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Abstract

In an effort to achieve the high prediction accuracy
needed to attain high instruction throughputs, branch
predictors proposed in the literature and used in real
systems have become increasingly more complex and larger
over time. This is not consistent with the anticipated trend
of simpler and more numerous cores in future multi-core
processors. We introduce the Spotlight Branch predictor,
a novel profile-based predictor which is able to achieve
high prediction accuracy despite its simple design. Spotlight
achieves high accuracy because complex decisions in
the prediction process are made during an OS managed,
one-time profile run instead of using complex hardware. We
show that Spotlight achieves higher accuracy than Gshare
as well as highly accurate and implementable predictors
such as YAGS and the Hybrid Bimodal-Gshare predictor.
It achieves an average reduction in misprediction rate of
20% over Gshare, 11% over Elastic History Buffer, 14%
over Yags and 10% over Hybrid for a hardware budget
of 8 kB. Spotlight is also compared to two difficult to
implement neural predictors, the Path-based Neural and the
Hashed Perceptron. It outperforms the Path-based Neural
predictor at all sizes and the Hashed Perceptron at smaller
hardware budgets. These results demonstrate that a simple
profile-based predictor can achieve many of the benefits of
more complex predictors. We also show that a single cycle
latency implementation of Spotlight can be achieved without
sacrificing accuracy by using an upstream replacement
scheme.

1. Introduction

Modern microprocessors require highly accurate branch
prediction to achieve high performance. In order to deliver
this higher accuracy, the branch predictors proposed in liter-
ature and those used in real systems have become larger and
more complex over time. A new class of predictors that have
been proposed in recent years provide very high accuracy
but require complex hardware and are unable to deliver
single cycle predictions without using techniques which may
require even further complexity. For example, neural based
predictors such as the Hashed Perceptron [26] and the Path-
based Neural [10] require complex computations and many

table lookups that result in a latency of several cycles per
prediction if clock frequencies are to be preserved. These
approaches requiring complex hardware are counter to the
widely anticipated trend in future multi-cores of simpler
and more numerous cores and the need for low-power
hardware solutions. Further, a single cycle latency is difficult
to achieve without using either a faster first-level primary
predictor whose prediction may be reversed later by the
main branch predictor or other complicated schemes like
ahead pipelining. The performance of these predictors might
suggest that complex computations are difficult to avoid if
higher prediction accuracy is to be achieved. While these
computations may not be avoidable, they may not have to
be done at prediction time or even at run time.

Branch predictors such as the Gshare [15] predictor use
a fixed length history of the most recent branch outcomes
for every prediction that they make. However, a predictable
branch may only need to use some segment (s) of the
global branch history most correlated to that branch . The
neural predictors can accomplish this by assigning weights
to segments of the global history and using these weights
to select the most appropriate segments. Another approach
that has not been widely explored is to select global history
segments based on profiling data.

In this paper, we propose a simple profiling based branch
predictor which is highly accurate over a range of predictor
sizes and demonstrate a version of the predictor that is
capable of delivering single cycle predictions. Our predictor,
the Spotlight Branch Predictor, is able to achieve very high
prediction accuracy despite its simple design because much
of the decision making involved in making a prediction is
based on profiled information. The basic structure of our
predictor is similar to the Gshare predictor as it uses global
branch history to access a pattern history table of two-bit
saturating counters. However, instead of using a fixed
section and fixed length of global history, the predictor uses
profiling information to spotlight a specific section of the
global history register. The predictor can achieve low latency
because it involves one or two table lookups combined with
simple combinational logic. This is in contrast to the neural
class of predictors which involve computing the sum of
several non-positive numbers and multiple table lookups. We
show that Spotlight achieves higher accuracy than Gshare,
highly accurate implementation practical predictors such as



the Gshare-Bimodal Hybrid and YAGS [4] as well as the
Elastic History Buffer (EHB) [27], a previously proposed
profile-based predictor. Despite its far simpler design, it is
also able to outperform the Path-based Neural predictor at
all simulated sizes and the Hashed Perceptron at smaller
hardware budgets. These results demonstrate that a well
designed profile-based predictor with simple hardware can
achieve (or even surpass) much of the performance benefits
of more complex hardware schemes.

