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Modern HPC architectures consist of heterogeneous multi-core, many-node systems with deep
memory hierarchies. Modern applications employ ever more advanced discretisation methods to
study multi-physics problems. Developing such applications that explore cutting-edge physics on
cutting-edge HPC systems has become a complex task that requires significant HPC knowledge and
experience. Unfortunately, this combined knowledge is currently out of reach for all but a few groups
of application developers.

Chemora is a framework for solving systems of Partial Differential Equations (PDEs) that targets
modern HPC architectures. Chemora is based on Cactus, which sees prominent usage in the compu-
tational relativistic astrophysics community. In Chemora, PDEs are expressed either in a high-level
LATEX-like language or in Mathematica. Discretisation stencils are defined separately from equations,
and can include Finite Differences, Discontinuous Galerkin Finite Elements (DGFE), Adaptive Mesh
Refinement (AMR), and multi-block systems.

We use Chemora in the Einstein Toolkit to implement the Einstein Equations on CPUs and
on accelerators, and study astrophysical systems such as black hole binaries, neutron stars, and
core-collapse supernovae.

I. INTRODUCTION

Most computing hardware that is currently used for
scientific applications is highly parallel in nature. While
this has been true for high performance computing
(HPC) systems for decades, this is now also true for work-
stations, laptops, and even cell phones.

The Top500 list – contended as it is today [1] – nicely
demonstrates this. A modern CPU, if programmed seri-
ally, may be able to execute instructions with at most
about 3 GFlop/sec. At the same time, a modern laptop
already has a theoretical peak performance of about 100
GFlop/sec, which is a ratio of a factor of 30. Unsurpris-
ingly, for the top three systems of the current Top500 list,
the performance “gain” from parallelism (as opposed to
serial single-core performance) is more than a factor of
107. This parallelism consists not only of multi-node and
multi-core architectures, but also of vector instructions
(SIMD) and superscalar instruction execution.

At the same time, mainstream languages used in scien-
tific computing (Fortran, C, C++, Maple, Mathematica,
Matlab, Python, etc.) are inherently serial. They may of-
fer certain additions to incorporate parallelism (numer-
ical libraries, MPI, OpenMP, async, thread or process
pools, ParallelTable, etc.), but these additions are usu-
ally coarse-grained and awkward to use.

Satish et al. [2] examine the performance obtained by
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“naively written C/C++ code”, and compare this to the
“best optimized code” for a modern Intel processor. They
call the performance difference the Ninja Performance
Gap, and found that this gap is a factor of 24 on av-
erage — and this is for a single processor, i.e., without
taking MPI parallelism into account, or without consid-
ering many-thread accelerators (GPUs). They go on to
describe the low-level code transformations necessary to
close this gap. They conclude, somewhat optimistically,
that (future) hardware support and advances in compiler
technology will be able to close this gap. We do not quite
share this optimism.

Unfortunately, application developers are often unwill-
ing to change low-level details of their codes to adapt to
different system architectures, since this is a very time-
consuming task. We also find that current compiler tech-
nology is definitively not yet advanced enough to auto-
matically re-structure large, complex loop kernels (imple-
menting complex physics) to improve performance. These
challenges and more are described in detail e.g. in [3].

We structure this paper around three lessons learned :

1. Designing and implementing large applications re-
quires expertise in three disciplines: physics, math-
ematics (discretisation), and computer science (im-
plementation). One needs some kind of software
framework to structure respective collaborations
among these domain experts.

2. Hardware and software are always changing.
Current languages (Fortran, C, C++, OpenCL,
CUDA) are too low-level to conveniently express
the physics or mathematics in applications. One
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needs tools such as automated code generation to
be able to quickly restructure fundamental ele-
ments of applications, such as loop kernels, differen-
cing stencils, or the memory layout of data struc-
tures.

3. MPI and OpenMP become increasing difficult to
use efficiently at large core counts, or in highly dy-
namic applications using adaptive mesh refinement
(AMR) or unstructured grids. One needs more ele-
gant ways to express fine-grained multi-threading,
and to handle migrating data between nodes.

In the following, we will describe our approach to ad-
dressing these lessons. We also describe related work in
each section. Our software is available as open source.

II. CACTUS: SOFTWARE FRAMEWORK FOR
HIGH-PERFORMANCE COMPUTING

Designing and implementing an application that simu-
lates a non-trivial physical system requires expertise not
only in the respective sub-field(s) of physics, but also
expertise in numerical analysis to properly treat the ap-
proximations made when discretising, and expertise in
computer science to arrive at an efficient application that
performs well on modern hardware and is parallelised to
take advantage of tens of thousands of nodes.

