
GPU Road Network Graph Contraction and SSSPQuery
Roozbeh Karimi

rkarim2@lsu.edu

Louisiana State University, ECE

Baton Rouge, LA, USA

David M. Koppelman

koppel@ece.lsu.edu

Louisiana State University, ECE

Baton Rouge, LA, USA

Chris J. Michael

chris.michael@nrlssc.navy.mil

Naval Research Laboratory

Stennis Space Center, MS, USA

ABSTRACT

PHAST is to date one of the fastest algorithms for performing

single source shortest path (SSSP) queries on road-network graphs.

PHAST operates on graphs produced in part using Geisberger’s

contraction hierarchy (CH) algorithm. Producing these graphs is

time consuming, limiting PHAST’s usefulness when graphs are

not available in advance. CH iteratively assigns scores to nodes,

contracts (removes) the highest-scoring node, and adds shortcut

edges to preserve distances. Iteration stops when only one node

remains. Scoring and contraction rely on awitness path search (WPS)

of nearby nodes. Little work has been reported on parallel and

especially GPU CH algorithms. This is perhaps due to issues such

as the validity of simultaneous potentially overlapping searches,

score staleness, and parallel graph updates.

A GPU contraction algorithm, CU-CH, is presented which over-

comes these difficulties by partitioning the graph into levels com-

posed of independent sets of nodes (non-adjacent nodes) with simi-

lar scores. This allows contracting multiple nodes simultaneously

with little coordination between threads. A GPU-efficient WPS is

presented in which a small neighborhood is kept in shared memory

and a hash table is used to detect path overlap. Low-parallelism

regions of contraction and query are avoided by halting contraction

early and computing APSP on the remaining graph. A PHAST-like

query computes SSSP using this contracted graph. Contraction

of some DIMACS road network graphs on an Nvidia P100 GPU

achieves a speedup of 20 to 37 over Geisberger’s serial code on

a Xeon E5-2640 v4. Query times on CU-CH- and CH-contracted

graphs were comparable.

ACM Reference Format:

Roozbeh Karimi, David M. Koppelman, and Chris J. Michael. 2019. GPU

Road Network Graph Contraction and SSSP Query. In 2019 International

Conference on Supercomputing (ICS ’19), June 26–28, 2019, Phoenix, AZ, USA.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3330345.3330368

1 INTRODUCTION

An SSSP query for some s ∈ V of weighted graph G = (V , E)
computes the distance from s to all nodes inV . Though SSSP is awell

studied problem [5, 7–9, 11, 14–16, 18, 21, 22, 26, 29] one area that

has received little attention is parallel and GPU implementations

for road-network graphs. For example, Davidson et al’s otherwise

well-performing GPU SSSP implementation yields slowdowns over

CPU code on road-network graphs [8]. The problem is that the size

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00

https://doi.org/10.1145/3330345.3330368

of the workfront (set of nodes ready to be operated on) is often too

small for GPUs’ demanding parallelism requirements.

Delling et al, in PHAST, overcome this problem in part by adapt-

ing Geisberger et al’s contraction hierarchies (CH) [15] to SSSP

queries [9]. For point-to-point queries a search on each of the up-

ward and downward graphs produced by CH will identify a node on

the shortest path while visiting far fewer nodes than would a bidi-

rectional Dijkstra search on an ordinary graph [15]. Delling adapts

this to parallel SSSP queries by using an upward graph search from

a source to compute distances for a small subset of nodes followed

by a fixed-order traversal of all nodes in the downward graph. The

nodes are organized into levels such that in the downward pass up-

dates to nodes within a level can be done in parallel. Delling reports

very efficient implementations of this SSSP query, approaching data

bandwidth saturation [9].

Because one-time preparation of the upward and downward

graphs is time consuming PHAST and other uses of contracted

graphs are less useful when the graph is not available in advance.

For example, Geisberger reports that it can take about 10 minutes

to compute the CH of a Western Europe graph with roughly 18

million nodes [15].

A fast GPU contraction and query algorithm, CU-CH, is de-

scribed here. CU-CH computes the parallel contraction (PCH) of

a graph, including structures needed for query. Parallelism is fa-

cilitated by computing PHAST-like levels in lieu of CH ranks. In

a further departure from CH, the graph is not fully contracted.

Instead the remnant is converted into a complete graph, avoid-

ing what would be inefficient steps in both contraction and query.

GPU-efficient local searches are used to find witness paths. Both the

contraction and query are performed on a GPU.

The remainder of this paper is organized as follows: graph ter-

minology, and the CH and PHAST techniques are described in

Section 2. CU-CH is described in Section 3, followed by experimen-

tal methodology in Section 4 and results in Section 5. Those are

followed by prior work, Section 6, and conclusions, Section 7.

2 BACKGROUND

2.1 Preliminaries

A positive weighted directed graph, G = (V , E), consists of a set
of nodes, V , and a set of weighted edges, E ⊂ V ×V × R≥0. Both
e ∈ E and (u,v) ∈ E denote edges, len(e) and len(u,v) denote their
respective weights. For brevity graphwill refer to such a graph, with

the further restriction that there are no edges such as (u,u) ∈ E. A
path is a sequence of nodes connected by edges, its length is the sum

of the weights. The distance from s ∈ V to t ∈ V inG , DistG (s, t), is
the length of a shortest path from s to t . Triple (u,w,v) ∈ E denotes

two-hop path (u,w), (w,v) and len(u,w,v) denotes its length. For
U ⊆ V define U 2 = U ×U , and V \U = {v | v ∈ V , v < U }, and

250

https://doi.org/10.1145/3330345.3330368
https://doi.org/10.1145/3330345.3330368

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

E \U = { (u,v) | (u,v) ∈ E, u,v < U }. In places V and E are used

for |V | and |E |, the number of nodes and edges, d is used for the

average degree, |E |/|V |, and D is used for the maximum degree, all

for some understood graph.

A road network graph is a weighted graph used to model a trans-

portation system in which edge weights are set to some cost of

travel (e.g., distance, time) between incident nodes. Such graphs

have been observed to have low degree and small separators [4],

factors likely to contribute to the stark difference in performance

of SSSP-like algorithms on such graphs compared to other classes

of graphs. Work to better define and characterize road network

graphs is ongoing [2, 3, 12, 13].

2.2 Dijkstra’s Algorithm

Dijkstra’s algorithm [11] is the classic sequential algorithm for cal-

culating SSSP. The distance of some s ∈ V is initialized to zero, all

others to infinity, and all nodes are placed in a priority queue. The

node with the smallest distance is removed and the distances of

its forward neighbors are updated. This step is repeated until the

queue is empty. Dijkstra shows that the distance of a node removed

from the queue can not change and is the correct distance from s
[11]. Nodes that have been removed from the queue are said to be

settled. Relaxing an edge refers to following it to update a distance.

The execution time is |E | relaxations plus |V | queue removals.

The realized performance of Dijkstra depends on the method

used for maintaining the priority queue. Using a Fibonacci heap

the Dijkstra algorithm has a theoretical time complexity of O(E +
V logV) [4] however in practice the Fibonacci heap suffers from

large overhead, so most implementations use different priority

queue implementations such as a binary heap which results in an

overall complexity of O(E logV) [4]. This makes Dijkstra theoreti-

cally the most efficient sequential algorithm for SSSP.

The only obvious parallelism is in relaxing a node’s neighbors,

which is insufficient on most graphs and hardware. This makes

standard Dijkstra unsuitable for modern parallel processors such

as GPUs. The Bellman Ford algorithm [7, 14] sacrifices efficiency

for parallelism by relaxing each edge |V | times, or O(EV) total
work. GPU SSSP implementations blend these approaches, see the

discussion in Section 6.

2.3 Contraction Hierarchy (CH)

The Contraction Hierarchy (CH) technique [15] was designed to

speed up point-to-point shortest-path calculations on road network

graphs. The algorithm constructs an augmented graph GA for a

given graphG by assigning a unique rank to each node and adding

weighted shortcut edges. The shortcut edges are chosen so that for

any two nodesu,v ∈ V there exists a path of length DistG (u,v) that
omits nodes ranked lower than min{r (u), r (v)}. Traversals limited

to paths of ascending (or descending) rank order can touch far fewer

nodes and are the basis of fast shortest path algorithms [15] and for

techniques like PHAST [9] which avoid the limited workfront that

frustrates ordinary parallel SSSP algorithms [8] when operating on

road network graphs.

