
A Multiprocessor Memory Processor for
Efficient Sharing And Access Coordination1

David M. Koppelman

Department of Electrical and Computer Engineering
Louisiana State University, Baton Rouge

koppel@ee.lsu.edu

Abstract
The growing disparity between instruction issue rates and
memory access speed impacts multiprocessors especially
hard under certain circumstances. To alleviate the prob-
lem a system is described here in which smart memory
chips can execute simple operations so that certain tasks
can be completed with less contention, fewer messages,
or by avoiding synchronization that would otherwise be
necessary. These operations, issued in only a few cycles
by a CPU, direct the memory to read, modify, and write
a memory location. Tag values can be used to delay com-
pletion of an operation until the needed tag value is set.
Operations can have multiple steps, and can be sent be-
tween memories to complete. A completion counter at
the issuing CPU can be used to wait until in-progress
operations have completed. Demonstrating their useful-
ness, execution-driven simulation of such systems shows
speedup of well over two times on code fragments cho-
sen for their suitability. The radix sorting program from
the SPLASH-2 benchmark shows over 29% reduction in
execution time.

1 Introduction

A natural solution to the widening gap between instruc-
tion issue rates and memory access speed is adding pro-
cessing capability to memory chips, where inter-chip de-
lays can be avoided and the large word sizes inherent in
memory design is available. The size of, and the role
played by, this processing varies. The number of tran-
sistors available on a single chip has reached the point
at which memory can share a chip with a processor not
much less powerful than a conventional single-chip pro-
cessor [4,25]. These would serve as the main processors in
a system. Alternately, the memory processor might be
very simple, performing basic operations, but perhaps
in parallel on many items fetched at once (perhaps over

many chips). (See [12] for a recent example.) Such chips
would assist the main processors for specialized tasks,
such as image processing.

An intermediate approach is described here, appli-
cable to multiprocessors (cached, single-address-space,
shared-memory systems). Memory is coupled with exo-
processors, which operate on memory locations as di-
rected by exo-packets, special messages dispatched by
exo-processors and main (non-memory) CPUs. The pro-
cess starts when the CPU issues an exo-op, causing an
exo-packet to be constructed and dispatched to an ap-
propriate memory. An exo-op specifies something like a
function or complex instruction (depending upon imple-
mentation); some data may be placed in the exo-packet
itself, other data is stored in the memory (the exo-packet
holds the addresses). The CPUs issue exo-ops in non-
blocking fashion and may wait for their completion using
a completion counter.

Small context (a general term for data accessed dur-
ing execution) size distinguishes the execution of exo-ops
from a thread in conventional code. Whereas a thread re-
quires registers and access to memory, the context needed
by an exo-op is contained in the exo-packet itself and the
memory it accesses. Small context size enables exo-ops
to execute without the need to move much data. Also im-
portant for their intended use, it allows a blocked exo-op
to be quickly resumed at the appropriate time.

With the co-location of processing and memory,
computation can efficiently be triggered by the modifi-
cation of a memory location. Specifically, exo-ops can
block until a particular memory location takes on a par-
ticular value. Because of the small context and other de-
sign features, an exo-op can resume without taking much
time away from other exo-ops. The issuing CPU can
use a completion counter to wait until in-progress opera-
tions have completed, allowing efficient synchronization.
A system using such processors can perform some opera-
tions far more efficiently, and can run parallel programs
too inefficient for conventional multiprocessors.

Exo-op execution is illustrated in Figure 1 in which
the execution of nested loops with (to the left) and with-
out (to the right) exo-ops is plotted. Processor states

1 To appear at the Workshop on Mixing Logic and DRAM, 24th International Symposium on Computer Architecture, June 1997.

-1-

Time / Cycles x 1,000

P
ro

ce
ss

o
r

340 350 360 370 380 390 400
0
2
4
6
8

10
12
14
16

Idle.
Misc. Busy.

In barrier, idle.
In barrier, busy.

Exo Loop, Odd Iter.
Exo Loop, Even Iter.

Conv. Loop, Even Iter.
Conv. Loop, Odd Iter.

Exo Nested Loops Conventional Nested Loops

Figure 1. Execution of nested-loops with (left) and without (right) exo-ops. Light shading indicates execution of even iterations
of the outer loop, dark shading indicates odd iterations. Execution time without exo-ops is longer because of cache misses and the
barrier used in each iteration of the outer loop. With exo-ops, no barrier is necessary and iterations can overlap because tagging
is used to ensure the proper operation order.

are shown by shades, light and dark shades are used to
distinguish even and odd iterations of the outer loop.
Data produced by a processor in one iteration of the
outer loop is used by other processors in the next it-
eration. The synchronization is conventionally provided
by a barrier, this is shown on the right part of the graph
where the synchronization overhead is clearly visible as
dark gaps between the iterations. On the left, it can be
seen that barrier overhead is not present and that itera-
tions overlap, resulting in faster completion. Overlap is
possible because tags are used to distinguish data pro-
duced in different iterations. The issuing of exo-ops also
avoids cache misses which are frequent in this example.
The large non-uniformity in the outer-loop iteration time
using exo-ops is due to the processor stalling when the
number of outstanding exo-ops reaches a limit.