Enabling such collaborations is not a trivial task, since
few research groups are large enough to have all this ex-
pertise in house. Typically, parts of codes are designed
and modified at different times, during which collabora-
tors may move to different institutions. As a result, the
collaborations are ad-hoc and often informal. In addi-
tion, as graduate students continue their career and be-
come postdocs, and then maybe become faculty who lead
their own groups, previous collaborators become friendly
competitors, and the dividing line between collaboration
and competition becomes fuzzy. Any software framework
for large-scale applications needs to address this social
aspect of high-performance computing.

Here we use the Cactus Software Framework [4, 5],
and we briefly describe how its design supports large yet
only loosely defined collaborations in practice. A more
detailed description can be found in [6]; references to
other software frameworks and their approach to these
issues are listed e.g. in [7].

Applications that use Cactus are written as a set
of modules/components/libraries/plugins (called thorns)
that are connected by glue code in the framework (flesh).
The flesh handles only metadata and does not touch the
thorns’ data structures, ensuring that it does not get into
the way of efficiency. The flesh also provides certain basic
services such as managing run-time parameters, schedul-
ing execution of routines contained in thorns, and allow-
ing introspection into other thorns’ metadata to infras-
tructure thorns (e.g. for checkpointing/recovery). Finally,
the flesh contains a make-based build system; anyone who

has to build and install a set of inter-dependent libraries
on a modern HPC system will appreciate the simplicity
of building multiple thorns (libraries) with a single com-
mand.

Thorns in a Cactus-based application implement not
only the physics and discretisation methods, they can
also provide infrastructure services such as domain de-
composition, memory management, MPI communica-
tion, I/O, or checkpoint/recovery. Externalising these
tasks into separate thorns significantly simplifies imple-
menting physics thorns. In practice, one can find two dif-
ferent kinds of routines in a typical physics thorn: Algo-
rithmic routines that make high-level decisions (e.g. “is
another iteration necessary?”), and worker routines that
perform the heavy lifting, corresponding to a kernel in
CUDA or OpenCL.

Cactus thorns can be written in different languages;
currently supported are C, C++, CUDA, Fortran, and
OpenCL, with support for Lua [8] under development.

The predominant parallelisation model of Cactus ap-
plications is today based on a hybrid MPI+OpenMP
scheme, where an MPI domain decomposition is pro-
vided by a driver thorn (and not implemented in physics
thorns), and where physics thorns use e.g. OpenMP or
CUDA for shared-memory parallelism (multi-threading).
The driver thorn also provides memory management, in-
cluding transferring data from/to accelerators.

Time stepping in Cactus is implemented by the driver
as well (hence its name). The driver first executes all
initialization routines, and then executes the time evo-
lution routines in loop until the termination criterion is
satisfied (e.g. a certain simulation time is reached). This
could also be used to iteratively solve elliptic equations.
The actual time stepping algorithm, e.g. a Runge-Kutta
method, is implemented in a separate thorn that sched-
ules its routines to cycle/copy time levels, calculate the
new state vector, or estimate the time stepping error. The
Cactus scheduler supports both conditionals and loops,
and named schedule groups that correspond to callback
routines.

A. Enabling Collaboration

Thorns are combined into applications only by the end
user, not by a central authority. A Cactus release consists
of a set of thorns that can be combined in many ways, not
of a single application. This gives the end user complete
flexibility over which components from which developers
to use. The connection points where thorns interact (e.g.
grid variables, schedule items, service functions) are ex-
plicitly named, and these names and their meaning need
to be standardised within a community that intends to
share thorns. This means that thorns are self-assembling,
and it is not necessary to explicitly describe the control
flow or flow of information between thorns. To create an
application, one only lists the thorns it should contain.
Without self-assembly, combining thorns would be a la-
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borious task and this would defeat the purpose of such a
design.

This is one of the key points in the design of Cactus: It
allows every user to independently choose their collabo-
rators, and also allows them to implement new or modify
existing thorns if certain functionality is missing, without
ever needing to incorporate their work into “the master
branch”.