The contraction hierarchy of graph G = (V , E), denoted GCH =

(G, r ,A), consists of a bijection r : V → [0, |V |), called the node

a

b c

d

e

fg

.5

.2

.5

.2

0

1

2

3

4

5

6

.1

.1

.1

.1

.1

a

b c

d

e

fg

.5

.5

.1

.1

.1

.1

.1

E
d

g
e
 w

e
ig

h
t

N
o
d

e
 I
D

.7

.3

G GA

a

b c

d

e

fg

.5

.5

.1

.1

.1

.1

.1

.2

N
o
d

e
 R

a
n
k

0

Shortcut
Edge to
be added
 for
broken
path
(g,f,e)

G0

a

b c

d

e

fg

.5

.5

.1

.1

.1

.1

.1

.2

0

.2
1

a

b c

d

e

fg

.5

.5

.1

.1

.1

.1

.1

.2

0

.2
1

.3

2

f contracted
G1

c contracted
G2

e contracted Augmented GraphOriginal Graph

Figure 1: Contraction Example

ranking, and a valid set of weighted shortcut edges, A ⊆ V 2
. As-

sociated with GCH are overlay graphs G0,G1, . . .G |V |−1, where

Gi = (Vi , Ei), Vi = {v | r (v) ≥ i }, and Ei = (E ∪ A) ∩V
2

i . Short-

cutsA are said to be valid if DistGi (s, t) = DistG (s, t) for all s, t ∈ Vi
and i ∈ [0, |V |).

Derived from GCH are the augmented graph, GA = (V , E ∪ A),
and the upward and downward graphs, G↑ = (V , E↑) and G↓ =
(V , E↓), where E↑ = { (u,v) | (u,v) ∈ E ∪ A, r (u) < r (v) } and
E↓ = { (u,v) | (u,v) ∈ E ∪A, r (u) > r (v) } [15]. Geisberger shows
that a forward Dijkstra search from s ∈ V in G↑ and a backward

Dijkstra search from t ∈ V in G↓ will both reach the highest rank

node on a shortest path from s to t (if such a path exists) [15].

Typically a CH graph is constructed iteratively. At step i , op-
erating on overlay graph Gi , a node w ∈ Vi is chosen to receive

rank i thus fixingVi+1 = Vi \w . For each broken path (u,w,v) ∈ Ei
shortcut edge (u,v) of length len(u,w,v) is appended to A if it is

possible that Dist(Vi+1,Ei∪A∩V 2

i+1)
(u,v) > len(u,w,v), where A is

the set of shortcuts before considering (u,v). This determination

is made by performing a witness path search (WPS) from u to v: a
distance query which avoidsw and which terminates early if the

distance would be over len(u,w,v). Node contraction refers to the

process of finding shortcuts and constructing the next overlay.

Contraction is illustrated in Figure 1. The first node chosen for

contraction is f . Removing f from G0 breaks path (д, f , e) and so

shortcut edge (д, e) of weight .2 is added to preserve the distance

between д and e . (If a were contracted a shortcut would not be

needed because the shortest path from b to д does not pass through

a.) Graph G1 is formed from G0 by eliminating f and its incident

edges, and adding the shortcut. (Eliminated edges are shown in

light gray.) The next two graphs, G1 and G2 show the contraction

of c and e . The augmented graph, GA, was obtained by continuing

with b, д, d , and a. GraphG↑ is obtained fromGA by directing each

edge at the higher-ranked node, or retaining only such edges if the

graph is directed. Dijkstra-like searches on G↑ usually visit a small

fraction ofV . For example, a search starting at b only visits d and a.
The character of the CH graph is determined by the ranking. For

example, with an ill-chosen ranking the number of shortcuts will be

unacceptably large. Ranking is typically performed by computing

scores for unranked nodes and assigning the next rank to the highest-

scoring node. Geisberger computes scores using a number of factors,

chief among them is edge difference, the change in the number of

edges if the node were contracted [15].

Calculating edge difference forw ∈ Vi requires the results of a
WPS on every broken path (u,w,v) ∈ Ei , a total of |Vi |d

2
searches.

251

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Roozbeh Karimi, David M. Koppelman, and Chris J. Michael

On top of that, after each iteration the scores for the remaining

nodes can change, so in order to maintain an accurate score, some

of the scoring criteria will need to be recalculated for the overlay

graph. Though for edge difference it only needs to be recalculated

for the immediate neighbors ofw rather than the entire graph. Even

so, this can be very costly. To address this Geisberger introduces a

lazy update scheme to selectively rescore nodes.

In Geisberger’s implementation theWPS for broken path (u,w,v)
is performed using a bidirectional Dijkstra search. It is necessary

that the WPS be correct when it finds a witness path, otherwise

an essential shortcut will be omitted. However, if the WPS does

not find a witness path that does exist a superfluous shortcut will

be added, hurting performance but not effecting correctness. This

enables the use of faster inexact searches, such as those with hop

limits.

2.4 PHAST: Parallel SSSP CH Queries

Delling et al introduce PHAST [9], a parallel SSSP query algorithm

that starts with the hierarchy provided by a CH graph. Levels are

assigned to nodes so that (u,v) ∈ E↑ ⇒ L(u) < L(v)where L : V →
[0, lmax) indicates the level and lmax is the number of levels. Delling

suggests determining levels during contraction as follows: Initially

the level of each node is set to zero. Whenw inGl is contracted set

L(x) = max{L(x), L(w) + 1} for all x : (w, x) ∈ El ∨ (x,w) ∈ El [9].
Given such a level assignment an SSSP query for s ∈ V proceeds

as follows. In the upward pass use Dijkstra’s algorithm to compute

distances in G↑. The time needed for this step should be small. At

this point nodes at level lmax − 1 (the highest) reachable from s are
settled (have final distances assigned). Next, in the downward pass,

nodes at level lmax − 2 update their distances following backward

edges in G↓. These edges can only reach nodes in level lmax − 1,

which have already been settled. The process is repeated level by

level until all nodes are settled. Since nodes in a level only access

nodes in higher levels, node update within a level can easily be

done in parallel [9].

By ordering edge lists by destination the distance update can be

implemented using contiguous loads of edges within a level for high

efficiency. The gather-style accesses needed to load higher-level

nodes’ distances are less efficient on certain systems but even that

can be eliminated by performing multiple SSSP queries in parallel.

The combination of these characteristics makes PHAST especially

suitable for modern processor architectures with vector processing

capabilities as well as GPUs [9].

2.5 GPU Background

GPUs achieve high floating-point and memory bandwidth by elim-

inating CPUs’ extensive mechanisms for delivering operands to

functional units (such as large caches and dynamic scheduling)

and replacing them with more efficient mechanisms including an

elaborate and exposed memory hierarchy and a large number of

thread contexts (to hide latency without speculation or bypassing),

and so these devices are dependent on well-tuned code. GPU or-

ganizations continue to evolve, the description below is of Nvidia

Pascal-generation GPUs, however the older Maxwell and newer

Volta/Turing generations are similar.

Code is prepared for Nvidia GPUs using the CUDA toolchain.

Code is initiated in a kernel, which consists of warps of threads

grouped into blocks. Blocks are dispatched to SMs, where they run

to completion. An SM has up to 128 functional units (64 on the P100)

and can actively schedule 64 warps. Four warps provide sufficient

threads for the functional units, additional warps are used to hide

latency. It is not unusual to require 16, 32, or 64 warps to maximize

performance. An Nvidia P100 has 56 SMs.

Re-used data is kept in shared memory and registers, which have

access times comparable with CPU L1 caches. The P100 has 64 kiB

and 256 kiB of register storage per SM. CU-CH carefully uses these

resources for its working sets, especially node neighborhoods. The

P100 has 3MiB of L2 cache, its small size and high latency make

it useful primarily for reducing off-chip bandwidth. The P100 has

an off-chip bandwidth of 550GB/s. It is assumed that readers are

familiar with issues and techniques associated with GPU data layout

and access. [6, 24] provide a good review of the material.