Exo-ops can be used to avoid the multiple time-
consuming communication steps needed to modify data,
a benefit when the data will not be needed by the CPU
other than for modification. Using the ability of exo-ops
to wait for memory to take on specific values, operations
can be quickly issued by a CPU before it is known if
operands are available. The alternative would be waiting
for synchronization and then waiting after cache misses,
as the externally produced data is read. To be sure, there
are many useful programs where such synchronization
and miss overhead is only a small part of execution. But
for others the overhead limits speedup.

The remainder of this paper is organized as follows.
Preliminaries are presented in the next section, followed
by details on exo-processor systems in Section 3. Exo-
op effectiveness was evaluated by using execution-driven
simulation, these are described in Section 4. Related

work is surveyed in Section 5, and conclusions appear
in Section 6.

2 Preliminaries
The following terminology will be used; see [20,28] for
details. A multiprocessor is a parallel computer that ef-
ficiently supports a shared address space for communi-
cation between the parts of a parallel program. Such a
system consists of CPUs, where the programs run, and
memory modules or memories for short, where data is
stored. (The term CPU is used instead of processor to
avoid confusion with the term exo processor.) Memory
may be divided into independent banks such that an ac-
cess to one bank can start even while another bank is
busy. A network interface connects CPUs and memories
to the interconnection network. The network interface
prepares and dispatches messages in response to requests
by the connected CPU or memory, it also receives mes-
sages and routes them to the connected CPU or memory
processor [20,28]. For purposes of memory management,
the address space is divided into blocks, the smallest
cacheable unit. Each address is mapped to a memory
module called its home memory. A cached copy of a
block is called a line.

3 Exo-Processor
3.1 Hardware
A system using exo-ops is derived from a conventional
multiprocessor by integrating exo-processors and memo-
ries; see Figure 2.

A memory unit contains memory, an exo-processor,
and a packet buffer. A memory module consists of several
memory units sharing a single network interface, see Fig-
ure 3. Arriving exo-packets and other memory requests

-2-

MMPE

NW Interface

Interconnection Network

MMPE

NW Interface

Figure 2. Exo system overview. PEs are processors capable
of fast message dispatch but are otherwise ordinary. MMs are
memory modules containing banks of memory/exo-processor
chips.

XP PB

DRAM

XP PB

DRAM

NW Interface

Bank 1 Bank 2 Bank b

Memory Unit

Memory Module

Memory Unit Memory Unit

XP PB

DRAM

Bank b

Figure 3. Memory module overview. DRAM, an exo-processor
(XP), and a packet buffer (PB) form a memory unit which is
implemented on a single chip. A memory module consists of
several memory units. In a typical configuration all share a
network interface with a processing element.

are sent by the network interface to the appropriate bank
for processing. In the other direction, memory units dis-
patch exo-packets and other protocol messages via the
network interface. The work performed by one memory
unit does not interfere with communication between the
network interface and other memory modules, so with
enough banks packets can be processed as fast as they
can be received.

CPUs have a mechanism for fast message assembly
and dispatch, used for issuing exo-ops. Any general-
purpose mechanism will do; the description below is for
systems that use an alternate address space to interface
with a network interface controller that prepares and dis-
patch messages. CPUs also have an in-progress counter;
typically incremented by the CPU and decremented in
response to incoming exo-op completion messages. The
CPU may wait for the counter to reach zero.

A CPU issues an exo-operation by executing an in-
struction identifying the operation (e.g., by writing to
an alternate-address-space [AAS] address indicating that
the exo-operation is to be started, see below). Operands
are specified on that and following instructions. This

data, called an exo-packet, is transfered to the network
interface. At some point in the issue process the in-
progress counter may be incremented. Exo-ops have one
or more steps, typically consisting of a memory access
(load or store) and an arithmetic operation.

Exo-operations are envisioned as short; they might
be predefined (e.g., hardwired) or could be defined at
run time by the parallel program. In the latter case,
code implementing the operations would be written to
the exo-processors before being issued.

Upon issue, an exo-op is dispatched to the memory
unit at which the first operand is located. There it is
buffered (using a simple but inefficient storage allocation
mechanism) until the first step can be executed. After
execution and if there are additional steps the exo-packet
is sent to the memory at which its next operand resides
and the process is repeated. After the last step a message
to decrement the in-progress counter may be sent to the
issuing CPU.

The utility of exo-ops is greatly increased by the use
of tagged memory, in which state is associated with ad-
dresses. Unlike the tagged memory used in HEP [8], exo-
operations might wait in an exo-processor until a tag on a
needed block takes on a particular value, indicating their
presence in the block’s directory. This could be imple-
mented by writing a field in a block’s state record with
the storage index (within the packet buffer) of an exo-
packet that did not find the expected tag; the expected
tag might also be written. Any access that changes a
block’s tag would check these fields so any now enabled
exo-packets found could be resumed. Further implemen-
tation details are omitted.

As illustrated below, such tags can be used to im-
plement very efficient synchronization and atomic oper-
ations. When tag bits are part of the block (as opposed
to extra bits added to the storage defined for an address)
implementing tagged operations adds little to the cost of
a system that already includes an exo-processor.