2. Prior Work

Tarlescu et al. propose the Elastic History Buffer (EHB) [27]
predictor where the length of history used to predict a branch
can vary and is determined using profiled data. Unlike our
work, they ideally assume that profiled information can
be obtained directly from the branch instruction in time
for a prediction. Juan et. al [7] propose Dynamic History
Length fitting, where the length of the GHR used is varied
dynamically until one that works best for the code in
execution is found. The major difference between these two
predictors and ours is that we can select any segment of
the global history starting at any point, not just the most
recent bits. Further, our predictor uses the Agree scheme
[24] to minimize collisions in the PHT. Stark et al. [25]
use profiling to select one of N hash functions for indexing
a prediction table, where a hash function k (k = 1,2N)
uses the target address of the k most recent branches to
produce the hash. Like our scheme, they also propose
storing profiled information in branch instructions, caching
this data at runtime in a table and organizing this table so
that entries store data for downstream branches (see section
3.4). However, they do not simulate such a configuration to
analyze its impact on prediction accuracy but instead only
simulate a basic version of their predictor. Our approach
differs in our use of branch history instead of path history
and our consideration of arbitrary GHR sections starting at
any point in the global history. Another important difference
is that computing several hash functions and selecting
amongst them is more complex than our indexing scheme.
Each of these hash functions requires several rotations and
XOR’s to be performed on different target addresses in each
cycle.

Profiling has been used by others to aid in branch pre-
diction. Chang et al. [2] use profiling to classify branches
based on their dynamic taken rates. Profiling data is used to
predict highly biased branches statically. This allows them to
optimize the hardware predictor by reducing PHT conflicts
between highly biased and mixed direction branches. Spran-
gle et. al [24] propose the Agree predictor, and investigate a
version of the predictor which uses profiling information to
set a bias bit in the branch instruction. PHT conflicts which
are harmful are reduced by updating PHT entries based
on whether a branch agrees or disagrees with its hint bit,
instead of taken and not taken rates. These two techniques
improve performance by profiling the taken rates of individ-
ual branches. Several approaches to branch prediction adapt

history length, globally or per-branch. The global branch
predictor uses a global history register (GHR) of the most
recent branch outcomes to index a pattern history table (PHT)
of two-bit saturating counters. The Gshare [15] predictor is
similar to global but it XORs the GHR with the PC of the
branch. Chang et al. [2] observe that highly biased branches
can be more accurately predicted with short histories. In one
of their implementations, they use a short history length
for highly biased branches and a long history length for
mixed direction branches. Ever et. al [3] explore global
histories up to a size of 32, were up to three of the most
important branches over this history length are selected using
an oracle mechanism for use in a hypothetical predictor.
Their results indicate that considering longer global histories
up to 20 bits can improve performance. Thomas et al.[28]
use run-time data flow information to identify correlated
branches over a long global history. An Affector Register file
(ARF) contains dataflow information for every architectural
register. Each entry in the ARF is a bit vector, where a bit
represents whether a branch in the global history affected the
architectural register. For each branch, an Affector Branch
Bitmap is created by combining the affector registers of
the branchs source operands and this bitmap is combined
with the GHR to form the predictor index. Their technique
uses 64 bits of GHR which are hashed down to the required
number of index bits by using a fold and XOR hash. Our
predictor is capable of combining the benefits of many of
these approaches, as it can use not only GHR segments of
any length, but can also explore longer global histories and
use older segments of the GHR.

Many predictors have been proposed in recent years which
can provide very high accuracy but are both implementation
complex and are unable to deliver single cycle predictions
without using complex hardware. Seznec [18, 20] analyses
the O-GEHL predictor. This predictor can explore very long
history lengths up to 128 bits but needs to compute the
sum of M items to make prediction. Recent work using
perceptrons improve predictor accuracy by using longer
global histories without exponentially increasing hardware
size. The idea of neural branch prediction was originally
introduced by Vinton and Iridon [29]. Jiménez et al. [9]
propose a dynamic Perceptron predictor which exploits
long branch histories by increasing hardware table size
linearly with the history length. A hash function of the
branch address is used to select a single perceptron from a
table and an output is computed by using the dot product
of the perceptron and global branch history. However, the
global perceptron has to determine the hash of the branch
address and the dot product of the perceptron and global
branch history, a process that can take up to 4 cycles even
in an efficient circuit level implementation of the predictor
[13]. To counter this problem, Jiménez [10] proposes the
Path-based Neural Predictor which computes a running
sum along the path leading up to each branch. This makes
it possible for the latency to be reduced from four to
two cycles. However, the Path-based neural predictor is
extremely complex in its use of anywhere between 14