3 CU-CH: CUDA CH CONSTRUCTION, QUERY

The CU-CH contraction algorithm, given some input graph, con-

structs a parallel contraction hierarchy (PCH) graph along with other

graphs needed for query. The PHAST-like CU-CH query algorithm

uses these to perform SSSP queries. Both are implemented in CUDA

tuned for Nvidia Pascal-generation GPUs.

Parallel contraction is achieved by assigning nodes to levels

and contracting nodes within a level in parallel. The challenge is

to assign levels and to restrict witness path searches so that the

parallel WPS results are valid despite traversing contracted nodes.

These levels are compatible with PHAST’s, but they are assigned in

lieu of ranking rather than determined after ranking. For efficient

parallel contraction and query there must be a sufficient number

of nodes in a level. This is a problem in later levels where there

are too few nodes. CU-CH avoids the problem by contracting an

overlay graph only if the number of nodes is above a threshold,

otherwise contraction stops and the overlay is converted into a

complete graph. The computation of the complete graph and its

use for queries are both efficient GPU operations.

3.1 CU-CH Graph Description

The PCH of G = (V , E), denoted GPCH = (G,U,A), consists of
a valid partition of V , U = U0,U1, . . . ,Ulmax

, and valid sets of

weighted shortcutsA = A0,A1, . . . ,Almax−2. Define overlay graphs

Gi = (Vi , Ei) as follows: SetV0 = V and E0 = E. ThenVi+1 = Vi \Ui
and Ei+1 = Ai ∪Ei \Ui for i ∈ [0, lmax−2]. Finally setVlmax

= Ulmax
,

Elmax
= U 2

lmax

, and len(u,v) = DistG (u,v) for all (u,v) ∈ Elmax
.

Nodes inUi are said to be in level i .
The partitionU is valid if Ei ∩U

2

i = ∅ for i ∈ [0, lmax), that is,

if Ui is an independent set in Gi . For A to be valid DistGi (s, t) =
DistG (s, t) for all s, t ∈ Vi , i ∈ [1, lmax − 1]. A PCH for which

|U| = |V | is equivalent to a CH with level serving as rank.

3.2 CU-CH Algorithm Overview

Algorithm 1 constructs the PCH described above, plus structures

needed for query. The input is the graph to be contracted, G, and
tuning constants K < |V |, the cutoff, and C ∈ (0, 1], the selection
fraction. The output consists of the upward and downward graphs,

252

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

G↑,G↓, and the complete graph,GK. The output graphs contain the

shortcut midpoints and other information needed to reconstruct

paths. The algorithm initializes overlay graphG0 to the input graph

and then enters the main loop, which iterates until the number of

nodes in the current overlay graph is less than the cutoff, |Vl | < K .
Each iteration has five steps: The Score step computes scores for

all nodes. The Select step determines the set of nodes to contract,

Ul , by finding an independent set among the C |Vl | highest-scoring
nodes. The Shortcut step finds candidate shortcut edges, Al+,
around the contracted nodes. The Update step appends contracted

nodes and needed edges to the upward and downward graphs, and

it uses Al+ to create intermediate overlay graph Gl+. Finally, the

Extract step creates the next overlay graph, Gl+1, by removing

contracted nodes and attached edges and by renumbering retained

nodes. After the main loop exits the APSP step computes GK. A

rough complexity analysis appears below and measured times for

the main loop steps operating on a mid-sized graph are plotted in

Figure 9 for varying C , see Section 4.

By far the most computationally challenging operation per-

formed is the witness path search, used by the Score and Short-

cut steps. A conventional approach would perform a bidirectional

distance-limited Dijkstra search for each of the d2 broken paths in

length order starting at the shortest-length broken path. Shortcuts

found by earlier searches can be used in later searches. CU-CH

foregoes this benefit for parallelism and efficiency: a combined

approach is used for the d2 searches per node, reducing the total

work to O(d2) per node for the Score step and O(d3) work for the

Shortcut step. The correctness of these searches is discussed in

Section 3.4 and their implementation in Section 3.5.

The Select step is performed quickly: Scores are sorted to iden-

tify the C |Vl | top-scoring nodes, Ul+, followed by two iterations of

Luby’s MIS algorithm [20] to find an independent set among these.

Careful design was required for the Update and Extract steps.

The witness-path searches dominate execution time and their per-

formance is sensitive to the layout of edge lists. If edges to con-

tracted nodes are present, time will be lost checking for these edges

or otherwise avoiding them and L2 cache space would be wasted.

For these reasons Extract constructs a new overlay graph each it-

eration. This may sound wasteful, but Extract consumes relatively

little time. See Section 3.7 for details of data layout.

The Shortcut and Update steps each operate just once on each

node inV . In contrast the other steps each operate on nodes from 1

to lmax times. The average number of times each node is operated

on can be estimated by assuming a constant independent set size.

Call λl = |Ul |/|Vl | the contraction fraction and call αl = |Ul |/|Ul+ |
the MIS fraction. Assume, a bit unrealistically (see Figure 4), that

α0 = α1 = · · · = αlmax−1 = α and so λl = λ = αC . Then |Vl | =

(1 − αC)l |V | and
∑∞
0
|Vl | =

1

αC |V | and so steps such as Score

operate on each node an average of
1

αC times.

Based on this analysis setting C to larger values should reduce

the number of times nodes are operated on, and this is borne out

by measurement, see Figure 9. Because the score for a node is an

estimate of changes if it were the only node contracted, increasing

C weakens the predictive power of the scores. Among the measured

implications are more shortcut edges and higher-degree overlay

graphs and so more time needed for theO(d2) andO(d3) complexity

Algorithm 1: CU-CH

Input: Graph G = (V , E)
Constant :K = 1025, C = .3

Output: Graphs G↑, G↓, GK

G↑ = G↓ = (∅, ∅); G0 = G ; l = 0 ;

while |Vl | ≥ K do

// Score: Calculate scores of v ∈ Vl .
SC = Score(Gl) // Hard Part: 1-hop witness-path search.

// Select: Based on scores, find nodes to contract, Ul .
Ul+ = Sort(SC) // Find indices ofC |Vl | highest-scoring nodes.
Ul = Luby_Two(Gl , Ul+) // Find ⊆ Ul+ that is indep. set in Gl .

// Shortcut: Find shortcuts, Al+, for contracted nodes, Ul .
Al+ = Shortcut(Gl ,Ul) // Hard Part: 2-hop witness-path srch.

// Update: Add shcuts to Gl . Append Ul , etc. to G↑ and G↓.
(Gl+,G↑,G↓) = Update_Graph(Gl ,G↑,G↓, Al+);
// Extract: Construct Gl+1 using renumbered Vl \Ul .
Gl+1 = Extract_Overlay(Gl+, Ul , CU-CH);

l = l + 1;
// APSP: Perform a blocked APSP on graph final overlay Gl .

GK = Blocked_APSP(Gl);

w x

v

S
h
o
rt
cu
t?7

5

4

8
u

(a) Omit necessary shortcut

(u , v) because WPS for w finds

(u , x , v), likewise for x .

1

2

1 6

1 1

1 1 1

4 4

3

4

5

6

7

8

9

10

(b) 1-hop search finds a witness

path where a 5-hop limited Dijk-

stra search does not

Figure 2: Witness-Path Search Examples

WPS used in the Score and Shortcut steps and longer query times.

Figures 3 and 4 show the impact of C on dl and αl as tested on the

CAL graph (see Section 4.1). Issues and measurements related to C
are discussed further in Section 5.2.

3.3 Scoring

The scoring criteria used in CU-CH are based on those described by

Geisberger et al [15]. The score is computed using edge difference,

degree, maximum degree of forward and backward neighbors, nor-

malized average weight of incoming and outgoing edges, and nor-

malized maximum weight of incoming and outgoing edges. As with

Geisberger’s well-performing scoring methods, edge difference is

given the largest weight when computing the score. In CU-CH less

than half the execution time is spent scoring, so selective re-scoring

methods were not considered.