It turns out that, in practice, almost all Cactus
users are also Cactus developers implementing their own
thorns, if only for new initial conditions or analysis meth-
ods. Given that thorns are connected only via the flesh
instead of directly to each other,1 it is not necessary for
new thorns to be “accepted” by an authority or “incorpo-
rated” into a new release. Many, if not all, research groups
who use Cactus have their own private software reposito-
ries, where they develop new physics capabilities in com-
plete secrecy, as is necessary to succeed in a competitive
academic environment. At the same time, many research
groups choose to collaborate on other thorns that are not
related to their core competencies. For example, an as-
trophysics group may choose to participate in shared de-
velopment of improved parallelisation or I/O capabilities,
while keeping the existence of a new radiation transport
module secret.

B. Einstein Toolkit

Based on the Cactus software framework, the compu-
tational relativistic astrophysics community has designed
and implemented the Einstein Toolkit [9–11]. This is a
collaboration of many of the leading research groups,
with currently more than 100 members from more than
50 institutions. The Einstein Toolkit originated in 2010
from many existing, high-quality modules, and develop-
ment of certain additional modules was funded by several
collaborative NSF awards.

The glue that holds the Einstein Toolkit together is
a set of core modules that unambiguously define certain
standards. These standards were discussed and decided
in a community process that started much earlier, and
they have been revised and refined several times. These
standards include details such as

• names and unambiguous definitions for certain
physical quantities such as the metric, curvature,
mass density, velocity, etc.;

• names and meanings of schedule points while run-
ning simulations, such as for setting up initial con-
ditions, choosing gauge conditions, evaluating the

1 This paragraph describes the ideal design of Cactus components.
Most components follow this design pattern. Exceptions are pos-
sible, and are sometimes necessary.

right hand sides (RHS) of the evolution equations,
or calculating the hydrodynamical pressure;

• definitions pertaining to important basic analysis
steps (e.g. finding horizons) that are needed by
later analysis stages;

• conventions for laying out data onto the compu-
tational grid functions, defining e.g. how hydrody-
namical fluxes are staggered.

While Cactus itself offers some basic standards, these
only target generic physics simulations. Many additional
such standards needed to be set that are specific to nu-
merical relativity. Following these standards makes addi-
tional thorns inter-operable. In some cases, code devel-
opers opted to ignore some of these standards since they
were too limiting, and in some of those cases, the Ein-
stein Toolkit standard definitions were later revised to
accommodate the additional requirements. There is also
a continuing effort to phase out parts of the infrastruc-
ture that are outdated, i.e. that have been unused for
some time and where no future need is anticipated.

We consider the Einstein Toolkit to be a very success-
ful endeavour, cited in probably more than 200 publica-
tions and many student theses as basis for the respective
research.

III. EFFICIENT COLLABORATIONS VS.
EFFICIENT CODE

To allow efficient collaboration between different do-
main experts (physicists, mathematicians, computer sci-
entists), it is important that they can implement their
algorithms and methods into different modules, and that
they do not all have to work on the same few lines in a
loop kernel to make their respective contributions.

Unfortunately, the latter is just what happens in a
straightforward implementation. Take, as a simple ex-
ample, the scalar wave equation in first order form

∂tu = ρ (1)
∂tρ = δij∂ivj

∂tvi = ∂iρ .

Implemented via finite differencing, this leads to a loop
such as2

#pragma omp p a r a l l e l f o r
f o r ( i =1; i<N−1; ++i ) {

dt u [ i ] = rho [ i ] ;
dt rho [ i ] = ( v [ i +1] − v [ i −1]) / (2∗dx ) ;

2 To improve readability, we keep our examples overly simple, re-
stricting ourselves to one dimension, second order accuracy, and
a pseudo-C-like syntax. Real applications will be significantly
more complex.
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dt v [ i ] = ( rho [ i +1] − rho [ i −1]) / (2∗dx ) ;
}
These few lines of code express simultaneously the
physics that is simulated (the system of equations), the
discrete approximation (finite differencing), and the map-
ping onto hardware resources (memory layout of the state
vector, multi-threaded via OpenMP). In a real applica-
tion, there would also be explicit choices determined by
multi-node parallelisation (e.g. ghost zones for MPI com-
munication), or maybe explicit loop tiling to improve
cache efficiency.

Obviously, mixing these different concerns that have
very different goals into the very same few lines of code
makes it virtually impossible to modify, improve, or re-
design these aspects simultaneously. For example, adding
additional physics to a system of equations requires the
physicist to understand many details of how discretisa-
tion and parallelisation are implemented. Changing from
second order to fourth order finite differencing, or from fi-
nite differencing to finite elements, requires re-writing the
entire loop kernel, and likely large parts of the inter-node
communication routines. Switching from MPI+OpenMP
to a different parallelisation model (e.g. offloading to an
accelerator) requires rewriting the entire loop kernel in
CUDA or with OpenACC.