and 34 weight tables to make a prediction. Tarjan et al.
[26] improve on the linear scaling of previous perceptron
predictors by assigning multiple branches to a single
weight in their Hashed Perceptron scheme. This predictor
is able to outperform the path based neural predictor, hence
demonstrating that the one-to-one mapping between weights
and branch history bits that is used in other Perceptron
predictors is not necessary. The neural approaches to branch
prediction obtain high accuracy but unlike Spotlight, they
are both very complex and difficult to implement with
a single cycle latency because of the need for relatively
complex calculations before arriving at a prediction. The
Alpha EV6 [19] solves the latency issue by using a simple
quick predictor which is backed up by a larger and more
accurate predictor. Another approach to solving the latency
problem is to use ahead pipelining [11, 17, 21, 26], where
the computation required to make a prediction in a particular
cycle is started several cycles earlier using the information
available in the earlier cycle. However, these schemes
do not mitigate the complexity of the hardware itself but
instead are themselves very complex. There can also be
a significant drop in accuracy when the ”ideal” one-cycle
latency versions of these predictors are compared to the
pipelined versions. Furthermore, Tarjan et. al [26] point out
that pipelined versions of branch predictors will need to
checkpoint intermediate predictor data to account for the
recovery process after a branch misprediction. The amount
of data that needs to be checkpointed is dependent both
on the complexity of the predictor and on the number of
pipelined stages that the predictor uses to make a prediction.
In [26], Tarjan et. al note that Perceptron-based predictors
need to checkpoint a significant amount of data. While our
predictor does use pipelining in its single-cycle version,
the misprediction overhead will be much lower due to the
lower complexity and the use of just two pipelined stages.
Since Spotlight’s pipeline is two stages checkpointing is not
needed for uninterrupted predictions after a recovery, all it
needs is the address of the mispredicted branch one cycle
before prediction is to resume.

3. The Spotlight Branch Predictor

In this section, we provide an overview of the basic
idea behind the Spotlight predictor. We then explain how
profiling is used to determine the GHR bits used to make
a prediction. We continue with a discussion of how this
profiling information is stored so that it can be accessible
to the predictor. Finally, we demonstrate a version of this
predictor which is capable of delivering predictions with a
single cycle latency.

3.1 Overview of Spotlight

The motivation for Spotlight is that the segment of
the GHR which best correlates with the predicted branch
can range widely both in terms of its distance from the
predicted branch (its starting point) and the length of the

segment from this starting point. Figure 1 shows the basic
structure of the Spotlight predictor along with an example
prediction. The predictor uses an n-bit global history register

Fig. 1. Spotlight Direct

as its first level of history. For each prediction that needs
to be made, a start bit and a section length is provided to
the predictor. The start bit represents the starting point of
the GHR section that will be used for a prediction, and
the section length represents the length of this section.
The start bit and section length are used to perform a
combination of shift and mask logical operations on the
global history so that a particular section of the GHR is
selected (spotlighted). The example in the figure shows
how a GHR section starting at the 7th bit with a length
of 4 bits is selected. The selected segment of the GHR
is XOR’d with the branch PC and this result is used to
index a pattern history table (PHT) of two-bit saturating
counters. Hence, the Spotlight predictor can use GHR bits
starting at any point between 0 and n-1 with any length
between 0 and the log2 size of the PHT. Instead of using
the PHT counters in the traditional Gshare approach, we use
the Agree scheme[24]. A bias is stored with each branch
and the PHT counter for that branch indicates whether its
outcome is expected to agree or disagree with its bias.
The bias represents whether a branch is majority taken or
not-taken and is determined using profiling. This scheme
reduces harmful PHT collisions, especially at smaller PHT
sizes. Since Spotlight already uses profiled information to
make predictions, the cost of including the Agree scheme is
minimal while providing some performance benefit to the
predictor.

3.2 The Profiling System

In the previous section, we see that the predictor requires
a start bit and a section length to make a prediction.
This information is determined using profiling. Since the
predictor can select any part and any length of the GHR and



the GHR can be larger than the PHT address, our profiling
algorithm has to explore the entire subset of possible GHR
segments. The value of starting bit ranges from 0 to n-1,
where n is the maximum number of GHR bits explored.
The value of section length ranges from 0 to size lg,
where size lg is the log2 of the PHT size of the simulated
predictor. All contiguous GHR segments between these two
ranges are considered. While the reader may be concerned
about the exhaustive nature of this method, profiling is
done in functional simulation mode and is hence very fast.
Heuristic methods may be possible, such as testing coarser
regions in an initial phase and finer regions in a second
phase. We did not see the need for such methods because
the speed of profiling was not an issue, the longest profiling
simulation for the training inputs took about 10 hours with
most benchmarks finishing much faster.