4 Simulation Experiments
4.1 Methodology
Simulation experiments were performed to determine the
performance of code fragments and a benchmark with
and without exo-ops and to determine which bottlenecks
limit performance. Simulations were performed using
Proteus L3.10 [17] which was derived from Proteus 3.1[3],
an execution-driven parallel computer simulator. Code
to run on the simulated system is compiled into assem-
bler code (using a host system compiler) and augmented.
Augmentation inserts code that, among other things,
keeps track of simulated time, performs switches between
threads (possibly on different simulated processors), and
replaces possible shared memory accesses with calls to
simulator routines. Simulated program instructions that

-3-

Table 1: Base Configuration Parameters

Simulation Parameter Value
System Size 16 CPUs
Network Topology 4× 4 mesh
Cache Size 211 sets
Cache Associativity 8
Cache Line Size 16 bytes
Cache Capacity 262,144 bytes
Cache Hit Latency 3 cycles
Mem. Mod. Cap. 219 bytes
Address Space Size 32 bits
Directory Size full map (16)
Banks Per Module 4
Memory Miss Latency 42 cycles
Memory Hit Latency 12 cycles
Protocol Message Size 8 bytes (plus data)
Network Interface Width 3 bytes
Network Link Width 3 bytes
Wire + Switch Delay 4 cycles
Exo-Packet Size 8 bytes (plus data)
Exo-Op Issue Latency 2 + 1 cycle/Word
Exo-Packet Constr. Time 6 cycles
Exo-Op Step Exec. Latency 21 cycles
Exo-Op Step Exec. Rate 1 step/12 cycles
Processor Stall Thresh. 25 in-progress
Processor Resume Thresh. 24 in-progress

do not access memory take one scaled cycle of simulated
time to execute. (Cycle scaling is an ad-hoc technique
of simulating superscalar systems. Three scaled cycles
are equivalent to one “real” cycle, chosen to reflect the
issue rate on a four-way superscalar machine. Timings
are given in scaled cycles.)

A cached shared memory system is fully simulated;
the protocol used is similar to the one described in [5];
sequential consistency is maintained, ignoring exo-ops.
Memory access latency is 42 cycles, including directory
manipulation, but not including the time needed to dis-
patch protocol messages. Memory banks have a one-
block buffer, with a 12-cycle hit latency. The intercon-
nection network is simulated at the packet-transfer level.

The simulated systems are described in terms of dif-
ferences with a base configuration having 16 CPUs in-
terconnected by a two-dimensional mesh network. Link
widths are 3 bytes, chosen so that processor/network
bandwidth in bytes per executed instruction approxi-
mately match the Sun Ultra Enterprise 4000 (assuming
the 4-way Ultra Sparc sustains an issue rate of 3). There
are 16 219-byte memory modules each having four banks
of memory. Full-map cache directories are used; address
space is organized into 16-byte blocks. At the CPUs, 218-
byte, eight-way, set-associative caches are used. A list of
simulation parameters appears in the table below.

Exo-ops with p operands take p + 2 cycles to issue,
another 6 cycles to construct, and 21 cycles to execute
each step. An exo-processor can start executing steps
every 12 cycles. The additional time needed for cache
and memory transactions and network transit time is
fully simulated and part of operation timing. To limit
congestion, processors with 25 in-progress exo-ops stall,
resuming at 24.

4.2 Programs Tested
Five code fragments were written to illustrate exo-
operations (not whole-program performance) under fa-
vorable and unfavorable conditions: histogram, nested
loops, vector sum, and two array permutations. The frag-
ments and their performance on the base system are dis-
cussed below; their performance on other configurations
are discussed in Section 4.4. Also tested is a radix sorting
program based on the radix sort in the SPLASH-2 suite
[31].

The histogram fragment computes a global his-
togram of data partitioned among CPUs. Processors
increment a bin corresponding to each data element.
The code was implemented two ways: using an atomic
fetch-and-add instruction that executes at the CPU and
exo-operations. In the histogram fragment conventional
techniques are particularly inefficient and so the exo-op
code is much faster. Of course, the code fragment is for
comparison to systems which do not have increment-and-
fetch instructions executed at memory.

The execution of fetch-and-add gets a writable copy
of the block into the cache and then performs the add;
execution time is the same as an ordinary write. A 1600-
bin histogram was computed, elements were randomly
distributed over bins with a uniform distribution.

Execution time for the fetch-and-add implementa-
tion was 156 cycles per iteration. The exo-operation im-
plementation required only 17.1 cycles per iteration, over
nine times faster. The conventional implementation suf-
fers from false sharing and block contention on writes,
the exo implementation not only avoids these but is non-
blocking.

The nested-loops fragment (the conventional paral-
lel implementation is shown below) computes a new array
using two values from the old (new in the previous itera-
tion) array. Symbols A and B are the base of two arrays,
perm is the base of a mapping of the indices, and start
and stop specify the part to be performed at the CPU. In
the conventional implementation the indirect read (using
index perm) will frequently miss after the first iteration
and the write will generate invalidations to other CPUs.
Further, the overhead of the barrier is significant when
stop-start is small and regardless, the barrier precludes
overlapping of outer iterations.

-4-

Code Fragment 1

for(outer = 0; outer < outer_end; outer++){
/* Return a permutation. */
int *perm = perms[outer];
if(outer & 0x1){

x=A; y=B; /* Odd iterations. */
} else {
x=B; y=A; /* Even iterations. */

}
barrier();
for(inner = start; inner < stop; inner++)

x[inner] = y[inner] + y[perm[inner]];
}}

The exo-op version uses a single exo-operation for
the inner loop body with tags and with three param-
eters, &x[inner][offs], &y[inner][offs], and &y[
p[inner]][offs], in which &base[index] indicates
the address of base[index], and offs is outer % 5.
(To reduce the cost of avoiding deadlock, storage is pro-
vided for several iterations, offs indicates which storage
is used.) Reads are performed when a tag is at a proper
value, e.g., full; writes set the tag. In the exo-op im-
plementation invalidations associated with the write are
avoided, barrier overhead is avoided, and outer loop iter-
ations are overlapped.