Clearly, this is a large obstacle that impedes progress.
Correspondingly, many current large-scale applications
have developed some set of abstractions that partially
ameliorate this, e.g. moving finite differencing stencils
into functions or macros, or implementing them via
C++ template metaprogramming. However, this still
falls short of what is needed to grant sufficient indepen-
dence to physicists and computer scientists.

We choose to employ automated code generation to
allow separation of concerns.

A. Existing Code Generation Systems

Here we give a brief overview over several code gener-
ation systems, and compare them to our system Kranc
as described below in section III B.

The state of the art for automated code generation
is especially advanced for Continuous Finite Elements,
maybe due to a very elegant mathematical description
in terms of Differential Forms. A set of tools allows cre-
ating complete simulation codes with little more input
than the system of equations that should be solved. Dif-
ferent from our approach, these tools usually employ un-
structured meshes; these allow much greater flexibility
in discretizing the problem domain, but come at a sig-
nificant performance cost. Consequently, efficient imple-
mentation of a stencil-based discretization is outside their
scope. Well-known examples for such tools are FEniCS
[12], FreeFEM++ [13], Liszt [14], or Sundance (part of
Trilinos) [15, 16].

Other tools target stencil-based discretization meth-
ods, and are thus much closer to Chemora. Paraiso [17]

stands out as it is implemented in the functional language
Haskell. It is otherwise similar in design to Chemora, and
includes dynamic optimizations to improve code perfor-
mance. However, it lacks the high-level transformations
that we apply in Mathematica, as well as many of the
low-level stencil optimizations we apply when targeting
GPUs.

There are many tools supporting stencil computation
in which the user enters a computation kernel while the
tool manages iteration and the delivery of data in a way
suitable for the computation target. More recent work
has been targeted at GPU accelerators and most of these
systems perform execution-driven autotuning in which
trial executions are performed to find a good configura-
tion [18–24]. PARTANS autotunes for multi-GPU sys-
tems [18], while the work of Khan et al. [19] consid-
ers variations in data staging and also mixes heuristic
and autotuning techniques reducing some of autotuning’s
startup overhead. Patus [23] allows the user to specify
execution alternatives for the autotuner to explore, the
sort of programmer burdening that Chemora is designed
to avoid. For Chemora, the starting point is a differen-
tial equation description, the user does not write stencil
codes. Nevertheless Chemora does generate stencil code
and uses autotuning to find good tile sizes. Chemora’s
autotuning is model driven, reducing startup time.

In addition to such tools, there exist languages to
describe either equations or complete physics systems.
Some of the tools listed above define their own languages
that are closely related either the respective tool or dis-
cretization method. However, we want to mention in par-
ticular Modelica as a tool-indepent and discretization-
independent way of describing physics systems [25]. Mod-
elica is very similar in spirit to our language EDL de-
scribed below in section III C. Modelica seems to be tar-
geting ODEs rather than PDEs, and lacks support for de-
scribing discretization methods except for uniform grids.
On the other hand, Modelica offers many features that
EDL lacks, such as units, type definitions, or compos-
ing models; EDL regains some of these via the Cactus
framework.

B. Kranc: Automated Code Generation

Our code generation system is called Kranc [26, 27],
and is based on Mathematica. Mathematica offers a con-
venient high-level language, combining Lisp-like pattern-
matching facilities with a syntax that is easy to under-
stand.

The basic workflow is as follows. A system of equa-
tions is described in Mathematica, and is combined with
a choice of discretisation. The Kranc package expands
this system to C++ (or CUDA, OpenCL, . . . ) code, and
performs certain performance-improving transformations
along the way. The generated C++ code is a complete,
independent Cactus thorn, and can be built and run in
the usual manner.
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In a collaboration, a physicist or a mathematician in-
terested in the system of equations or its discretisation
would mostly work at the level of a Mathematica script
that calls Kranc. A computer scientist interested in ef-
ficiency and performance would modify or add to some
of the transformation stages in Kranc, or would work
on Kranc’s code templates that contain the OpenMP or
CUDA specific code. In this respect, Kranc is a full-scale
compiler with a parser (Mathematica), a middle-end that
transforms code in several stages and applies optimiza-
tions, and a code generator. Since Kranc generates out-
put in a high-level language (e.g. C++), it does not have
to deal with very low-level architecture details such as
register allocation or instruction selection.