During profiling, a single PHT is instantiated for each
combination of start bit and section length. The log size
of an individual PHT is determined by the function
min[min pc bits, section length]. The PHT’s are indexed
using the XOR of a particular GHR segment and the PC
of the branch being predicted. In this way, there is one
PHT for each GHR segment and this PHT tracks the perfor-
mance of that segment throughout the profiling benchmark.
A minimum number of PC bits (min pc bits) is used for
the PHTs to reduce conflicts between branches when the
GHR segment for that PHT is very short. When a branch
instruction is executed during the profile run, every PHT
provides a prediction for that branch. The prediction of each
PHT is compared to the actual outcome of the branch and
prediction accuracy data is collected for the branch over all
PHT’s (and hence over all possible GHR segments).

At the end of the profiling run, we have the prediction
accuracy over all PHT’s for each static branch that was
executed during profiling. Since each PHT represents a
specific combination of start bit and section length, we can
select the start bit and section length for a branch based on
the most accurate PHT for that branch during the profile step.

In addition to looking at different combinations of
start bit and section length, the profiler also considers the
overall bias of a branch. If a branch is more than 50%
taken, it is biased taken while a branch that is more than
50% not-taken is biased not-taken. If this bias percentage
is greater than the accuracy of the most accurate PHT, we
assume that this branch is best predicted using a bimodal
type of predictor. While our proposed predictor does not
have a separate bimodal table, using a start bit of 0 and a
section length of 0 is a good approximation. This addition
to the predictor provides minimal performance benefit but
is included since there is no additional hardware cost.

3.3 Storing Profiled Information

The Spotlight profiling and annotation system is responsible
for performing the profile analysis and the annotation of
binaries for delivery at run-time to the Spotlight predictor.
A goal is that it be transparent to both users and program

developers and that it not interfere with code portability.
This will be achieved using OS support and a technique
we will call opcode borrowing as described below. Profile
analysis would be performed by code written by the
CPU manufacturer, or others familiar with the predictor; if
necessary obfuscated, as with GPU drivers. A fully automatic
profiling system would be fed by traces containing branch
outcomes sampled from normally running binaries. By
limiting trace size and relying on hardware support this
sampling can be made unobtrusive. The OS would invoke a
profile analysis program when a sufficient number of traces
were collected from a large enough number of runs of the
binary. The OS might profile a binary separately for each
user for both privacy and performance reasons. By running
at a low priority, profile analysis would be unobtrusive.

Spotlight needs to annotate a program binary with profile-
collected branch information for delivery to the Spotlight
predictor. Spotlight’s approach is to place this information
in special versions of existing instructions using a technique
called opcode borrowing. The idea is to borrow unimple-
mented or rarely used opcodes to create special versions
of common instructions that have space for Spotlight data.
For example, the SPARC V9 [31] branch instruction has a
22-bit displacement field, the format encodes five types of
branches, a non-branch, and two unused instructions. Those
unused instructions can be borrowed for branch instructions
that have, say, a 12-bit displacement and 10 bits of spotlight
storage. It is not necessary that a branch alone carry infor-
mation (or information for a successor), it can be spread
out over any subset of instructions near the branch. With
many add-by-1 and zero-offset loads, there is lots of unused
instruction space. There still will be cases where there is
not enough space, then the affected branch will use the
default predictor. Branch prediction hints are available in
many instruction sets, including SPARC V9, but these do not
provide enough storage for Spotlight. Stark, et al [25] suggest
augmenting an ISA for their variable-path length predictor.
Such an augmentation would have to trade off hint storage
space with preservation of unused opcode space. Since rarely
used opcodes could be borrowed, opcode borrowing provides
greater flexibility than ordinary implementation-dependent
instructions.

OS support is needed for managing the annotated binaries
in a way transparent to users. For portability reasons the
OS would not replace the original binary with the annotated
binary. Instead it would place the annotated binary in a
shadow area and use it whenever the original binary was
to be executed. A change to the original binary would
invalidate the annotated one.

