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Abstract
Providing instructions for wide-issue systems is a

challenge because the execution path must be predicted
before branches are even decoded. Since basic blocks
can easily be smaller than the issue width of near future
systems multiple branch prediction is important.

An early solution to the problem is the multiple
branch predictor (MBP) of Yeh, Marr, and Patt. A
PC-indexed branch address cache (BAC) provides in-
formation on all basic blocks within a number, say 3,
basic blocks of the PC; a path through the blocks is cho-
sen by a global-history branch predictor.

The published evaluation did not include overall per-
formance numbers, a shortcoming shared by many sub-
sequent studies of similar systems. To fill this gap dy-
namically scheduled processors using a MBP or a con-
ventional mechanism were simulated using RSIM. For
comparison a multiple branch predictor based on su-
perblocks, described by Reinman, Austin, and Calder
was also simulated.

Compared to single branch prediction, 8-way super-
scalar MBP systems show speedup of 10% on some
SPECcpu integer benchmarks on a resource-constrained
system, the superblock predictor realizes an improve-
ment of 8%. MBP tree depths of 2 and 3 show nearly
equal performance. As one would expect, MBP systems
fill more decode slots, but data show that much of the
performance gain is due to providing more time for de-
pendent integer instructions. Much smaller are gains
due to early initiation of memory operations (except
when using fast caches) and a less frequently empty re-
order buffer.

1. Introduction

That instruction supply is important for wide-issue
superscalar processors has long been recognized. Early
limit studies found that execution rates of well over 20
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instructions per cycle (IPC) were possible [15], though
feasible rates would be much lower.

Recognizing that both these execution rates and the
decode width of near-future processors exceed the basic
block size of many programs, investigators developed
instruction supply mechanisms that could fetch more
than one basic block per cycle.

An early example is the multiple branch predictor
of Yeh, Marr, and Patt, called an Y-MBP here. A
PC-indexed branch address cache (BAC) provides in-
formation on the tree of basic blocks within a num-
ber, say 3, basic blocks of the program counter (PC);
a path through the blocks is chosen, in one variation,
by a global-history branch predictor [18]. Several other
schemes have been described in which a tree of reach-
able blocks is stored [3].

The evaluation of the Y-MBP and other such branch
predictors looked at their ability to supply instructions
to a perfect execution engine, measuring an effective
fetch rate (correct-path instructions fetched per cycle)
[18]. Actual performance would be lower due to limited
available instruction level parallelism (ILP) and load
latencies.

A truer picture of performance would require simu-
lation of a complete processor. Surprisingly such data
on tree-type multiple branch predictors is lacking. Such
data has been published on other multiple branch pre-
dictors, for example the FTQ of Reinman, Calder, and
Austin [13,14] (called a superblock predictor here) and
various trace caching techniques. (See Section 7 for
further discussion.)

To fill this gap a system based on the Y-MBP,
but with modifications appropriate for a dynamically
scheduled system is analyzed here and compared to a
conventional system using a YAGS branch predictor,
[4], and to the superblock predictor. In one comparison
the amount of storage needed by the BAC is subtracted
from that needed by the instruction cache, providing
some measure of the tradeoffs. The comparison also
accounts for the longer branch penalty of the Y-MBP
(due to the complexity of multiple fetch).
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The goal of the analysis is not just to determine IPC
but to identify performance limiters. Factors that limit
instruction fetch (bubbles, squashed instructions, a full
reorder buffer, etc) and instruction commitment (ILP,
load latency, and a lack of instructions) are separately
plotted.

Though other tree-type multiple branch predictors
also lack execution time analyses, the Y-MBP was cho-
sen because in a sense it is simplest and so a logical
starting point.

Some might argue that multiple branch prediction
is unnecessary because performance will be limited by
memory latency to an IPC below the basic block size.
This occurs in some of the simulations performed here,
but others show usable speedup. Advances in prefetch-
ing and data prediction will reduce the limit on IPC
imposed by memory, increasing the need for multiple
branch prediction.