1. Physics System Description

To describe a physics system, one needs not only to
describe the system of equations (the RHS of the PDEs),
but also specify the state vector, dependent quantities
(e.g. pressure dependence on density and temperature),
constraint equations (if any), as well as run-time parame-
ters, and specify whether and which quantities to import
from other Cactus modules.

In Kranc, equations can be described in a high-level
form using abstract index notation (aka the “Einstein
summation convention”), and one can declare tensor
symmetries. Kranc distinguishes between covariant and
partial derivatives, and expands covariant derivatives and
Lie derivatives automatically. This is described in detail
in [27].

Many methods for solving elliptic equations require
evaluating the Jacobian, i.e. calculating the derivatives
of the equations with respect to the state vector vari-
ables. Deriving the Jacobian from the physics equations
is a tedious task if performed manually. In Mathematica,
this can be implemented automatically in a straightfor-
ward manner. Our our code generator does not provide
explicit support for this, as this is not needed to solve
the Einstein equations, but it is possible to incorporate
arbitrary Mathematica code.

2. Discretisation Description

Kranc currently supports Finite Differencing as its dis-
cretisation method. Support for Discontinuous Galerkin
Finite Elements (DGFE) methods is available in a pre-
production version. Other methods (e.g. higher order Fi-
nite Volumes) could be added in a straightforward man-
ner. Particle systems are not supported by Cactus yet,
but would also be possible.

Arbitrary derivative operators can be defined, ei-
ther in a stencil notation that is expanded by Math-
ematica, or by providing macros or functions to
Kranc’s run-time system that are then called. In

the stencil notation, e.g. the second derivative oper-
ator [+1,−2,+1]/h2 is expressed as (+1 shift^(-1)
-2 shift^0 +1 shift^(+1))/dx^2. “Standard” Finite
Differencing operators of arbitrary order are built-in.

Finite Differencing with arbitrary order of accuracy
is available. The order can either be determined when
Kranc is run, or can be left as run-time option which will
then be handled efficiently.

3. Code Transformations

Since Kranc expects equations entered in Mathemat-
ica, one can use the full range of Mathematica features
when doing so. For example, when setting up initial con-
ditions or boundary conditions, it is straightforward to
use computer algebra to evaluate derivatives or integrals,
or to use Mathematica’s numerical features to evaluate
approximations.

Kranc expands the user’s input by expanding vectors
and tensors into their components, while respecting sym-
metries. For example, a second partial derivative ∂i∂jρ is
entered as PD[rho,i,j], where Kranc knows that this ex-
pression is symmetric in the indices i and j. A definition
of the form vi = ∂iρ is expressed as v[i]->PD[rho,i],
and is translated into three separate assignments for vari-
ables v1, v2, and v3. Derivatives such as PD[rho,i] are
translated into macros or function calls.

Kranc removes unused intermediate variables, and can
perform common subexpression elimination (CSE) to try
and reduce the number of operations. Code is generated
in terms of calculations, which correspond to loop ker-
nels, or kernel functions in CUDA. With Kranc, one can
semi-automatically combine or split loop kernels (with-
out having to explicitly rewrite them), where Kranc en-
sures that the resulting kernels remain correct; it auto-
matically removes unnecessary terms, or duplicates them
as necessary if kernels are split. This is an important op-
timisation when a system of equations is too large to fit
into a CPU’s cache because it either uses too much data
or contains too many instructions.3

Finally, Kranc can explicitly vectorize a calculation by
translating all mathematical operations such as + or *
into CPU-specific intrinsics. In the end, certain peephole
optimisations are applied, e.g. eliminating double nega-
tions ((−a) ∗ (−b) becomes a ∗ b), combining multiplica-
tions and additions into a single multiply-add operation
(a ∗ b+ c becomes mad(a, b, c)), or replacing divisions by
multiplications (a/b/c becomes a/(b∗c)). While one may
be hoping that compilers would these days perform these
simple optimisations, the reality is that many compilers
do not,4 and Mathematica’s pattern matching facilities

3 When evolving the Einstein equations, this is in fact the most
important performance optimization.

4 We regularly check the generated machine code.
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make these micro-optimisations very easy to implement.
After these transformations, the code is output as C++

with OpenMP, CUDA, or OpenCL. The syntax of these
languages is so similar that one needs to make only minor
changes during code generations. We used to support For-
tran as well, but found that (a) there was no measurable
difference in speed for Fortran and C without low-level
optimisations, and (b) many of these lower level opti-
misations could not be applied when generating Fortran
code.