On the base system, with 16 iterations per inner
loop per CPU, the conventional implementation takes
216 instructions per iteration; the exo-op implementation
takes 84.8, about 2.5 times faster.

The vector operation fragment computes a[i] =
a[i] + b[i] + c, with each CPU getting a range of i
values. This is an operation that shared-memory ma-
chines do well and vector machines such as the Crays
do best. In the former a miss to the first element on a
cache line brings in subsequent elements; in the latter the
programmer or compiler, taking advantage of the simple
access pattern, would bring data to the processors in ad-
vance, using a high bandwidth interconnect that could
keep up with the processors. Exo-operations, in contrast,
only avoid the first miss. The fragment was implemented
three ways: using conventional approaches that miss and
hit the cache and using exo-ops.

The conventional approaches that miss and hit took
75.8 and 19.7 cycles per iteration, respectively; exo-
operations took 38.8 cycles per iteration, respectively.
The exo-op approach is almost twice as fast as the con-
ventional code that misses, however longer lines would
reduce the exo-op version’s advantage. When accesses
hit, the conventional approach is faster, as one would
expect.

Two permutation code fragments are simulated.
The in-place fragment permutes some array elements
(leaving the others unmoved); the copy permutation frag-
ment fills a new array with the rearranged elements from

the original. In both fragments the permutation itself is
stored in private memory; the caches are warmed so that
the “from” locations are local. One exo-op per transpose
is used for the in-place permutation with tags coordinat-
ing writes; the conventional code copies moved elements
to temporary storage in local memory (100% hit rate, 1
cycle hit latency), executes a barrier, then copies them
back. The copy permutation is implemented with loads
and stores; an inverse permutation is used so that writes
to local elements do not exhibit false sharing, speeding
the conventional code. In all cases the system is initial-
ized so that source and destination (if any) array elements
are exclusively cached at the CPU near their home mem-
ory. Arrays had 4096 integer elements; the in-place per-
mutation was performed on 800 elements, the maximum
that could be performed without risking deadlock (given
the base configuration’s stall threshold of 25).

The conventional in-place permutation took 332 cy-
cles per iteration; using exo-operations, 78.2, over four
times faster. The copy permutation took 107 and 35.7 cy-
cles, respectively; almost three times faster. By avoiding
false sharing and coordinating writes, exo-ops perform
the in-place permutation well. Exo-ops also improve the
copy permutation.

4.3 Benchmark
Simulations were performed using a modified version of
radix, a kernel from the SPLASH-2 benchmark suite [31]
that implements a radix sort. Suggestions on placement
of tasks and allocation of shared memory appearing in the
benchmark were followed so that radix was well tuned,
with or without exo-ops. Radix was compiled with opti-
mization, and run using the default problem size speci-
fied in the code: 262,144 elements chosen over range 0 to
524,288, sorted using radix 1024.

Radix uses exo-ops to permute the keys which it is
sorting and to compute prefix sums. The prefix sums are
computed using exo-ops implementing a linear chain of
additions, each addition issued by a different CPU. The
prefix sum is computed using about one message per ele-
ment whereas the conventional code uses two (a read and
write). Radix was also modified to improve the perfor-
mance of the prefix sum using conventional operations,
the modified program runs much faster than the unmod-
ified version on the configurations tested.

The conventional implementation takes 3.53 million
cycles; using exo-ops, 2.50 million cycles, a reduction of
over 29%. The conventional code spends about 47% of
its time ranking and 53% permuting. Exo-ops reduce the
permute time by about a third, improvement is limited
by read misses to the element being moved. Using exo-
ops to permute avoids remote misses when computing
the local histogram (using conventional instructions) in
the following iteration, another benefit. Prefix time is

-5-

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

3/1 6/3 15/6 21/12 30/21 42/30 60/51 90/69

Exo Processor Latency

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

E Radix

E Histo

E Loops

E Vector

E Place

E Copy

(b)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3/3 6/3 9/3 21/3 42/3

Link Latency / Bandwidth

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

C Radix

E Radix

C Histo.

E Histo

C Loops

E Loops

C Vector

E Vector

C Place

E Place

C Copy

E Copy

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

3/9 3/3 3/1 3/0.5

Link Latency / Bandwidth

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

C Radix

E Radix

C Histo.

E Histo

C Loops

E Loops

C Vector

E Vector

C Place

E Place

C Copy

E Copy

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

9 18 27 36 42 54 69 84 99

Memory Access Latency

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

C Radix

E Radix

C Histo.

E Histo

C Loops

E Loops

C Vector

E Vector

C Place

E Place

C Copy

E Copy

Figure 4. Execution time of programs normalized to base-configuration conventional systems (e.g., 0.5 indicates half the execution
time of a conventional system). Letter before program name indicates Exo or Conventional version. Parameters varied are (a)
exo-processor latency/issue period (cycles), (b) network link latency (given as cycles of latency / bytes per cycle of bandwidth), (c)
network link width (same format as latency), and (d) memory latencies (cycles).

a small fraction of execution time, so its reduction had
little impact.