The remainder of this paper is organized as follows.
Details on the multiple branch predictors is presented
in the next section. Timing details for the simulated
system follow in Section 3. The conventional system is
described in Section 4. The simulator and benchmarks
are described in Section 5. Experiments are described
and discussed in Section 6 and their relation to other in-
struction supply mechanisms is discussed in Section 7.
Conclusions appear in Section 8.

2. Multiple Branch Prediction

2.1. Overview

All instruction supply mechanisms starting with
something akin to a program counter must identify a
fetch group, a set of instructions to fetch (perhaps in
the next cycle), and a program counter value to use in
the next cycle. In conventional systems the fetch group
must be contiguous, that is, only the first instruction
can be the target of a control transfer (branch, jump,
etc.). Multiple-branch-prediction schemes can generate
non-contiguous fetch groups, to handle these the sys-
tem would need a multiported cache or a trace cache
to perform the fetch.

2.2. Branch Targets

A differentiating feature of MBP systems is how
branch targets are stored. In conventional systems a
branch target buffer [7,12] or next-line predictor might
store branch targets, usually indexed with the address
of the branch or some instruction that preceded it. In
an MBP targets for multiple branches must be retrieved
in a single cycle, precluding chained BTB lookups.
Three approaches have been used. In the most gen-
eral, used by the Y-MBP, a PC-indexed branch address

cache BAC stores the tree of all blocks reachable from
the PC to a certain distance [18], called the order here.
Each tree node stores the length of the block, the type
of control transfer instruction (CTI) at its end, and
possibly a target. Predictors determine a path through
the tree.

A 2d-fold increase in size over a BTB is the price
paid by an order-d BAC to avoid chained lookups. To
avoid this size problem entries in the PC-indexed Fetch
Target Buffer (FTB) used by the MBP of Reinman et
al store information only on blocks reachable by not-
taken branches [14]. An FTB entry is similar to a BAC
entry node, except it describes a superblock that can
span multiple not-taken branches.

Predictions made by the FTB are queued, smooth-
ing irregularities in FTB entry size. With favorably
occurring not-taken branches the FTB could keep pace
with the Y-MBP. For the systems analyzed here
though it could not keep pace, even with an order-2
Y-MBP.

Between storing an entire tree or just superblocks,
an MBP might store common path segments. That is,
a PC-indexed path cache might store the most common
paths originating at the PC. Path selection would be
an interesting problem since there are many ways to
divide the execution paths into segments to store. The
results presented here show that order-2 Y-MBPs pro-
vide sufficient fetch rate for 8-way systems, and so the
advantage a path cache would have to be fewer BAC
(or path cache) entries.

2.3. Branch Direction Prediction

As with target prediction, multiple branch predic-
tion cannot make use of chained lookups. This rules
out any scheme that requires precise branch history
because only the address of the first block (used to find
branch history) is known at lookup time and that block
may be in another entry. Precise history is important
for local history predictors [17,10] but is not needed for
others such as bimodal and gshare [8].

Yeh et al do show how to precisely implement a
global history predictor, GAg [18], in which a pattern
history table holding 2-bit counters is indexed by a
global history register. At the beginning of each cy-
cle d lookups are made in a d-ported PHT. The first
port provides one counter, for the first branch, the sec-
ond port provides counters for the next two reachable
branches (which are stored contiguously), etc. This
scheme is precise in that the PHT contents are the
same as a PHT in a conventional GAg system.

Reinman’s MBP uses hybrid prediction; each FTB
entry holds a two-bit chooser and bimodal counter, a
GHR is also maintained; the chooser selects the more
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Table 1. Branch Address Cache Entry Fields

Name,
Size

Description

Tag,
17

BAC entry tag (part of address not used to
index the BAC). The BAC is indexed using
the address of the first instruction in the block
at the root of the block tree.

Valid,
1

Set if entry valid.