We want to stress that implementing Kranc in Mathe-
matica, as opposed to using C macros or C++ template
metaprogramming, makes it significantly easier to add
additional transformations or optimizations to Kranc.
Mathematica’s Lisp-like pattern matching functionality
is ideally suited for this, and the respective transfor-
mation rules are easily understandable also for non-
computer-scientists.

In addition to the transformation applied by Kranc,
there exists a non-trivial run-time library to efficiently
map loop kernels to GPU hardware. The library per-
forms run-time model-driven auto-tuning to optimize
thread assignment based on parameter values and per-
forms dynamic compilation to minimize code and reg-
ister overhead. Many CUDA specific optimisations are
implemented there, such as to use the fast local mem-
ory of Nvidia GPUs efficiently. These optimisations are
described in [28] and [29], and their implementation is
available at our web site chemoracode:web.

C. Equation Description Language

While describing systems of equations and their dis-
cretisation in Mathematica works very well in practice
and has many advantages, there are also drawbacks.
Among those are:

• One has all the power of Mathematica, which makes
it easy for beginners to make a mistake that is dif-
ficult (for them) to spot.

• The input to Kranc is essentially a single, large data
structure, describing variables, parameters, equa-
tions, etc. Mathematica’s loose type checking rules
mean that errors in setting up such a data struc-
ture are not always obvious, and if so, cannot be
attributed to a specific line and column number.

To address this, we have designed an Equation Descrip-
tion Language (EDL). This is a simple, LATEX-like lan-
guage that is easy to parse, and can readily be translated
e.g. into an input for Kranc, or also for other code gener-
ation systems. Since the EDL is read by a true parser
[30, 31], errors lead to understandable error messages
with a line and column number.

Figure 1 shows how eq. (1) above reads in our EDL.

# Evolved v a r i a b l e s ( s t a t e vec to r )
begin group Evolved

u : ” s c a l a r ”
rho : ”rho−dot”
v i : ” grad rho ”

end group

# Extra v a r i a b l e s ( a n a l y s i s q u a n t i t i e s )
begin group Extra

eps : ” energy dens i ty ”
end group

# Run−time parameters
begin parameters

A: r e a l ” i n i t i a l amplitude ”
W: r e a l ” i n i t i a l width”

end parameters

# C a l cu l a t i o n s
begin c a l c u l a t i o n I n i t

u = 0
rho = A exp(−1/2 ( r /W)∗∗2)
v i = 0

end c a l c u l a t i o n I n i t
begin c a l c u l a t i o n RHS

D t u = rho
D t rho = d e l t a ˆ i j D i v j
D t v i = D i rho

end c a l c u l a t i o n
begin c a l c u l a t i o n Energy

eps = 1/2 ( rho ∗∗2 + d e l t a ˆ i j v i v j )
end c a l c u l a t i o n

# D i s c r e t i s a t i o n
begin d e r i v a t i v e s

D i = F i n i t e D i f f e r e n c i n g O p e r a t o r [ 1 , 1 , i ]
end d e r i v a t i v e s

FIG. 1: The scalar wave equation, expressed in our EDL. This
corresponds to the formulation described in eq. (1) above.
This is the complete input necessary to generate a complete
Cactus thorn. Note that it contains the formulation of the
system of PDEs, as well as a description of the discretisation
method, here centered second-order accurate Finite Differen-
cing. This description is easy to understand. (The design of
the EDL is not yet finalised, and detail of the language syntax
may change in the future.)

Note that, this description is free of details regarding the
memory layout of data structures, the order in which loops
are traversed, cache optimizations, or parallelisation; these
choices are made elsewhere.

D. Single-Node Performance

The methods described in this section – specifying
equations and discretisation at a high level, and employ-
ing automated code generation – are still independent
of distributed-memory parallelism (i.e. MPI). However,
they are important to achieving a high single-node per-
formance while still retaining the flexibility to modify the
system of equations.

chemoracode:web
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This approach was crucial for the Einstein Toolkit to
achieve good single-node performance for the Einstein
equations. Before employing automated code generation,
we used a hand-written Fortran code that implemented
finite differencing operators via macros [32]. This code
typically achieved less than 5% of the theoretical peak
performance.