3.4 Parallel Contraction and Shortcuts

While finding a set of shortcuts for one contracted node, |Ul | = 1,

is straightforward, finding shortcuts for multiple nodes in parallel

presents two potential problems. First, if two contracted nodes are

neighbors, say w, x ∈ Ul and (w, x) ∈ El , then Al+ = { (u,v) |

253

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Roozbeh Karimi, David M. Koppelman, and Chris J. Michael

103104105106107

Overlay size (log scale)

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 d

e
g
re

e
 (

d
)

C=0.1, L
max

=150

C=0.2, L
max

=97

C=0.3, L
max

=81

C=0.4, L
max

=73

C=0.5, L
max

=70

Figure 3: Overlay degree, d , v. size for CAL.

103104105106107

Overlay size (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
IS

 f
ra

ct
io

n
 (
α

)

C=0.1, L
max

=150

C=0.2, L
max

=97

C=0.3, L
max

=81

C=0.4, L
max

=73

C=0.5, L
max

=70

Figure 4: MIS fraction, α , v. overlay size for CAL.

(u,w,v) ∈ El } will no longer serve as a set of candidate shortcuts

because (u, x) ∈ Al+ though x won’t be in the next overlay. The

solution used by CU-CH is to simply restrictUl to be an independent
set in Gl . This restriction has the added benefit of satisfying the

requirements for PHAST-like queries, see Section 2.4.

The second problem is more subtle. Letw, x ∈ Ul and suppose

(u,w,v) ∈ El , (u, x,v) ∈ El , and len(u,w,v) = len(u, x,v). In this

case the witness path search for broken path (u,w,v) might find

(u, x,v) and vice versa. Ordinarily if a witness path is found a

shortcut is not added, but if that rule were followed here a necessary

shortcut, (u,v), would be omitted. This is illustrated in Figure 2a. It

would be simple enough to avoid this problem by checking whether

traversed nodes are in Ul , but since the WPS dominates execution

time the cost of such checks would be significant. Instead, CU-CH

tightens the condition on witness paths of more than one hop: their

length must be strictly less than the length of the broken path.

With this condition (u,w,v) could not be a witness for broken path

(u, x,v). Edge (u,v) ∈ El with len(u,v) = len(u, x,v) could still

serve has a witness path for either broken path because it is only

one hop.

The tightened WP condition will result in only a few more short-

cut candidates than the original condition. For situations with equal-

length broken paths (u,w,v) and (u, x,v) two identical shortcut

candidates would be generated. (CU-CH will merge them into one.)

If the equal-length witness path does not contain a contracted edge

an unnecessary shortcut might be added. But equal-length paths

should be rare for road network graphs in which lengths are based

on physical distance or travel time.

3.5 Witness Path Search

A major challenge for CU-CH is performing witness path searches

efficiently on the GPU. Anything like Dijkstra’s algorithm is out

of the question due to irregular memory access and limited paral-

lelism. GPU SSSP algorithms like those of [8] were designed for

a single SSSP computation on an entire graph, whereas the SSSP

for a WPS need touch only a small part of the graph, and multi-

ple such searches need to be performed in parallel. The CU-CH

WPS implementation is specifically designed for such parallel lo-

cal searches. The search efficiently visits all nodes within 1 or 2

hops of the contraction candidate. For the 1-hop search each visited

node is loaded from global memory just once, and the entire search

takes O(d2) work, which is the minimum complexity for checking

d2 broken paths. The 2-hop search loads each node from global

memory ⌈d/h⌉ times and takes O(d3) work, where h is determined

by the number of available registers, h = 32 on the P100. Global

memory access is ideal here too until the degree exceeds h, but at
that point execution is likely computation bound. Some details of

the algorithm are described below.

TheWPS findswitness path candidates for broken path (u,w,v) ∈
El by identifying nodes Y = {y | (y,v) ∈ El , y , w } and then

checking whether nodes on forward paths from u are members.

If u ∈ Y a 1-hop path has been found; if (u, x) ∈ El and x ∈ Y a

2-hop path has been found. The found path’s length is compared to

the broken path’s length to determine whether it is a witness path.

Set membership is efficiently tested using a simple hash table that

takes only O(1) work per thread to load and lookup.

The WPS is summarized in Algorithm 2. For an overlay graph

of maximum degree Dl , a group of Tl = max{8, 2 ⌈lgDl ⌉ } threads

finds the shortcuts needed for a contraction candidate. Each thread

returns a bit vector identifying prudent shortcuts. Let u0,u1, . . .
and v0,v1, . . . denote the backward and forward neighbors of w .

Thread τ finds witness paths starting at uτ . Shared memory is used

for edges (w,v⋆) throughout the execution. Within the two q-loops,
thread τ loads (yτ ,vq) into shared memory and writes τ to the hash

table using key yτ . The hash table is implemented with an array

of bytes, the hash function is the lower bits of the node ID, and

collisions result in lost elements. Thread τ uses the hash table to

find a node in y⋆ which is the same as uτ (for the 1-hop search)

or some x | (uτ , x) ∈ El (for the 2-hop search). Collisions are rare.

In tests using the CAL graph they occur in less than 1% of the

WPS’s. To assess their impact fallback code is invoked on collisions

to iteratively compare x or uτ to each element of Y .
The 1-hop search only has a single loop, of d iterations, and so

the total work is O(d2) assuming d ≈ Tl and loads O(d2) data. This
suggests bandwidth-bound execution.

The 2-hop search is a greater challenge because for each q,
(y⋆,vq)must be compared to everyX = { (u, x) | (u,w) ∈ El , (u, x) ∈
El , u , x }. Call X the frontier. CU-CH stores the frontier in GPU

registers, the most abundant high-speed storage available. When

there are not enough registers for the entire frontier something

will need to be loaded multiple times. Let h denote the maximum

frontier size a thread can accommodate. CU-CH loads the frontier

254

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Algorithm 2:Witness Path Search

Input: Contraction candidate: w ∈ Vl .
Output: Shortcut vector: S[q] = 1 if shortcut (uτ , vq) prudent.
Threads :Use T threads per node; IDs: τ ∈ [0,T).

// Thread τ checks broken paths (uτ ,w , v⋆).

Regs d ← w:D // Degree of w .

Regs uτ ← w:B[τ]:NW // Edge (uτ ,w).
Shared v[τ] ← w:F[τ]:NW // Edge (w , vτ).
Regs S[q] ← uτ , v[q] for q ∈ [0, d) // Init shortcut vector.

// One-Hop Search

for q ∈ [0, d) do // Can (uτ , vq) witness (uτ ,w , vq)?
l ← len(uτ ,w) + len(w , v[q]) // Broken path length.

Shared y[τ] ← {w:F[q]::B}[τ]:NW // Edge (yτ , vq)
Hash_Insert.Key(y[τ]).Val (τ)

e ← Hash_Lookup(uτ) // Look for e such that ye = uτ .
if y[e] = uτ ∧ len(y[e], v[q]) ≤ l then S[q] ← 0

// Two-Hop Search

for r ∈ {0, h, 2h, . . . , d } do // Edges (uτ , xr), . . . (uτ , xr+h−1)
Regs x[j] ← {w:B[τ]::F}[r + j]:NW for j ∈ [0, h)
for q ∈ [0, d) do // Can a (uτ , x⋆, vq) witness (uτ ,w , vq)?

l ← len(uτ ,w) + len(w , v[q]) // Broken path length.

Shared y[τ] ← {w:F[q]::B}[τ]:NW // Edge (yτ , vq)
Hash_Insert.Key(y[τ]).Val (τ)

for j ∈ [0, h) do // Can (uτ , x j , vq) witness (uτ ,w , vq)?
e ← Hash_Lookup(x[j]) // Seek e such that ye = x j
if x[j] = y[e] ∧ len(uτ , x[j]) + len(y[e], vq) < l
then S[q] ← 0

in h-node chunks per thread. This chunking does not change the
number of hash lookups (inner j loop iterations in the code) but

does increase the number of hash inserts from d to d ⌈d/h⌉ ≈ d2/h
and the amount of data loaded from O(d2) to O(d3/h). Regardless
of h the total work is O(d3).