3.4 Single Cycle Predictions with Spotlight

In the previous section, we suggest that profiled information
can be stored with branch instructions using either
implementation independent or implementation specific
extensions to the ISA. However, it is not possible to decode
instructions in the same cycle as they are fetched in high



clock frequency modern processors. Since the processor
must predict a branch in the same clock cycle that it is
fetched, a single cycle prediction cannot be made if we
rely on obtaining information from the decoded branch
instruction. If we are to obtain profiled information for
a branch in time, we will have to access the data from
a hardware structure instead of the decoded branch. We
consider this limitation and modify Spotlight so that
it can make single cycle predictions. A version of the
modified predictor, which we call Spotlight BIT-Upstream
(SingleTag), is shown in Figure 2. In this scheme, profiled
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Fig. 2. Spotlight With Single Cycle Latency

information is first obtained from a decoded instruction and
then stored in the Branch Information Table (BIT). A branch
in the BIT will not store profiled information for its own
use, it will instead store information about the next branch
in the control flow of the program. A branch prediction is
derived as follows. A branch that needs to be predicted in
cycle c will perform a lookup in the BIT in cycle c-1 using
the lower bits of the PC of the branch being predicted in
this cycle. Each BIT location can store information for two
branches. If the entry is occupied by a conditional branch,
one of these branches is on the taken path of the BIT entry
occupant and the other is on the not-taken path. We access
information for both of these branches and apply the shift
and mask operations described in section 3.1(with minor
modifications) to two separate copies of the GHR. As can
be seen in Figure 2, one GHR represents the taken path
following the branch in cycle c-1 and the other represents
the not-taken path. In order to reduce aliasing, each BIT
entry is associated with a tag. If there is a tag miss, the
default GHR is selected instead of the custom GHR for both
paths. The default GHR has a starting bit value of 0 and a
section length that is log2 of the PHT size. The prediction
for cycle c-1 is available at the beginning of cycle c and
can hence be used to select between the two copies of the
GHR available in this cycle. One of these copies is selected
and used to index the PHT. If PHT access in cycle c is on

the critical path, the PHT can be indexed earlier using both
copies of the GHR and one of the two predictions obtained
can be selected after the PHT access.

This scheme is described as ”BIT-Upstream (SingleTag)”
because only one tag, which is based on the PC of the branch
in cycle c-1, is stored in the BIT. An alternative would be to
perform tag checking in cycle c using the PC of the branch
in that cycle. This is likely to increase prediction accuracy
but also increases the workload in cycle c, hence making it
more difficult to achieve single cycle access. We call this
second scheme Spotlight BIT-Upstream (DoubleTag) since
the BIT would need to store two tags per entry, one for the
taken path and one for the not-taken path from that entry.

The BIT is updated with the profile information for
a branch after the branch is decoded. We may therefore
expect a miss in the BIT the first time that a static branch
is encountered, but subsequent accesses are expected to
produce hits.

4. Experimental Results

4.1 Experimental Framework

We use the LSU RSIM simulator for the experiments
done in this paper. This is an extensively modified
version of RSIM [16] which does detailed simulation
of a dynamically scheduled superscalar processor and
memory system. The simulator implements a subset of the
SPARC V9 ISA [31]. The results reported in this paper
are obtained using 10 benchmarks from the SPEC 2000
integer benchmark suite. The benchmarks eon and twolf are
not simulated. We use the full training inputs provided by
SPEC to perform profiling. Full training inputs can be used
because profiling is done in functional simulation mode
and is hence very fast. The data collection runs are done
using SPEC reference inputs (for most benchmarks) in the
detailed timing simulation mode of RSIM. We use the SPEC
2000 Reduced input sets for Parser and Crafty since their
reference inputs are very large. The configuration we used
allowed a maximum of six instructions and one branch to
be fetched per-cycle. We use a tool based on the Simpoint
multiple simulation point methodology [23] to generate a
set of weighted samples that are selected over the entire
duration of each benchmark. Each sample has 100 million
instructions and a 10 million instruction warm up period is
used prior to each sample.