Given the complexity of the Einstein equations (sev-
eral thousand floating point operations to evaluate the
RHS at a single grid point), experimenting with low-level
transformations to improve performance was deemed
too tedious. Similarly, translating the code manually to
CUDA or OpenCL was never attempted.

After switching to automated code generation [33], the
first versions of the generated code were only about half
as fast as the previous Fortran version. This performance
difference turned out to be caused by incidental (and ac-
cidental) design decisions. After a few iterations of im-
provements to the code generator, the auto-generated
loop kernels now run at almost 20% of the theoretical
peak performance under ideal (i.e. benchmarking) condi-
tions. The two most important optimisations were loop
fission to not overflow the instruction cache, and man-
ual vectorisation. We note that the full application has
additional costs such as inter-process communication or
mesh refinement operations that are not counted in these
numbers.

IV. FINE-GRAINED MULTI-THREADING

Supercomputers today rely on distributed-memory
parallelism. The standard programming model for such
systems is that of communication sequential processes,
and the standard implementation tool is the Message
Passing Interface (MPI). MPI is widely used not because
it is easy to use, but because it has been shown that MPI
makes it possible to achieve very good performance, if one
invests sufficient effort.

Cactus was designed with MPI in mind. In principle,
parallelism in Cactus is externalised to a driver (see sec-
tion II above), but in practice the Cactus API was de-
signed for communicating sequential processes.

Cactus’ original driver PUGH supports only uniform
grids, i.e. neither mesh refinement nor multi-block meth-
ods. PUGH shows excellent scalability to more than 100k
MPI processes [34].

However, most physics applications using Cactus to-
day employ more sophisticated discretisations than a uni-
form grid. Carpet, a more modern Cactus driver [35, 36],
supports both mesh refinement and multi-block meth-
ods. Carpet is being used for simulations with 10k MPI
processes, or about 100k cores when using the hybrid
MPI+OpenMP model [37]. Unfortunately, simulations
employing adaptive mesh refinement with Berger-Oliger
style sub-cycling in time are in our infrastructure cur-
rently limited to using about 1k MPI processes (or 10k
cores), as the serial processing of different refinement lev-

els inherent in Berger-Oliger AMR severely limits the
available amount of parallelism.

We are currently developing a new driver for Cactus
that is based on fine-grained multi-threading, and which
should improve the scalability of Cactus-based applica-
tions; see e.g. [38, 39] for similar projects where such an
approach was successful.

A. Improving Communication Performance

If one employs a very simple performance model for
inter-node communication, then communication speed is
limited either by bandwidth or by latency. If a code is
bandwidth limited, then one is transferring too much
data. There is often not much one can do to remedy this
via software engineering; instead, one needs to switch to
a different algorithm that requires less data to be trans-
ferred.

If a code is latency limited, however, then there may
be a solution: One can run many tasks or threads within
each node, so that other tasks or threads can execute
while some are waiting on communication. This requires
software parallelism (task/thread counts) much larger
than the available hardware parallelism (core count) to
hide the communication latencies.

We want to make a distinction here between two sim-
ilar concepts, namely task-based parallelism and fine-
grained multi-threading. Both describe ways to paral-
lelise a code, and both apply within a single node. Both
would be combined with using MPI (or an equivalent
mechanism) for inter-node communication.

• We define task-based parallelism as a design where
each task has a well-defined dependency on results
from other tasks (or on values received from an-
other node). Once started, a task runs to comple-
tion without interruption. Tasks may start other
tasks. There may be an explicit schedule that de-
scribes the order in which tasks are run.
This model is implemented e.g. in OpenMP’s
parallel for directive, in CUDA, OpenCL, or
also in Charm++ [40, 41], Legion [42], or Uintah
[38, 43, 44].

• We define fine-grained multi-threading as a design
where threads do not need to have pre-defined de-
pendencies. Threads may wait on results from other
threads at any time, and are suspended while they
are waiting. Thread scheduling is only decided dy-
namically.
This model is implemented e.g. in the pthreads API
or in HPX [45, 46] 5

5 It it is worthy of note that the HPX API allows one to write
both fine-grained code and task-based code, and to transform
the former into the latter in many cases.
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A multi-threading system fundamentally needs to have
the capability to suspend a running thread, and run other
threads while a thread is waiting. This is a significant
hurdle to its implementation, making task-based systems
much easier to implement. At the same time, true multi-
threading systems are much easier to use in an applica-
tion since one does not have to decide on the threads’
dependencies ahead of time. In certain cases, this allows
code to be written in a more natural style.