Fortunately the P100 can handle up to h = 32. CU-CH sets h
so that re-use only occurs when the degree exceeds 32. At that

point re-use is likely not slowing execution because each loaded y
is compared against 32 x j and so execution is either computation-

bound or there are not enough contracted nodes to saturate any

resource.

Algorithm 2 shows global access using shorthand in which i:H
denotes an access to array H at index i , that is, H[i]when written in

C. The C equivalent of chained accesses w:B[τ]:N is N[B[w] + τ].
Each : denotes an array access. Braces surround values cached in

sharedmemory. For example, {w:B[τ]::F}[r+j]:W indicates that

the value F[N[B[w]+τ]] had earlier been placed in shared memory,

and that is being accessed, call it x . Then W[x + r + j] is accessed
from global memory. B and F are node-indexed arrays returning

edge-list indices. N and W are edge-indexed arrays returning node

ID and edge weight. Many details are implicit, such as whether N is

a forward or backward edge list.

3.6 Overlay APSP

As contraction progresses one would expect αl = |Ul |/|Ul+ | to de-

crease, in part due to increasing degree, and that has been observed

on tested graphs such as CAL in Figure 4. This, combined with the

decreasing size of Vl results inUl becoming too small to efficiently

utilize the GPU for both contraction and query. Delling observes

something similar: In the Western Europe graph less than 0.01% of

the nodes are spread over half the levels [9].

To avoid this underutilization contraction stops once Vl < K ,
and the final overlay, Glmax

, is converted into complete graph GK

using an APSP query. For the systems tested K = 1025 works well,

in part because GPU APSP can be efficiently coded at that size

[17]. The APSP used requires O(V 3

lmax

) work and a measured time

of 20ms on a graph with 1024 nodes.

3.7 Data Structures

A brief overview of the data structures used in CU-CH is provided

here. Graphs in CU-CH use a layout similar to the Compressed

Sparse Row (CSR) representation[6]. Graphs consist of arrays for

edge weights and edge destinations, a node-ID-indexed array stor-

ing the indices into these edge arrays, and a node-ID-indexed array

storing node degrees. To ensure alignment and to accommodate

the addition of shortcuts overlay graph edge arrays are padded.

The amount of padding is chosen to maintain 32 B alignment and

to balance edge list size against time lost when shortcut space is

exhausted. When a shortcut is to be added to a node with no remain-

ing padding that node’s edges are moved to an overflow area and

the node array is adjusted accordingly. Note that unlike standard

CSR, the representation used in CU-CH does not guarantee ascend-

ing order in edge and weight arrays. While using an adjacency list

or DCSR [19] would facilitate adding shortcuts, they would have

other overheads associated with them.

In different steps of CU-CH either the incoming or the outgoing

edges or both are accessed. Tomaintain efficientmemory bandwidth

utilization in each of these access types, edge lists are ordered by

both source (in a forward edge list) and destination (in a backward

edge list).

Similar to PHAST, nodes and edges in G↑ and G↓ are ordered
based on level, however they are padded differently than edge lists

in the overlay graphs. The edge and weight arrays of multiple nodes

belonging to the same level are packed into groups of ≤ 1024 edges

and groups are padded to maintain 4 kiB (1024 element) alignment.

These modifications improve data localization and allow contiguous

memory access patterns within each active block during queries

while ensuring different blocks canwork independently. This layout

also acts as a simple load balancing scheme between different blocks

working on the same level.

3.8 CU-CH Query

The CU-CH query is similar to PHAST [9]. Unlike PHAST, the

upward pass (and everything else) is performed on the GPU. For

the first 31 levels the upward pass visits only nodes reachable from

the source. Bit vectors are used to identify reachable nodes and

reachable levels. The level vector is scanned until the next reachable

level is found, then the node vector is scanned to find reachable

nodes. Those nodes update their distances following backward

upward edges, which reach lower-level nodes. Next, they update

the vectors for higher-level nodes (those at the end of forward

upward edges). The vectors are not used past level 31, instead all

nodes within a level update their distances. Unlike PHAST, the last

255

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Roozbeh Karimi, David M. Koppelman, and Chris J. Michael

Table 1: Benchmark Graphs

Graph Description # Nodes # Edges d D

LA USA / Louisiana 413,574 988,458 2.39 6

NY USA / New York State 716,215 1,773,794 2.48 8

NW USA / North Western US 1,207,945 2,840,208 2.35 8

NE USA / North Eastern US 1,524,453 3,897,636 2.55 8

CAL USA / California and Nevada 1,890,815 4,630,444 2.45 7

TX USA / Texas 2,073,870 5,116,492 2.47 8

level is a complete graph, so when the upward pass reaches lmax,

distances are updated using the complete set of edges. Like PHAST,

the downward pass visits all nodes. Like PHAST, the amount of

work and data visited is O(E↓).
To provide the shortest path from each node to a source the

CU-CH query computes the parent of each node (a neighbor on

a shortest path to the source). Parents are determined using edge

midpoints. The forward midpoint of (u,v) ∈ E (an original edge)

is u. The forward midpoint of shortcut (u,v) added for broken

path (u,w,v) is the forward midpoint of (w,v). Backward midpoint

is defined similarly. Midpoints are collected during contraction,

and are computed in the APSP query on Glmax
. In a query the

midpoints are used to reconstruct the path after the upward and

downward passes. (PHAST finds parents in a third pass by finding

the minimum-distance neighbor of each node.)

4 METHODOLOGY

4.1 Benchmarks

The workload used to evaluate CU-CH and comparison codes con-

sists of graphs from the DIMACS 9 competition and from the

TIGERS database [1]. These graphs describe road networks in parts

of North America, key details are given in Table 1. The graphs were

prepared by removing duplicate and self edges and where necessary

(TX) scaling weights to fit 32 b integers. Distance was used for edge

weight.

4.2 Code Preparation, Hardware, and Timing

Code for the experiments reported here were prepared on hosts

running Red Hat Enterprise Linux 7.6 using CUDA Toolkit Version

9.2, gcc 4.8.5, and BOOST 1.53. GPU results were collected on an

HPC-grade, Pascal-generation GPU, the Nvidia Tesla P100. CPU

results were run on an Intel Xeon E5-2640 v4 system. The Xeon has

ten cores, a 2.4GHz clock, and 25MB of cache.

The time reported for GPU contraction starts with the graph

in CPU memory and ends with the contracted graph and other

items needed for query in GPU memory. These are based on wall

time, with the end time taken after the GPU has completed pending

work. The execution time for individual kernels was collected using

CUDA event timers.

CU-CH is compared with CH as implemented by Geisberger’s

Contraction Hierarchies distribution, Version 2008/06/24 Revision

447 [15]. This CH code can be run with many options for scoring.

Two sets of options are provided and they are used here. The eco-

nomical variant, abbreviated Geis-Eco, provides fast preprocessing

0 10 20 30 40 50 60 70 80
Iteration number

0

5

10

15

20

25

30

Ti
m

e
 (

m
s)

Score
Select
Shortcut
Update
Extract

Figure 5: Time of each iteration for CAL with C = .3

and medium query times. The aggressive variant, abbreviated Geis-

Agr, provides medium preprocessing time and low query times.

The economic variant hop-limits WPS, among other differences.

Problems were encountered preprocessing smaller graphs using

Geisberger’s code, and data for those graphs is omitted from the

results.

5 RESULTS

5.1 Overall Performance

Table 2 shows the time needed for contraction of the benchmark

graphs by CU-CH and Geis-Agr and Geis-Eco, and the speedup over

Geis-Eco. For the Geisberger runs contraction time refers to the time

for an ordinary CH, in which all but one node is contracted. For

CU-CH contraction time includes both contraction until about 1024

nodes remain (at which contraction stops), and the time for an APSP

query on them. CU-CH achieves 20× to 37× speedup over Geis-Eco,

and even larger speedups over Geis-Agr. Even if Geisberger’s code

were perfectly parallelized for the 10-core CPU CU-CHwould enjoy

a substantial advantage.