4.2 Experimental Evaluation

We evaluate the accuracy of Spotlight-Direct, which
can access profiled data directly from the branch instruction
and the modified versions discussed in section 3.4 which use
the BIT to store profiled data. We compare their accuracy
to Gshare, the profile-based EHB, as well as two highly
accurate predictors with simple design, the YAGS predictor
and a Gshare-Bimodal Hybrid predictor. We also evaluate
the Hashed Perceptron and the Path-based Neural, two very



high accuracy but implementation complex predictors which
computes the sum of several non-positive numbers that
are looked up from several tables. The Hashed Perceptron
does 5 table lookups and computes their sum to make a
prediction, while the Path-based neural can do between 14
and 34 table lookups per prediction.

The experiments are done over a wide range of total
predictor storage sizes. For the Spotlight-BIT configurations,
the size of the BIT is included in the total size of the
predictor. Each entry stores a 4 or 6 bit tag as well as the
start bit and section length information for two branches.
We use a GHR history length of 32 during the profiling step
for the Spotlight predictor over all sizes, i.e., Spotlight can
select subsets of a 32 bit GHR. For the relevant competing
predictors, we explore their design space to find the
best configuration at a given size. The main configuration
settings used for the simulated predictors is shown in Table 1.

4.3 Accuracy of Various Spotlight Configurations

In section 3.4, we demonstrated a version of Spotlight
that can provide a prediction in the same cycle that a
branch is fetched. In section 2, we discussed prior work
that involves predictors which are not able to provide
predictions in the same cycle as fetch unless complicated
techniques such as ahead pipelining or secondary overriding
predictors are used. In this section, we look at how Spotlight
performs when the pipelined single-cycle latency schemes
(BIT-Upstream) described in section 3.4 are compared to a
version which assumes that profiled information is available
directly from the branch (Direct) and another version which
uses a BIT but assumes that all the tasks performed by
the predictor can be performed in one cycle (BITDirect).
Specifically, the BIT in BITDirect stores profiled information
for the branch in the current cycle instead of the possible
branches in the next cycle. Since Spotlight uses the Agree
scheme for its PHT update, we also evaluate a version of
Spotlight called Spotlight-Direct (No Agree) to evaluate the
contribution of the Agree scheme to Spotlight’s performance
benefits. The PHT in this predictor is updated using the
traditional Gshare method. From Figure 3, we can see that
the two Spotlight BIT-Upstream configurations are close in
accuracy to Spotlight-BITBasic starting at medium sizes
(this corresponds to a PHT size of 4096 entries). The
performance drop compared to Spotlight-Direct is larger but
becomes less significant starting at a size of 5 kB. At the
highest size, the average misprediction rate of the upstream
configurations are almost identical to Spotlight-BITBasic.
Therefore, our scheme is able to achieve single cycle
latency without sacrificing much accuracy at medium and
larger sizes. We also see that the performance difference
between the SingleTag and DoubleTag schemes is minor.
As one might expect, the gap between Spotlight-Direct
and Spotlight-Direct (No Agree) declines as the PHT size
increases. The difference is more significant at smaller sizes
but becomes minor starting at a size of 1 kB. These results
indicate that while Spotlight benefits due to Agree, the

Fig. 3. Various Spotlight Configurations

benefit becomes smaller with increasing PHT size and is not
responsible for most of Spotlight’s performance benefits.

4.4 Misprediction Rates

Figure 4 shows the average misprediction rates for the
various predictors over the 10 SPEC integer benchmarks.
It can be seen that Spotlight-Direct outperforms Gshare,
EHB and Hybrid for all sizes simulated. This predictor
achieves an average reduction in misprediction rate of about
20% over Gshare, 14% over Yags (Yags is not shown
on the chart as it slightly under performs Hybrid at most
sizes), 11% over EHB and 10% over Hybrid at a size of
8 kB. The Spotlight BIT-Upstream predictor is able to
outperform Gshare as well as the higher accuracy Yags,
EHB and Gshare-Bimodal Hybrid branch predictors at
medium and higher size levels. Spotlight-Direct outperforms
the Path-based Neural predictor, which is remarkable
considering the far greater complexity of that predictor (it
uses between 14 and 34 tables). It does not outperform
the Hashed Perceptron predictor at medium and larger
sizes but like the Path-based Neural, this predictor is more
complex in its design and is also one of the most accurate
predictors that have been proposed in literature. The fact
that Spotlight-Direct is very competitive with the Hashed
Perceptron at all sizes suggests that it could be used in a
system with an overriding prediction mechanism similar
to the Alpha EV6 [19]. In such a system, a first-level
predictor would need to make a primary prediction which
may be overridden by a Spotlight predictor which waits for
profiled information from the decoded branch instruction.
We must note that the version of the Hashed Perceptron
and Path-based Neural that we simulated are ideal versions



