model service rate is equivalent to the stage-j HOL-model service

rate. The HOL-model service rate is the probability that a HOL packet will advance. A non-head

packet will advance if there is space; a head packet will advance if there is space and it wins

contention. The service rate is given by

sj =

∑
H∈HH′

pj(H) σH,j

C(H,1) +
∑
H∈H

H

pj(H)σH,j∑
H∈(H−HE)

pj(H)
.

The empty-queue arrival probability is equivalent to the corresponding probability used

in the HOL model, that is, r0,j = vE,j . The normal queue arrival probability, rN,j , is found by

considering the previous-stage HOL system. If a non-empty queue has less than m− 1 items and

the last occupied slot holds a tail packet then any packet that had entered the queue in the previous

cycle was not blocked and had ended a message. This fact is used to obtain a previous-stage HOL-

system distribution which is in turn used to find the arrival probability. Let HH→1 be the set of

states in which at least one HOL slot has a packet bound for a particular queue, say 1, and no HOL

slot has a non-head packet bound for the queue. HH→1 = {H | H = H((d1,l1),(d2,l2),...,(da,la)) ∈

H, ∃1≤i≤a di = 1, ∀1≤i≤a (di = 1)⇒ (li = H) }. LetHH→1 be the set of states in which no HOL

slot has a non-head packet bound for the queue, HH→1 = {H | H = H((d1,l1),(d2,l2),...,(da,la)) ∈

H, ∀1≤i≤a (di = 1)⇒ (li = H) }. Using the space-conditional transition probabilities,

rN,j =

∑
Ht∈H

∑
Ht+1∈HH→1

pj−1(Ht)T ′j−1(Ht, Ht+1)∑
Ht∈H

∑
Ht+1∈HH→1

pj−1(Ht)T ′j−1(Ht, Ht+1)
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for 2 ≤ j ≤ n. The arrival probability rm−1,j is computed so that the flow rate into the queue is ρ:

rm−1,j =
ρ− pj(I0,φ)r0,j −

∑m−2
x=1 pj(Ix,T)rx,j −

∑m−1
x=1 pj(Ix,T)

pj(Im−1,T)
,

for 2 ≤ j ≤ n. The full-queue arrival probability is found so that the fraction of time the previous-

stage HOL model has a head packet bound for a particular queue matches the corresponding

quantity in the queue model:

rm,j =

∑
H∈HH→1

pj−1(H)− pj(I0,φ)r0,j −
∑m−1
x=1 pj(Ix,T)rx,j

pj(Im,T)
,

for 2 ≤ j ≤ n. For the first stage, ri,1 = λ for 0 ≤ i ≤ m.

Stage-j space probabilities σH,j and σH,j are computed so the flow rate leaving a stage-j

HOL slot is equal to the flow rate entering a stage-(j+ 1) queue. The probability that there will be

a head packet ready to enter a stage-(j + 1) queue is pj+1(I0,φ)vE,j+1 +
∑m
x=1 pj+1(Ix,T)rx,j+1;

the probability that it is successful is

pj+1(I0,φ)vE,j+1 +
m−1∑
x=1

pj+1(Ix,T)rx,j+1.

This yields the head-packet space probability,

σH,j = 1− pj+1(Im,T)rm,j+1

pj+1(I0,φ)vE,j+1 +
∑m
x=1 pj+1(Ix,T)rx,j+1

,

for 1 ≤ j ≤ n− 1. Similar reasoning is used for the non-head space probability,

σH,j = 1− pj+1(Im,T)∑m
x=1 pj+1(Ix,T)

,

for 1 ≤ j ≤ n− 1. For the last stage, σH,n = σH,n = 1.

The flow rate is determined by the arriving traffic and the fraction of time that traffic is

not blocked:

ρ = λ

(
p1(I0,φ) +

m−1∑
i=1

p1(Ii,T)

)
+
m−1∑
i=1

p1(Ii,T).
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3.5 COMPUTATION OF DELAY

The delay of a message is defined to be the number of cycles that the head packet is in

the network. The normalized delay is defined as the delay divided by the number of stages. The

waiting time of a message in a queue is defined to be the number of cycles that the head packet

spends in the queue. (This includes what others call service time.) The delay then is the sum of

the waiting times. The total time a message spends in the network is the delay plus the message

length minus one.

The expected waiting time is found by first computing, for 0 ≤ i < m, the waiting time,

wi,j , for a head packet arriving at a stage-j queue that had i packets in the previous cycle. The

expected waiting time is the weighted sum over i. Let

s′j =

∑
H∈H

H′
pj(H)σH,j/C(H, 1)∑

H∈(H−HE−HH
) pj(H)

be the service probability of a HOL packet that is a head packet. The expected waiting time of a

head packet at a stage-j queue HOL slot is then 1/s′j . The expected waiting time of a HOL packet

of unknown type is 1/sj . If the queue had i packets in the cycle before a message arrived then

wi,j = i/sj + 1/s′j − 1. The expected waiting time, wj , is then given by

wj =
pj(I0,φ) r0,js′

j
+
∑m−1
i=1 pj(Ii,T)ri,j(i/sj + 1/s′j − 1)

pj(I0,φ)r0,j +
∑m−1
i=1 pj(Ii,T)ri,j

.