The quality of the contracted graphs is shown in Table 2 by the

number of levels and by average SSSP query time (averaged over 100

queries on randomly selected sources). For CAL graph, these stats

are also reported for a hypothetical CU-CH-true implementation

that uses an oracle WPS (further discussed in Section 5.3). The best

results, meaning the fewest levels and smallest query times, are

obtained with graphs contracted using Geis-Agr. Query times on

the CU-CH graphs are between those of Geis-Agr and Geis-Eco on

two out of three graphs for which data is available. CU-CH results

in only a small drop in query performance in exchange for much

faster contraction.

For comparison, the time needed for CPU SSSP queries using

the BOOST library SSSP (Dijkstra) code is shown. An interesting

question is the number of queries at which contraction plus query

using CU-CH is faster than using BOOST to perform the queries.

For NW and CAL 3 or more queries are faster using CU-CH, for TX

even 2 queries are faster on CU-CH despite the time needed for con-

traction. SSSP queries were also tried using the Nvidia nvGRAPH

library [23]. As with other GPU SSSP queries on road network

graphs, the performance is poor and so comparisons are omitted.

256

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Table 2: Benchmark results

Graph Contraction Contraction Num of Mean Query

Method Time /ms SpdUp Levels Time /ms

LA CU-CH C = .3 242 - 40 2.496

BOOST Dijkstra - - - 93.459

NY CU-CH C = .3 415 - 56 4.056

BOOST Dijkstra - - - 166.470

NW CU-CH C = .3 589 20× 60 5.634

Geis-Agr 34,969 .35× 47 4.790

Geis-Eco 12,212 1× 172 6.230

BOOST Dijkstra - - - 278.180

NE CU-CH C = .3 903 37× 92 7.659

Geis-Agr 85,239 .40× 74 6.352

Geis-Eco 33,775 1× 818 -

BOOST Dijkstra - - - 372.860

CAL CU-CH C = .3 950 34× 82 8.541

CU-CH-true C = .3 62 8.131

Geis-Agr 81,347 .40× 63 7.089

Geis-Eco 32,292 1× 292 9.773

BOOST Dijkstra - - - 477.830

TX CU-CH C = .3 1,030 23× 85 9.319

Geis-Agr 65,848 .36× 43 7.050

Geis-Eco 23,965 1× 186 9.227

BOOST Dijkstra - - - 566.590

0 10 20 30 40 50 60 70 80
Iteration number

101

102

103

104

105

106

N
u
m

b
e
r

o
f

n
o
d

e
s

Figure 6: Contracted nodes per iteration for CAL withC = .3

CU-CH (C=0.1) CU-CH (C=0.2) CU-CH (C=0.3) CU-CH (C=0.4) CU-CH (C=0.5) Geis-Agr Geis-Eco

Selection fraction (C)

0.4

0.6

0.8

1

1.2

R
a
ti

o
 o

f
a
d
d

e
d
 e

d
g
e
s

CU-CH
CU-CH-true (Oracle WPS.)

Figure 7: Edge growth, (|E↑ | + |E↓ |)/|E |, on CAL.

Figure 5 shows the time for each step per iteration and Figure 6

shows |Ul | per iteration both for a contraction of CAL with C = .3.

Ideally the time for iteration l would be ∝ |V |(1 − λ)l , where λl =
|Ul |/|Vl | is the fraction of contracted nodes. That shape can be seen,

though interrupted by jumps, for example, the jump after iteration

20. The jumps are due to increases in the number of threads assigned

to a node,Tl , which is chosen based on the maximum degree. At an

iteration l in which Tl−1 < Tl there will be many more idle threads

in the WPS than there were in iteration l − 1, because in a WPS

Tl − dl threads are idle and most likely dl−1/Tl−1 > dl /Tl . This

drop in efficiency when Tl increases is painful but hard to avoid.

For example, assigning fewer threads per node would reduce the

amount of local storage available for WPS, which would increase

the number of global memory accesses.

Apart from increases in Tl , three additional effects undermine

the ideal execution time: an increase in the degree of the overlay

graph, dl , a reduction in λl , and a reduction in the absolute number

of contracted nodes, |Ul |.
The increase in degree brings the time for the O(|Vl |d

2

l) score

and O(|Ul |d
3

l) shortcut WPS to dominate, and that can clearly be

seen. The WPS is discussed further in Section 5.3.

Decay in αl with l , the size of the discovered independent set of

Ul+, has two impacts. It reduces the number of contracted nodes,

increasing the overlay size at some iteration l (over the case where
αl is unchanging) and so the modeled time for iteration l increases
to O (|V |

∏
i<l (1 − λi)), where λl =

1

Cαl
.

A second impact occurs when the number of contracted nodes

drops below the number that the device can compute in parallel.

At that point the time for the Shortcut step is determined by the

latency of the worst-performing thread, which increases with l
due to growth of the maximum degree. In contrast the time for

the Score step continues to decrease. At Tl = 128 the P100 can

simultaneously execute 280 Shortcut operations. (Each node is

handled by 128 threads, and due to shared memory constraints

up to 6400 threads can be active on each of 56 SMs.) At iteration

50 there are |U50 | = 160 nodes to contract and so the device is

underutilized. The P100 can handle up to 280 parallel Score steps,

and with |V50 | = 3271 there is plenty of work and so Score time

continues to drop. At Tl = 256 the P100 can execute Shortcut for

112 nodes in parallel and Score for 168 nodes in parallel, so Score

fully utilizes the device to when the cut-off is reached. The cutoff,

K , puts an end to the Shortcut underutilization. The rationale for

K = 1025 includes a variety of factors, and will be revisited in the

future.

5.2 Impact of Selection Fraction (C)
Selection fraction, C , is an important tuning parameter. For larger

values more contraction candidates, Ul+, are selected, hopefully
reducing lmax and the average number of times each node is scored,

1

αC in the ideal analysis. But with larger Ul+ the scores are less

relevant, resulting in overlay graphs with more shortcuts than

necessary. This in turn increases the time needed for a WPS and

query, and reduces the size of the discovered independent sets,

αl = |Ul |/|Ul+ |, which increases lmax.

The measured impact ofC on the number of shortcuts in CAL is

plotted in Figure 7, as well as the ratio of added shortcuts for the

Geis-agr and Geis-eco runs. Even at the most patient setting,C = .1,
Geisberger adds many fewer edges. The impacts on degree and α
are shown in Figures 3 and 4, both figures show lmax. Here it can be

seen that for larger overlays the product Cα increases with C , and
so the number of levels, lmax, drops with increasing C , a benefit,
but one that can be undermined by the degree growth. Figures 8

and 9, which show contraction time, indicate that degree growth

becomes a problem only when C reaches .5.

257

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Roozbeh Karimi, David M. Koppelman, and Chris J. Michael

0.1 0.2 0.3 0.4 0.5
Selection Fraction (C)

0

100

200

300

400

500

600

700

800

900

1000

1100

To
ta

l
P
re

p
ro

ce
ss

in
g
 T

im
e
 /

 m
s

LA
NY
NW
NE
CAL
TX

Figure 8: Total preprocessing time v. C.

0.1 0.2 0.3 0.4 0.5
Selection fraction (C)

0

100

200

300

400

500

600

To
ta

l
ti

m
e
 (

m
s)

Score
Select
Shortcut
Update
Extract

Figure 9: Time for each step v. C for CAL.

0 10 20 30 40 50 60 70 80
Level

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

e
n
t

WP using 2-hop search / # broken paths
WP found in 2nd hop / # WP found in 1st and 2nd hop
WP found in 2-hop search / True # WP
shortcuts using full WPS / # shortcuts using 2-hop search
10 × # shortcuts using 2-hop search / total # shortcuts

Scale is 0-10%
for this series.

Figure 10: Ratio of # WP and shortcuts on CAL with C = .3.

Finally, Figure 11 shows the impact of C on query time. Interme-

diate values of C do best, though further tuning may improve the

performance at larger values.