4.4 Configuration Effects
Because exo-ops are nonblocking system performance is
determined by the rate at which they finish execution.
Call the rate at which exo-ops finish execution the com-
pletion rate and the time from issue to completion the
completion latency. Clearly when the completion rate is
higher than issue rate, performance is insensitive to fac-
tors that affect completion rate. When completion rate is
lower than the issue rate, CPUs will stall as the number
of in-progress exo-ops exceeds the stall threshold. There-
after, execution rate is sensitive to whatever is limiting
completion rate.

Completion rate can be determined by the worst
of network characteristics, memory latency, and exo-
processor speed. Completion latency is determined by
the sum of these, and also by the amount of time waiting
for tags. Note that if a large amount of time is spent
waiting for tags, the resulting completion latency will
limit completion rate even though the memories, exo-
processors, and network can keep up. (The stall is nec-
essary to avoid the packet buffer overflow.)

In the simulation experiments, network, memory,
and exo-processor speed were varied to produce these
limiting effects. In the base system memory is usually
the bottleneck, two-step exo-ops can be issued at a max-
imum of six times faster than memory accesses can be
completed (accounting for the four banks). The max-
imum issue rate is 2.86 times what the network inter-
face can handle (including all traffic generated by the
exo-packet) and 1.71 times what the exo-processor can
handle. (The only code that could achieve the maxi-
mum issue rate consists of uninterrupted—not even by a
branch—exo-op issue instructions.)

In the first set of experiments exo-processor speed
was varied. Normalized execution time of radix and the
fragments is plotted in Figure 4(a) for a variety of exo-op
execution speeds. Key x/y indicates x-cycle latency and
y-cycle period (1/rate). Execution time is normalized to
conventional code running on the base system. (Conven-
tional programs are not shown on this plot. They are
easily spotted on plots where they do appear since they
all have an execution time of 1 at the base system value.)

Radix uses exo-ops for only a fraction of its execu-
tion time, and issues them at a lower rate, so it is less
sensitive than the others. Its execution time barely im-

-6-

proves below the base value of 21/12, and barely degrades
even at 90/60.

Nested loops, in contrast is strongly affected. Each
of the three steps in the exo-ops issued by the nested
loops program must check tags; an exo-op step with an
unsuccessful tag check takes additional time (a band-
width effect) and also suffers higher latency. In the sim-
ulated system, any change to a block with waiting exo-
ops, regardless of address, will cause the exo-processor to
check the tags for those exo-ops, inflating the number of
tag checks. For these reasons the nested loops fragment is
most sensitive to exo-op speed. Also having three steps,
the vector fragment is affected by exo-processor speed,
but because it consumes less exo-processor bandwidth
and does not use tags, it is less sensitive. With a single
operand, histogram is least sensitive, suffering only when
exo-processor speed replaces memory speed as the bot-
tleneck. The in-place permutation is a special case since,
to avoid deadlock, it never issues enough exo-ops to stall.

The effect of latency and bandwidth is plotted in
Figure 4 (b). Axis label x/y indicates a link latency of
x cycles and a bandwidth of y bytes per cycle. The plot
shows the effect of increasing network latency while hold-
ing bandwidth constant (the network links act as deep
pipelines or transmission lines). Increasing latency is dis-
astrous for conventional programs, but has almost no ef-
fect on the exo systems, which are performance limited by
various other factors discussed here. Shrinking network
bandwidth, shown in Figure 4 (c), does impact perfor-
mance. Vector is most affected since its exo-packets have
three steps and is not limited by exo-processor speed as is
nested loops. Also note that the conventional programs
don’t fair nearly as badly as they did with high-latency
networks, nevertheless, exo systems’ relative performance
still increases as bandwidth goes down.

Memory effects are seen in Figure 4 (d);. Memory
access latency is varied from 9 to 99 cycles, while pro-
tocol processing time is held constant at 12 cycles. As
expected, conventional programs suffer while the effect
on exo programs depends on their resource usage. As
stated above, memory access time is a bottleneck for
the exo programs, except for loops for which the exo-
processor limits performance. This can be seen in the
figure, as loops is least affected by changes in memory
speed. Lower memory speed does not yield a dramatic
improvement because of other bottlenecks.

The experiments described above show how resource
limits affect performance. Also of interest is other fac-
tors affecting execution, line size, cache size, and system
size. Line size primarily affects the conventional pro-
grams and those waiting for tags. Longer lines improve
performance where there is spatial locality, worsening
performance otherwise. Radix suffers both effects: the

conventional and exo versions are fastest with 32-byte
lines, performance degradation with larger lines is much
worse in the conventional implementation. False sharing
also is present in the histogram and in-place permutation
codes. The conventional copy permutation and loop code
suffer from using a small part of the lines they read.

Reduced cache size slows down the conventional im-
plementation of all of the fragments, and the exo imple-
mentation of radix, which also uses conventional memory
access. The net effect is that exo-ops are of greater bene-
fit on small-cache systems with the code fragments, but of
a reduced benefit with radix, which is of course more im-
portant since it is more representative of real programs.
Because of latency hiding, exo systems with more proces-
sors exhibit greater speedup over conventional systems.