The normalized delay is then
∑n

j=1wj/n.

3.6 ANALYSIS PROCEDURE

Stationary distributions for the HOL and queue models are obtained through iteration,

using the following procedure. State probabilities are initialized uniformly. That is, if a state model

has x states then the probability of each state is initialized to 1/x. Space, arrival, and service

probabilities are initialized to 0.5. Other initializations are possible; all those tested yielded the

same results. After the second iteration new values for the state probabilities, service and arrival

-12-
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Figure 2. Throughput and delay v. message length for (5, 2, 8) and (5, 4, 8) networks,
λ = 1.

rates, and space probabilities are computed using the average of values computed in the previous

two iterations. (At the first two iterations initial values are used.) Iteration proceeds until the

difference between values computed for quantities in consecutive iterations is sufficiently small.

4 RESULTS

The analysis was tested by comparing its predictions against those of a simulator.

Comparisons of predicted throughput and delay were made for a variety of network and traffic

models. Network size, arrival rate, queue size, switching-element size, and message size were

varied.

The simulator uses the same network and traffic model as the analysis. Simulations

were performed for 100,000 cycles; simulator output includes delay and throughput. Confidence

intervals (95%) were computed assuming that simulator throughput and delay computed for a

series of identical runs are normally distributed. The confidence intervals are extremely small. The

analysis was performed for less than 1000 iterations in most cases. The number of iterations was

chosen so that corresponding probabilities differed by less than 10−6 in the last two iterations of
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Figure 3. (a) Delay v. arrival rate in (5, 2, 8) networks. (b) Delay v. queue size in
(5, 2,m) networks for λ = 1. Both for message length 8.

each analysis.

The prediction of message-length effects on networks using 2× 2 and 4× 4 switching

elements can be seen in Figure 2. The figure shows the normalized throughput and delay for

networks offered saturating traffic, that is, λ = 1. The effect of message size is clearly modeled.

As with other analyses of this type, the throughput is overestimated. The delay in simulated and

analyzed systems closely match.

The prediction of delay at varying arrival rates for an average message length of 8 are

plotted in Figure 3(a). The delay computed closely matches simulations. At higher arrival rates the

throughput computed (not shown) is too high. As can be seen in Figure 3(b)the effect of queue size

on network performance is predicted. In that figure, delay is plotted against queue size for (5, 2,m)

networks. Note that the queue size ranges from smaller-than to larger-than the average message

length. Delay is accurately predicted for smaller queue sizes, but diverges for larger queues.

The effect of network size was also tested. As with unit-message-length analyses, the

throughput prediction is increasingly overestimated as the number of stages increases. The delay

prediction, in contrast, remains close to the delays obtained from simulation.

-14-



5 CONCLUSIONS

A geometrically distributed-message-length banyan-network analysis has been pre-

sented. This is one of the few banyan network analyses that consider anything other than

fixed-length messages. This is of value because in real parallel computers and communication

networks message sizes vary. In the analysis, the banyan-network switching elements are captured

by two state models: one modeling a single queue, the other modeling all of a switching-element’s

queue heads. Banyan networks with finite queue sizes and arbitrary switching-element size can be

analyzed.

The analysis was tested against simulations. The results show that message-length

effects are effectively modeled. In particular, the negative impact that long messages have on

network performance is predicted.

6 APPENDIX

Let πι and πo be permutations of switching-element input and output labels, respectively.

Then statesHα = H((d1,l1),(d2,l2),...,(da,la)) andHβ are said to be equivalent if there exists an input-

label permutation πι and an output-label permutation πo such that Π(Hα) = Hβ where

Π(H((d1,l1),(d2,l2),...,(da,la))) = H((πo(dπι(1)),lπι(1)),(πo(dπι(2)),lπι(2)),...,(πo(dπι(a)),lπι(a)))

and π(x) is the symbol to which x is mapped under permutation π.

Lemma: For all 1 ≤ j ≤ n and H1, H2 ∈ H transition probability Tj(H1, H2) =

Tj(Π(H1),Π(H2)) where Π is any of the switching-element mappings described above.

Inspection of equations (1-3) will reveal that permuting switching-element labels will

have no effect. For example, consider predicateDi=di in (3). ClearlyDi=di ⇐⇒ πo(dπι(j))=

πo(Dπι(j)), where πι(j) = i. Other references to switching-element inputs and outputs are also

independent of absolute or relative position and so are unaffected by the permutations. A detailed

proof is omitted.
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