5.3 Effectiveness of Witness Path Search

The CU-CH WPS executes efficiently (and quickly) but stops at 2-

hops. To determine the impact of this limitation CU-CH is compared

to CU-CH-true, a version of CU-CH that uses an oracle (a full WPS

performed on the CPU) in the Shortcut step. Figure 7 shows the

number of edges in the output graphs generated by CU-CH-true,

CU-CH (C=0.1) CU-CH (C=0.2) CU-CH (C=0.3) CU-CH (C=0.4) CU-CH (C=0.5) Geis-Agr Geis-Eco

Preprocessing Type

0

1

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 Q

u
e
ry

 T
im

e
 /

 m
s

Upward Pass
APSP
Downward Pass
Path Unpacking

Figure 11: Query time of CAL contracted various ways.

CU-CH, Geis-Agr, and Geis-Eco operating on CAL. ForC = .3 there
would be 11% fewer edges using the full WPS. The impact on query

time for CAL is found in Table 2: using the full WPS provides only

a small improvement in query time, from 8.5ms to 8.1ms.

Further details on the WPS effectiveness appear in Figure 10,

which shows per-level comparisons for CAL. The blue series shows

the ratio of the number of WP found by the 2-hop and full searches.

By this measure the 2-hop search is performing well, at least 90%.

However the number of broken paths increases quadratically with

degree, and that results in an increase in the number of unneeded

shortcuts, shown by the purple series which shows the ratio of the

number of shortcuts added using the full search over the number

added using the 2-hop search. This starts out at nearly 100% but

sinks to 50%. Fortunately the absolute number of shortcuts added

drops with level, shown in the black series (scaled by a factor of

10 to improve readability). The black series shows the number of

shortcuts added in the level over the number of shortcuts in the

completed contraction. In later levels that number drops to well

below 1%, showing the small impact of the unneeded shortcuts

revealed by the purple series. The green series shows the ratio of

WP found in the 2nd hop to those found in both hops. Over 60%

are found in the 1st hop, which is why Score uses a 1-hop search.

5.4 Query

Table 2 shows total query times for the benchmark graphs. To

provide more detail, Figure 11 shows a breakdown of the kernel

times on a query of CAL operating on graphs prepared by CU-CH

using different values of C and graphs prepared using Geis-agr

and Geis-eco. The time for updating the overlay results and the

time for unpacking the shortcuts in the path are unaffected by the

preprocessing method since they are only dependent on K and V
respectively.

Figure 12 shows a breakdown of query times per level. Figure 13

shows the number of edge groups (Section 3.7) per each level. There

is a trade-off between total number of edges, number of edge groups

per level and the number of levels in query performance. On one

hand, the query time is dependent on the total number of edges

since in PHAST, each edge and each node is touched only once. On

the other hand however, because parallelism in PHAST is limited

to levels, having more levels can result in a larger kernel launch

258

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

0 10 20 30 40 50 60 70 80
Level

0

20

40

60

80

100

120

140

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

µ
s) Upward Pass

Downward Pass

C=.3

Figure 12: Query time by level of CAL.

10 20 30 40 50 60 70 80
Level

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f

E
d

g
e
 G

ro
u
p

s

Upward Pass
Downward Pass

CU-CH, C=.3

Figure 13: No. edge groups of < 1024 per level on CAL.

overhead which is more than 4 µs on our benchmark platform for a

blank kernel.

On top of that, in levels where the total number of edge groups is

fewer than the available SMs, there is reduced hardware utilization.

Note that under-utilization on thread levels is already addressed

by using edge groups. This second mechanism is the reason why

the graph prepared using the economic Geisberger implementation

has a larger query time despite having fewer added shortcuts.

This trade-off between lmax and |ECU−CH | is the reason why

the query times decrease on the CAL graph when C is increased

from .1 to .3 and why they see a slight increase when C is further

increased to .5.

6 PRIORWORK

Davidson et al [8] present well-performing GPU SSSP algorithms.

A thread retrieves a node from a current work queue, with other

threads updates the distances of its neighbors, and places any neigh-

bors that change in one of several future work queues chosen based

on distance. In the best of these schemes there are two future work

queues, near and far. When the current queue is empty it is replen-

ished from the near queue. If the near queue is empty the choice

threshold is updated and used to redistribute nodes in the near and

far queues. The technique works well for most graphs, achieving

over 10× speedup over CPU code for four of eight graphs, but yield-

ing a slowdown for the two road-network graphs tried. The poor

performance of the road network graphs was attributed to the small

workfront (occupancy of current queue) [8]. Pai et al reduce the

small-workfront impact in part by moving some iteration to GPU

code [25], improving execution time by about 6×.

There is a substantial amount of work on accelerating point-

to-point queries in road network graphs by operating on a pre-

processed graph, these are surveyed in [4]. They include Geis-

berger’s CH [15] and Delling’s adaptation to SSSP queries [9] dis-

cussed in Section 2.4. Work on reducing the time to compute CH

has been done for cases where the topology remains fixed but the

edge weights change. Dibbelt et al describe Customizable Contrac-

tion Hierarchies (CCH) in which the pre-processing is divided into

a time-consuming weight-independent phase and a fast weight-

dependent phase [10]. In contrast, CU-CH applies when no version

of the graph is available in advance.

The Highways on Disk (HoD) scheme described by Zhu et al [29]

has some interesting parallels with CU-CH and PHAST. HoD is

intended for systems in which there is enough high-speed storage

for the nodes, but not enough all edges. (The high-speed storage

was cache-backed DRAM, with the alternative being a much slower

magnetic disk.) Like CU-CH nodes are assigned to levels (rather

than being ranked first) though using a simpler scoring than CH.

Like PHAST and CU-CH nodes within a level cannot be neighbors,

and like CU-CH level-assignment stops when a size threshold is

reached, the remaining nodes form the core. Shortcut candidates

and selected paths are sorted to find witness paths. While their

work was an inspiration for CU-CH, it addresses the very different

challenges arising when graphs cannot fit in high-speed storage.

There are a number of frameworks for implementing graph

algorithms on GPUs which facilitate data layout and graph traversal

[18, 27, 28]. One framework, CuSha [18], helps re-structure data

to fit a GPUs memory hierarchy. For their SSSP implementation

they report a run time of 384ms on a GTX 780 for the roadnet-CA

graph (road network of California with 1.97 million nodes and 5.53

million edges).

7 CONCLUSION

In this paper we presented CU-CH, a generalized parallel CH algo-

rithm and CUDA implementation for road networks. Solutions for

some of the challenges associated with efficient use of the GPU’s

memory and computation hierarchy to allow CU-CH were covered.

It was shown that by applying an independent set constraint to

the set of nodes contracted in parallel, the search for the necessary

set of shortcuts to maintain the CH definition can be limited to

the immediate neighborhood of each node being contracted. This

was followed by describing a simple yet effective shallow bidirec-

tional breadth-first search of a given node’s neighborhood that

could be placed in the shared memory. Thus performing witness

path searches efficiently on the GPU. A modified implementation

of PHAST was also briefly introduced to perform SSSP queries on

graphs prepared by CU-CH. By performing an APSP on the highest

ranked nodes, hardware underutilization in both the later itera-

tions of CU-CH as well as the highest levels of PHAST is avoided,

improving performance.

The simple witness path search method shows results within

20% to 30% of the graphs prepared by Geisberger’s original imple-

mentation of CH in terms of number of added shortcuts. In terms

of preprocessing times, CU-CH performs 20 to 94 times faster than

Geisberger’s serial CPU implementation. Finally, the SSSP query

times using the modified implementation of PHAST, showed simi-

lar performance to those prepared by Geisberger’s implementation

ranging between 25% slower to 20% faster depending on benchmark

conditions.

259

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Roozbeh Karimi, David M. Koppelman, and Chris J. Michael

ACKNOWLEDGMENTS

This work has been funded by the U.S. Naval Research Labora-

tory Base Program under award N00173-16-2-C901. Equipment was

funded in part by the National Science Foundation under award

ACI-1265449 and the Louisiana Board of Regents under award

LEQSF(2015-16)-ENH-TR-10.