TABLE I
PREDICTOR CONFIGURATIONS

Approx. Sz Spotlight BIT Yags Hybrid Hashed Perceptron Path Neural
BIT Lg PHT Lg Tag Ln PHT Lg Bimdl Lg PHT Lg Bimdl Lg Wt. Tbl Lg Num. Tbls Hist. Ln Wt. Tbl Lg Hist. Ln

2 kB 10 12 6 9 12 12 11 10 5 28 7 20
6kB 10 14 6 11 12 14 12 11 5 44 8 26
10kB 10 15 6 13 12 15 12 12 5 48 9 28
40kB 11 17 6 14 14 17 14 14 5 56 10 34

Fig. 5. Misprediction Rates for Various Branch Predictors

which assume that all computations can be done in the
same cycle (we assume that all table lookups and the sum
of non-positive numbers are done in that cycle). The version
of EHB is similar to Spotlight-Direct as it assumes that
data can be obtained directly from the branch instruction
in time. Per benchmark data is shown in Figure 5 for most
of these predictors at approximate sizes of 2 kB and 32
kB. We can see that the performance benefit provided by
Spotlight occurs over a broad range of benchmarks.

4.5 Impact of Training Input Data on Spotlight’s
Accuracy

As mentioned above, we see in Figure 5 that Spotlight
does well over a broad range of benchmarks. This result
may seem surprising at first given that Spotlight relies
on profiled information and either an inaccurate poorly
designed training input or varying input data could impact
its accuracy. It is beyond the scope of this paper to show
that profiling is a robust and accurate technique. However,
we note that profiling is used successfully by nearly all
general-purpose compilers, such as gcc, and the evaluation
and generation of accurate profiles has been widely studied
in literature. For example, Wall [30] notes in early work that
real profiles generated from different runs are very effective
and are often nearly as good as perfect profiles. Hsu et. al
[14] claim that profile data from training inputs can be used
to reliably predict branch directions. We expect Spotlight to

be even less sensitive to training data since it relies on using
a set of correlated branches, and does not depend on the
actual branch outcomes or input data to make predictions.

To evaluate how sensitive Spotlight is to training data, we
simulate Spotlight using three different sets of training inputs
for a few benchmarks. Each benchmark is evaluated using
a perfect input, the training input and an arbitrary reference
input. For the arbitrary reference input, an arbitrarily selected
input is used for training and a different input is used for the
reference run (for example, we train with gcc-ref-integrate
and evaluate with gcc-ref-expr). For the perfect input case,
the same input that is used for training is also used for the
reference run. The results are shown in figure 6 for three
different predictor sizes. We would expect the perfect input
to be most accurate, followed by the training input and
the arbitrary-ref input. The accuracy of Spotlight does not
vary significantly for gcc and gzip across the three training
inputs (the biggest difference in accuracy is about 0.15% for
gcc). The results for bzip2 are interesting. The training input
under performs even the arbitrary reference input while the
arbitrary reference input is almost as accurate as the perfect
input. This would seem to indicate that the training input
for bzip2 is poorly designed. Fang et. al [5] observe that the
SPEC 2000 bzip2 training input does not touch a lot of the
code that reference inputs touch and this may be a factor.
However, despite this limitation, Spotlight does very well
for bzip2 compared to other branch predictors (see figure
5). This result suggests that Spotlight can be an effective
branch predictor even for benchmarks which do not have



Fig. 4. Misprediction Rates for Various Branch Predictors

very accurate training data. We can gain an understanding

Fig. 6. Impact of training input data on Spotlight

of why Spotlight does well by looking at the chart in Figure
7 below. The data shows how frequently various sections of
the GHR are used on average over the benchmarks. In the
key listed on the right hand side, the first value describes the
starting bit of GHR segments and the second value describes
the section length. For example, the segments that comprise
of the < 10 - > 7 bar are those GHR configurations which
have starting bit less than 10 and section length greater than
7. The segment 0-0 is one that uses no GHR bits and is
essentially a bimodal configuration (the difference between
the two is PHT collisions in Spotlight). The segment 0-

Fig. 7. Use of Various GHR configurations

max size is the configuration that would be used for all
predictions in a Gshare predictor and represents the default
configuration mentioned in section 3.4.