5 Related Work
Exo systems are similar to many existing and proposed
schemes that hide or avoid latency due to memory ac-
cess and synchronization. Some schemes are similar in
that the CPU issues short operations to remote systems.
In smart memory schemes those operations execute on
a memory or protocol processor, in some active message
schemes they execute on a remote CPU. Some schemes
are similar by exploiting proximity (on the same chip) to
memory. Memory might share a chip with a functional
unit capable of simple vector operations or a complete
processor. Some schemes are similar in their use of ef-
ficient synchronization and latency hiding mechanisms.
Active message multithreading systems effectively hide
memory access latency and may be used to implement
the tagged access descried here.

5.1 Remote Operations
Some smart memory and active message systems sup-
port short remote operations intended for computation.
Smart memory is usually proposed to perform some
amount of computation; proposals vary on the granu-
larity and intent of the computation, from simple opera-
tions on single-bit operands, to synchronization support,
to implementation of entire data structures [24].

Systems using smart memory for synchronization
include the Cray T3E [26], a shipping commercial sys-
tem, and Cedar [18], an older research system in many
ways similar to the T3E. The smart memory implements
atomic operations such as compare-and-swap, fetch-and-
increment, and test-and-add.

In early work in this area, described by Stone [29],
arithmetic and logical operations would be performed on
cached data by a logic-in-memory cache. In more recent
incarnations simple operations are performed in paral-
lel on large sets of data or complex operations are per-
formed on smaller sets of data [24]. Examples of the
former include image-processing operations. Such sys-
tems would include many inexpensive memory processors

-7-

which when used, would outperform the much smaller
number of CPUs; they would be inexpensive enough so
that low overall utilization would be acceptable. (See for
example, [12].)

Multiprocessor designs might include a protocol pro-
cessor to process messages directed at memories, for ex-
ample as part of a directory-based coherence scheme [14].
Such a processor could also be used to implement some-
thing like exo-ops.

In active-message systems some messages can be as-
sembled, dispatched, and processed at their destinations
with very low overhead, possibly by directly accessing
processor registers. The time needed to process an ac-
tive message at its destination is kept to a minimum by
placing the address of an interrupt handler, or even an
opcode, within the message. See [7,22,10] for active mes-
sage implementation for the J- and M-machine [14] for
FLASH, and [15] for EM-X.

5.2 Remote Operation Discussion
Exo-ops offer greater flexibility than systems providing
atomic operations and the simple smart memory opera-
tions described above. Although systems providing pro-
tocol processors could implement exo-ops, the execution
time would be much larger than that achievable on the
specialized exo-processor. The same is true for active
message systems, which also slow down the target CPU.
Exo systems are designed so that exo-packets can be pro-
cessed as fast as the network interface can deliver them.
Any implementation in which a processor had to save and
restore registers, etc. would not be able to keep up.

The active message machines are usually designed to
support a multithreaded (e.g., M-Machine) or dataflow
(e.g., *T) execution paradigm, different from each other
and different from the nonblocking remote operations
used by exo systems. Each may be better than the others
at extracting parallelism on particular types of problems.

5.3 Memory-Processor Proximity
Recently, there has been much interest in placing a pro-
cessor on the same chip as DRAM. Such an arrangement
would not suffer chip-crossing delays and could make use
of the large word sizes naturally available in memory de-
signs. In some cases the processors are small, as with
the smart memory schemes discussed above. In others a
complete processor, the main computing resource, shares
the chip along with a cache matched to the DRAM struc-
ture. (See [16,25].) With the program and data present
on the chip, such a system has been shown to outperform
a conventional processor/cache(s)/memory organization,
even while using a less capable processor [25]. However,
all but the smallest multiprocessors would require several
chips, so this integration does not reduce communication-
related delays.

It is natural to compare a system using such chips
to one using exo-processors, since both have integrated
processors and memory. An exo-processor is designed
to execute packets only as fast as the network inter-
face can provide them, divided by the number of banks.
Thus smaller-area non-pipelined functional units can be
used. Elaborate hardware needed to sustain multiple is-
sue while faced with data dependencies is not needed.
Exo-processors do need an exo-packet buffer large enough
to support round-robin allocation, nevertheless their to-
tal size should be smaller than a conventional processor
capable of any speed.

5.4 Latency Hiding
Latency hiding can be achieved by low-latency (e.g., si-
multaneous) multithreading, out-of-order issue perhaps
combined with a relaxed consistency model, and prefetch-
ing.

Processors can hide (do something useful during) ac-
cess latency by performing a context switch on an access
miss. When context-switch time is small useful work can
be performed during the memory accesses. Low-latency
multithreaded processors provide multiple sets of regis-
ters and other processor-state storage so that context
switches take little time, in some schemes zero cycles.
(See [9] for an early description and [1,2,8,23,30] for some
recent work.)

In a system using out-of-order completion and a re-
laxed consistency model, instructions following memory
accesses that do not immediately complete (e.g., due to
a cache miss or some consistency action) would not nec-
essarily stall the CPU [11,13].

In prefetching, data is moved into a cache before
needed. Prefetching can be accomplished by having the
programmer or compiler insert prefetch instructions for
data ahead of its use [11,21,26], by having hardware reg-
ularly issue fetches for memory locations of some fixed
stride (the stride and timing set by the programmer or
even determined automatically) [6,26], or, simplest of all,
by using long cache lines.