REFERENCES

[1] 2006. 9th DIMACS implementation challenge - shortest paths. Retrieved

September 27, 2018 from http://www.dis.uniroma1.it/challenge9/download.shtml

[2] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V Goldberg, and Renato F

Werneck. 2011. VC-dimension and shortest path algorithms. In International

Colloquium on Automata, Languages, and Programming. Springer, 690–699.

[3] Ittai Abraham, Daniel Delling, Amos Fiat, AndrewV. Goldberg, and Renato F.Wer-

neck. 2016. Highway Dimension and Provably Efficient Shortest Path Algorithms.

J. ACM 63, 5, Article 41 (Dec. 2016), 26 pages. https://doi.org/10.1145/2985473

[4] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. 2016.

Route Planning in Transportation Networks. Springer International Publishing,

Cham, 19–80. https://doi.org/10.1007/978-3-319-49487-6_2

[5] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. 2015.

Route Planning in Transportation Networks. CoRR abs/1504.05140 (2015).

arXiv:1504.05140 http://arxiv.org/abs/1504.05140

[6] Nathan Bell and Michael Garland. 2008. Efficient Sparse Matrix-Vector Multiplica-

tion on CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corporation.

http://www.nvidia.com/object/nvidia_research_pub_001.html

[7] Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics

16, 1 (1958), 87–90.

[8] A. Davidson, S. Baxter, M. Garland, and J.D. Owens. 2014. Work-Efficient

Parallel GPU Methods for Single-Source Shortest Paths. In Parallel and Dis-

tributed Processing Symposium, 2014 IEEE 28th International. 349–359. https:

//doi.org/10.1109/IPDPS.2014.45

[9] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck.

2011. PHAST: Hardware-Accelerated Shortest Path Trees. In Proceedings of the

2011 IEEE International Parallel & Distributed Processing Symposium (IPDPS ’11).

IEEE Computer Society, Washington, DC, USA, 921–931. https://doi.org/10.1109/

IPDPS.2011.89

[10] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. 2016. Customizable Con-

traction Hierarchies. J. Exp. Algorithmics 21, Article 1.5 (April 2016), 49 pages.

https://doi.org/10.1145/2886843

[11] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer.

Math. 1, 1 (Dec. 1959), 269–271. https://doi.org/10.1007/BF01386390

[12] David Eppstein and Michael T. Goodrich. 2008. Studying (Non-planar) Road Net-

works Through an Algorithmic Lens. In Proceedings of the 16th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems (GIS ’08).

ACM, New York, NY, USA, Article 16, 10 pages. https://doi.org/10.1145/1463434.

1463455

[13] David Eppstein and Siddharth Gupta. 2017. Crossing Patterns in Nonplanar Road

Networks. In Proceedings of the 25th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems (SIGSPATIAL ’17). ACM, New

York, NY, USA, Article 40, 9 pages. https://doi.org/10.1145/3139958.3139999

[14] Lester R Ford Jr. 1956. Network flow theory. Technical Report. RAND CORP

SANTA MONICA CA.

[15] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road

Networks. In Proceedings of the 7th International Conference on Experimen-

tal Algorithms (WEA’08). Springer-Verlag, Berlin, Heidelberg, 319–333. http:

//dl.acm.org/citation.cfm?id=1788888.1788912

[16] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart. 2011. Edge v. Node Parallelism

for Graph Centrality Metrics. In GPU Computing Gems Jade Edition (1st ed.), Wen-

mei W. Hwu (Ed.), Vol. 2. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 15–30.

[17] Gary J Katz and Joseph T Kider Jr. 2008. All-pairs shortest-paths for large

graphs on the GPU. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS

symposium on Graphics hardware. Eurographics Association, 47–55.

[18] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:

Vertex-centric Graph Processing on GPUs. In Proceedings of the 23rd International

Symposium on High-performance Parallel and Distributed Computing (HPDC ’14).

ACM, New York, NY, USA, 239–252. https://doi.org/10.1145/2600212.2600227

[19] James King, Thomas Gilray, Robert M Kirby, and Matthew Might. 2016. Dy-

namic sparse-matrix allocation on GPUs. In International Conference on High

Performance Computing. Springer, 61–80.

[20] M Luby. 1985. A Simple Parallel Algorithm for the Maximal Independent Set

Problem. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of

Computing (STOC ’85). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/

22145.22146

[21] Saeed Maleki, Donald Nguyen, Andrew Lenharth, María Garzarán, David Padua,

and Keshav Pingali. 2016. DSMR: a shared and distributed memory algorithm

for single-source shortest path problem. ACM SIGPLAN Notices 51, 8 (2016), 39.

[22] Ulrich Meyer and Peter Sanders. 2003. ∆-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms 49, 1 (2003), 114–152.

[23] NVIDIA Corporation. 2018. nvGRAPH library user’s guide. NVIDIA Corporation.

[24] NVIDIA Corporation. 2018. NVIDIA CUDA C Programming Guide V 9.2 (v 9.2

ed.). NVIDIA Corporation.

[25] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Opti-

mization of Graph Algorithms on GPUs. In Proceedings of the 2016 ACM SIG-

PLAN International Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA 2016). ACM, New York, NY, USA, 1–19.

https://doi.org/10.1145/2983990.2984015

[26] Christian Sommer. 2014. Shortest-path Queries in Static Networks. ACM Comput.

Surv. 46, 4, Article 45 (March 2014), 31 pages. https://doi.org/10.1145/2530531

[27] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D Owens. 2016. Gunrock: A high-performance graph processing library on

the GPU. In ACM SIGPLAN Notices, Vol. 51. ACM, 11.

[28] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan

Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and

John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Transactions on

Parallel Computing 4, 1, Article 3 (Aug. 2017), 49 pages. https://doi.org/10.1145/

3108140

[29] Andy Diwen Zhu, Xiaokui Xiao, Sibo Wang, and Wenqing Lin. 2013. Efficient

Single-source Shortest Path and Distance Queries on Large Graphs. In Proceedings

of the 19th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD ’13). ACM, New York, NY, USA, 998–1006. https://doi.org/10.

1145/2487575.2487665

260

http://www.dis.uniroma1.it/challenge9/download.shtml
https://doi.org/10.1145/2985473
https://doi.org/10.1007/978-3-319-49487-6_2
http://arxiv.org/abs/1504.05140
http://arxiv.org/abs/1504.05140
http://www.nvidia.com/object/nvidia_research_pub_001.html
https://doi.org/10.1109/IPDPS.2014.45
https://doi.org/10.1109/IPDPS.2014.45
https://doi.org/10.1109/IPDPS.2011.89
https://doi.org/10.1109/IPDPS.2011.89
https://doi.org/10.1145/2886843
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/1463434.1463455
https://doi.org/10.1145/1463434.1463455
https://doi.org/10.1145/3139958.3139999
http://dl.acm.org/citation.cfm?id=1788888.1788912
http://dl.acm.org/citation.cfm?id=1788888.1788912
https://doi.org/10.1145/2600212.2600227
https://doi.org/10.1145/22145.22146
https://doi.org/10.1145/22145.22146
https://doi.org/10.1145/2983990.2984015
https://doi.org/10.1145/2530531
https://doi.org/10.1145/3108140
https://doi.org/10.1145/3108140
https://doi.org/10.1145/2487575.2487665
https://doi.org/10.1145/2487575.2487665

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Dijkstra's Algorithm
	2.3 Contraction Hierarchy (CH)
	2.4 PHAST: Parallel SSSP CH Queries
	2.5 GPU Background

	3 CU-CH: CUDA CH Construction, Query
	3.1 CU-CH Graph Description
	3.2 CU-CH Algorithm Overview
	3.3 Scoring
	3.4 Parallel Contraction and Shortcuts
	3.5 Witness Path Search
	3.6 Overlay APSP
	3.7 Data Structures
	3.8 CU-CH Query

	4 Methodology
	4.1 Benchmarks
	4.2 Code Preparation, Hardware, and Timing

	5 Results
	5.1 Overall Performance
	5.2 Impact of Selection Fraction (C)
	5.3 Effectiveness of Witness Path Search
	5.4 Query

	6 Prior Work
	7 Conclusion
	Acknowledgments
	References