The results demonstrate many of the reasons why
Spotlight does well. The most common configuration used
is the 0-0 bimodal configuration and this configuration along
with the default GHR configuration of 0-max size is used in
approximately 58% of all dynamic branch predictions. These
results suggest that Spotlight partly works like the Gshare-
Bimodal Hybrid predictor even though unlike the actual
Hybrid predictor, it does not have separate bimodal and
chooser tables. On the other hand, one benefit of separate
tables is that the bimodal component of the Hybrid predictor
provides some accuracy while the Gshare component warms
up. We saw in the previous section that Spotlight does better
than the Hybrid predictor, and this along with the fact that
other custom GHR configurations represent the remaining
42% of dynamic predictions suggest that Spotlight also
benefits from these custom GHR configurations. We can
also see that this remaining 42% comprises a very diverse
set of GHR segments. They include significant amounts
of short segments (section length < 7) starting at 0, long
segments starting at 0, short segments starting at other
values and so on.

5. Conclusions

In this paper, we proposed a profile-based branch predictor
which delivers very high prediction accuracy despite its
relatively simple hardware design. Spotlight achieves high
accuracy because much of the decision making involved in
making a prediction is done based on profiled data instead
of using complex hardware. By using this approach, it is
able to get performance comparable to some implementation
complex schemes such as the Path-based Neural and the
Hashed Perceptron. These predictors require several table
lookups and compute the sum of several non-positive
numbers before arriving at a prediction, an approach which



is inconsistent with the anticipated trend of more numerous
and simpler cores in future multi-core processors and the
desire for low-power hardware solutions. The high accuracy
of our predictor suggests that well designed profile-based
predictors may have the potential to simplify branch
prediction hardware by making reliable decisions based on
profiled information. In future work, profiling may also be
used successfully to augment current branch predictors as
well as in other architecture areas.

There have been several profile-based predictors proposed
in literature. However, many of these schemes assumed that
profiled data can be obtained in time directly from the branch
instruction. This is clearly an impractical assumption for a
modern high clock frequency processor. While Spotlight can
be used in an overriding prediction scheme like the one used
in the Alpha EV6 [19], we show how a practical single-
cycle implementation of a profile based predictor is possible
by using a Branch Information Table to store profiled data
instead of relying on obtaining it from the instruction. Our
results in this paper demonstrate a BIT scheme can be
used without sacrificing a significant amount of accuracy at
medium and large predictor sizes. They further show that
the performance loss is minimal even if it is necessary to
decouple the BIT access from some of the other parts of
the prediction process by storing information in a previous
branch instead of the current branch.

REFERENCES

[1] David I. August, Daniel A. Connors, John C. Gyllenhaal, and Wen
mei W. Hwu. Architectural support for compiler-synthesized dynamic
branch prediction strategies: Rationale and initial results. In Pro-
ceedings of the Third International Symposium on High-Performance
Computer Architecture, February 1997.

[2] Po-Yung Chang, Eric Hao, Tse-Yu Yeh, Yale N. Patt. Branch Classifi-
cation: a new mechanism for improving branch predictor performance.
In Proceedings of the 27th Annual ACM/IEEE Int’l Symposium on
Microarchitecture, pages 22-31, 1994.

[3] Marius Evers, Sanjay J. Patel, Robert S. Chappell, Yale N. Patt.
An Analysis of Correlation and Predictability: What Makes Two-
Level Branch Predictors Work. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pages 52-61, June
1998.

[4] A.N. Eden and T.N. Mudge. The YAGS branch prediction scheme. In
Proceedings of the 31st Annual ACM/IEEE International Symposium
on Microarchitecture, November 1998.

[5] Changpeng Fang, Steve Carr, Soner Onder, Zhenlin Wang. Feedback-
directed memory disambiguation through store distance analysis. In
Proceedings of the 20th annual international conference on Super-
computing, June 28-July 01, 2006.

[6] Intel Itanium Architecture Software Developers Manual. Volume 3:
Instruction Set Reference, revision 2.1, October 2002.

[7] T. Juan, S. Sanjeevan, J. Navarro. Dynamic History-Length Fitting: A
Third Level of Adaptivity for Branch Prediction. In Proceedings of
the 25th Annual International Symposium on Computer Architecture,
1998.
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[18] Andrè Seznec. Analysis of the O-GEometric History Length Branch
Predictor. In Proceedings of the 32nd Annual International Symposium
on Computer Architecture, pages 394-405, June 2005.
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