5.5 Latency Hiding Discussion
Each of these approaches is quite different in its form
of parallelism. Out-of-order issue is most similar to exo
systems in that the thread issuing instructions needing
remote data does not block until the computed data is
needed. The instructions remain in the processor, exe-
cuting when the data arrives. It is also the least practical
since no reasonable processor could hold instructions for
the hundreds of cycles that might be needed to service a
shared cache miss.

With prefetching the programmer, compiler, or
hardware must determine memory access addresses in ad-
vance of their need, which is not always possible.

-8-

With low-latency multithreading the programmer or
compiler must provide multiple threads per processor.
The system is kept continuously busy only if enough
threads are available. Dividing a program into additional
threads will typically add overhead, whereas exo systems
need no more than one thread per processor.

5.6 Data Flow
With tags, exo-operations can be issued when and where
the identity (e.g., array index) of operands are deter-
mined regardless of whether the operands themselves
have been computed. Because of the overhead involved,
such operations would only be issued where operand
availability (in time or space) could not be assured. Fine-
grain data flow and task flow is similar in that operations
are triggered by data availability, but is inefficient since
that is the only execution mechanism [19,27]. Exo-ops
are part of procedural code and so the programmer does
not have to cast the application’s control flow into an
unfamiliar data-flow paradigm.

Hybrid or large-grain data flow improves efficiency
by executing more of the code as conventional processors
would. One such proposed system is *T, which is de-
signed so that tasks can be stopped and started quickly
when needed remote data arrives [23]. The machine uses
separate memory processors which can hold requests un-
til data is ready, at which time a response is sent which
includes a continuation; this might be used to restart
the stalled task that had issued the request. The issuing
of an exo-op does not stall the process and so multiple
outstanding operations can be issued by a single thread
of execution, resulting in higher utilization (where there
would be no other tasks to continue on *T) or greater effi-
ciency (where more work is performed in order to provide
multiple tasks per processor on *T). The *T machine is
to be a hybrid dataflow system (simulation results were
not reported), whereas the scheme described here is much
closer to a conventional processor.

6 Conclusions
A parallel system where memory modules can execute
simple operations using an exo-processor has been pre-
sented. Advantages include avoiding cache misses and
pollution, avoiding contention, and tight synchroniza-
tion. Their effectiveness on a radix sorting program
and some code fragments was demonstrated through
execution-driven simulation. The radix program takes
29% less time. The speedup on the code fragments
(which do not indicate whole program performance) was
much higher, usually over twice as fast.

The feasibility of exo-ops depends upon the cost
of implementation and the existence of problems which,
when appropriately coded, run faster on exo-op systems
than on conventional multiprocessors. In ongoing work,

existing programs are being adapted to exo-ops and al-
gorithms which can make use of exo-ops are being imple-
mented. Exo-op execution, because it can wait for mem-
ory, can be something like execution on a dataflow ma-
chine. Nevertheless, programs adapted for exo systems
will be written in procedural languages (presently C).
Procedural languages are being used because they are
well-established (no additional time needed to develop or
adapt compilers) and programs in these languages exe-
cute efficiently.

7 Acknowledgments
This work is supported in part by the National Science
Foundation under Grant No. MIP-9410435.

8 References
[1] A. Agarwal, “Performance tradeoffs in multi-

threaded processors,” IEEE Trans. on Parallel and
Distributed Systems, vol. 3, no. 5, pp. 525-539,
Sep. 1992.

[2] R. Alverson, D. Callahan, D. Cummings, B.
Koblenz, A. Porterfield, and B. Smith, “The Tera
computer system,” in Proc. of the Int. Conf. on
Supercomputing, June 1990, pp. 1–6.

[3] E.A. Brewer, C.N. Dellarocas, A. Colbrook,
and W.E. Weihl, “Proteus: a high-performance
parallel-architecture simulator,” in Proc. of the
ACM SIGMETRICS Conf. May 1992.

[4] D. Burger, J.R. Goodman, and A. Kagi, “Memory
bandwidth limitations on future microprocessors,”
in Proc. of the 23rd Int. Symp. on Computer Arch.
May 1996, pp.78–89.

[5] D. Chaiken, C. Fields, K. Kurihara, and A. Agar-
wal, “Directory based cache coherence in large–
scale multiprocessors,” IEEE Computer, vol. 23,
no. 6, pp. 49–59, June 1990.

[6] T. Chen and J.. Baer, “Effective hardware-based
data prefetching for high-performance processors,”
IEEE Trans. on Computers, vol. 44, no. 5, pp. 609-
623, May 1995.

[7] W.J. Dally, J.A. Stuart Fiske, J.S. Keen, R.A.
Lethin, M.D. Noakes, P.R. Nuth, R.E. Davidson,
and G.A. Fyler, “The message-driven processor: a
multicomputer processing node with efficient mech-
anisms,” IEEE Micro Magazine, vol. 12, no. 2,
pp. 23-39, April 1992.

[8] J.B. Dennis, G.R. Gao, and R.A. Iannucci (Editor),
“Multithreaded computer architecture,” Boston:
Kluwer Academic Publishers, 1994, Chapter 1,
pp. 1–72.

[9] M. Dubois, “A cache–based multiprocessor with
high efficiency,” IEEE Trans. on Computers,
vol. 34, no. 10, pp. 968–972, October 1985.