Our current design ideas revolve around the same con-
cepts as those present in HPX. This extends C++11’s
multi-threading facilities (async, future) and memory
management facilities (shared ptr) to distributed mem-
ory systems. Improving distributed memory scalability is
somewhat orthogonal to achieving good single-node per-
formance, and we have so far reached production quality
only for the latter.

V. APPLICATION: CORE-COLLAPSE
SUPERNOVA SIMULATIONS

The science applications driving development of
Chemora include the study of black hole binaries, neu-
tron stars, and core-collapse supernovae. In these sys-
tems, gravitational effects are described by general rel-
ativity, i.e. one needs to solve the Einstein equations.
These are a complex system of coupled, non-linear PDEs.
In addition to the Einstein equations, one also needs to
solve the general-relativistic hydrodynamics or magneto-
hydrodynamics equations. Figure 2 shows a 3D volume
rendering of a snapshot of a core-collapse supernova sim-
ulation, taken from results published in [47, 48].

In the code used for this simulation, the Einstein equa-
tions are implemented via the Chemora framework, while
the hydrodynamics equations are still implemented man-
ually. The high-level source code describing the Einstein
equations, important analysis quantities, and their dis-
cretisation is about 1,500 lines long. The generated Cac-
tus thorn contains more than 40,000 lines of code.

It goes without saying that these simulations require
significant computing resources. Still, they are currently
unable to include important physical effects – in partic-
ular, neutrino radiation transport models will be needed
to model core-collapse supernova explosions in a self-
consistent manner, and will increase the overall compu-
tational cost by roughly an order of magnitude [49–51].

Finally, we show in figure 3 a performance comparison
for evolving the Einstein equations on typical CPUs and
GPUs. This weak scaling test uses a uniform grid with-
out mesh refinement. In this case, Cactus scales well up
to at least 32k cores on Blue Waters. The differences in
run time between Blue Waters and Shelob are caused by
the differences in the respective CPUs’ theoretical peak
performance, and by the fact that we are unfortunately
not yet obtaining a good floating point efficiency on Blue
Waters’ new AMD CPU architecture.

FIG. 2: 3D volume rendering of a simulated core-collapse su-
pernova. This figure shows the specific entropy 150 ms after
core bounce. Note the large scale global asymmetries and the
many small blob-like protrusions in the shock front, which in-
dicate that three-dimensional simulations are necessary to un-
derstand these systems. Image taken from [47, 48]; for physics
details see there.
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FIG. 3: Performance comparison for a weak scaling experi-
ment; smaller values are better. This compares two machines
(Blue Waters at the NCSA, and Shelob at LSU), each with
Nvidia GPUs. Our benchmark evolves the Einstein equa-
tions, a complex system of PDEs that is difficult to imple-
ment on GPUs (details see text). The x axis counts NUMA
nodes (“sockets”/“processors”, or GPUs), the y axis marks
the amortized CPU time to evaluate the Einstein equations
for a single grid point. On Blue Waters, our application scales
to more than 2k nodes (32k cores), and achieves reasonable
performance on the GPUs.
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VI. SUMMARY

Over the past decade plus of work, the developers of
the Cactus framework faced a series of challenges that
we describe here not as technology challenges, but as
sociological challenges to enable informal collaborations
between researchers from different disciplines such as
physics, mathematics, and computer science.

Ensuring that scientific codes remain flexible is diffi-
cult, yet it is necessary to ensure they will remain inter-
esting to researchers with a wide range of backgrounds.
This in turn allows growing large-scale applications re-
quiring expertise in physics (equations), mathematics
(discretisation), and computer science (efficient imple-
mentation). One needs some kind of framework to struc-
ture these collaborations, and this framework needs at
the same time to stay out of the way of impeding code
efficiency.

As hardware and software are changing, it is becoming
clear that current languages (C, C++, Fortran, OpenCL,
CUDA, . . . ) are too low-level to express modern ideas
in physics systems, discretisation methods, or how to
map algorithms to hardware. We present automated code
generation as a simple-to-use and simple-to-understand
mechanism to be able to quickly restructure loop kernels,
both to modify the physics or discretisation, or to adapt
it to new hardware.

Finally, it is widely accepted that MPI has become
increasingly difficult to use efficiently for dynamic appli-
cations on large core counts. One needs a different ab-
straction layer that may or may not be built on top of

MPI. We envision a distributed-memory generalisation of
fine-grained multi-threading as solution suitable for the
Einstein Toolkit.
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