-9-

[10] M. Fillo, S.W. Keckler, W.J. Dally, N.P. Carter,
A. Chang, Y. Gurevich, and W.S. Lee, “The M-
machine multicomputer,” in Proc. of the 28th An-
nual Int. Symp. on Microarchitecture, Nov. 1995,
pp. 146–156.

[11] K. Gharachorloo, A. Gupta, and J.L. Hennessy,
“Two techniques to enhance the performance of
memory consistency models,” in Proc. of the Int.
Conf. on Parallel Processing, August 1991, vol. I,
pp. 355–364.

[12] M. Gokhale, B. Holmes, and K. Iobst, “Process-
ing in memory: the Terasys massively parallel
PIM array,” IEEE Computer, vol. 28, pp. 23–31,
April 1995.

[13] A. Gupta, K. Gharachorloo, T. Mowry, and W.D.
Weber, “Comparative evaluation of latency reduc-
ing and tolerating techniques,” ACM Computer
Arch. News, vol. 19, no. 3, pp. 254–263, May 1991.

[14] J. Heinlein, K. Gharachorloo, S. Dresser, and A.
Gupta, “Integrating of message passing and shared
memory in the Stanford FLASH multiprocessor,”
in Proc. of the Int. Conf. on Architectural Support
for Programming Languages and Operating Sys-
tems, October 1994, pp. 38–50.

[15] Y. Kodama, H. Sakai, M. Sato, H. Yamana, S.
Sakai, and Y. Yamaguchi, “The EM-X parallel
computer: architecture and basic performance,”
in Proc. of the Int. Symp. on Computer Arch.
June 1995, pp. 14–23.

[16] P.M. Kogge, “Execube—a new architecture for
scalable MPPS,” in Proc. of the Int. Conf. on Par-
allel Processing, Aug. 1994, vol. I, pp. 77–84.

[17] D.M. Koppelman, “Ver. L3.10 Proteus Changes”
Department of Electrical and Computer Engineer-
ing, Louisiana State University, (simulator docu-
mentation),
http://www.ee.lsu.edu/koppel/proteus/
proteusl 1.html and
http://www.ee.lsu.edu/koppel/proteus.

[18] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C.Q
Zhu, A. Veidenbaum, J. Konicek, P. Yew, K. Gal-
livan, W. Jalby, H. Wijshoff, R. Bramley, U.M.
Yang, P. Emrath, D. Padua, R. Eigenmann, J. Hoe-
flinger, G. Jaxon, Z. Li, T. Murphy, J. Andrews,
and S. Turner, “The Cedar system and an initial
performance study,” in Proc. of the Int. Symp. on
Computer Arch. May 1993, pp. 213–223.

[19] B. Lee and A.R. Hurson, “Dataflow architectures
and multithreading,” IEEE Computer, vol. 27,
no. 8, pp. 27-39, Aug. 1994.

[20] D. Lilja,“Cache coherence in large-scale shared-
memory multiprocessors: issues and comparisons,”
ACM Computing Surveys, vol. 25, no. 3, pp. 303–
338, Sep. 1993.

[21] T.C. Mowry, M.S. Lam, and A. Gupta, “Design
and evaluation of a compiler algorithm for prefetch-
ing,” in Proc. of the Conf. on Architectural Sup-
port for Programming Languages and Operating
Systems, October 1992, pp. 62–73.

[22] M.D. Noakes, D.A. Wallach, and W.J. Dally, “The
J-machine multicomputer: an architectural evalu-
ation,” in Proc. of the Int. Symp. on Computer
Arch. May 1993, no. 20, pp. 224–235.

[23] R.S. Nikhil and G.M. Papadopoulos, “*T: a multi-
threaded massively parallel architecture,” in Proc.
of the Int. Symp. on Computer Arch. May 1992,
pp. 156–167.

[24] D. Patterson, T. Anderson, N. Cardwell, R.
Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and
K. Yelick, “A case for intelligent RAM,” IEEE Mi-
cro, March 1997, vol. 17, no. 2, pp. 34–43.

[25] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing
the memory wall: the case for processor/memory
integration,” in Proc. of the 23rd Int. Symp. on
Computer Architecture, May 1996, pp. 90–101.

[26] S.L. Scott, “Synchronization and communication
in the T3E multiprocessor,” in Proc. of the Int.
Conf. on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[27] V. Srini, “An architectural comparison of dataflow
systems,” IEEE Computer, vol. 19, no. 3, pp. 68-
88, March 1986.

[28] P. Stenström, “A survey of cache coherence
schemes for multiprocessors,” IEEE Computer,
vol. 23, no. 6, pp. 12–24, June 1990.

[29] H.S. Stone, “A logic-in-memory computer,” IEEE
Trans. on Computers, vol. 19, no. 1, pp. 73–78,
January 1970.

[30] D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy,
J.L. Lo, and R.L. Stamm, “Exploiting choice: in-
struction fetch and issue on an implementable si-
multaneous multithreading processor,” in Proc. of
the Int. Symp. on Computer Arch. May 1996,
pp. 191–202.

[31] S. Cameron Woo, M. Ohara, E. Torrie, J.P. Singh,
and A. Gupta, “The SPLASH-2 programs: char-
acterization and methodological considerations,”
in Proc. of the Int. Symp. on Computer Arch.
May 1995, pp. 24–36.

-10-