Block
Tree,
44(2d −
1)

Tree describing basic blocks within d − 1 con-
trol transfers of the root. Space allocated for
complete binary tree, 2d − 1 nodes.

successful predictor. Only the last branch in a su-
perblock is predicted this way, the others are assumed
not taken. Other predictors are discussed in Section 7.

For all the systems simulated here, including the
conventional system, Y-MBP, and superblock, YAGS
predictors were used [4]. In YAGS a bimodal predic-
tor provides a base prediction which is used to select
one of two GHR ⊕ PC-indexed direction PHTs, taken
or not-taken. An entry in these tables holds a partial
tag (portion of PC) and a two-bit counter. If the tag
matches the base prediction is overruled; direction ta-
bles are updated on a hit or on a misprediction by the
base predictor.

The conventional system uses YAGS as described.
In the Y-MBP implementation the direction tables are
indexed by the PC used to index the BAC exclusive-
or’ed with a GHR shifted 0 to d−1 times, reading a d-
ported PHT. With this scheme, the branch at the root
of the block tree uses the YAGS lookup scheme while
subsequent branches use the “wrong” branch address,
but the correct GHR, to index the PHT. Each node in
the block tree has a two bit counter used for making
the base prediction. (Retrieving a counter from a BHT
for each branch would not be possible in one cycle.)

In the superblock system only the last branch in
a block is predicted, the PHTs are indexed using the
GHR, updated for the not-taken branches, exclusive-
or’ed with the superblock starting address. Unlike the
system described by Reinman, a superblock is length-
ened if the last branch was not taken eight consecutive
times.

2.4. Other Control Transfers

In their original analyses Yeh et al predict only
branches; Reinman et al also predict indirect jumps. A
return address stack is used for returns and a jump tar-
get buffer JTB is used to predict other indirect jumps
[14].

All systems simulated here use identical methods to
predict indirect jumps. A return address stack is used
for returns and a GHR-indexed JTB is used for other
indirect jumps.

3. System Timing

Reinman et al evaluated their superblock predictor
on an aggressive 8-way dynamically scheduled machine
using two-level predictor tables with latencies chosen to
match their sizes. One goal was to demonstrate that
the predictor could run far enough ahead to usefully
prefetch the second-level predictor tables and instruc-
tion cache. In contrast Yeh et al, who published six
years earlier, focused for the most part on prediction
accuracy, using fixed constants such as branch resolu-
tion time to estimate an effective fetch rate.

Here, the two schemes will be evaluated on iden-
tical systems, similar to Reinman’s but without the
multi-level predictor tables. The diagram below shows
the stages an instruction passes through from fetch to
commit. Bars indicate where an instruction’s progress
might be delayed (without stalling the pipeline) while
waiting in a queue.
IF | CA AR | ID P1 P2 P3 P4 | P5 P6 P7 P8 EX WB | C

In IF the PC of the instruction (or its predecessor)
is used to perform BAC and PHT lookups (or a JTB
lookup is performed). A fetch group is constructed and
placed in a queue while one item is dequeued (or by-
passed) for each idle cache port. Cache lookup proceeds
during CA (cache). Some time during AR (arrange) in-
structions arrive (assuming no miss), they are arranged
in to program order and queued. Decode starts in ID; in
the simulated system a reorder buffer entry is allocated
in this cycle. Decode, rename, and the like proceed up
to P4; P5 shows the first step of dispatch, actual execu-
tion occurs in EX. The simulated system has a perfect
load miss predictor and so instructions dependent on
a load enter EX as soon as the data can be bypassed.
Eight cycles after leaving ID an instruction is said to
be ripe, indicating that it can execute (if dependencies
are satisfied).

Stages WB and C are writeback and commit. Branch
predictors are updated in WB; no attempt is made to
recover or repair table entries for resolved branches
that are later squashed, only the GHR is recovered.
(Commit-time update did not work as well.)

Misprediction recovery (for branches and jumps)
starts in WB. A checkpointed register map and GHR
are used to restore system state. The IF of the correct-
path instruction occurs in the same cycle as the WB of
the resolving branch, for a minimum 13-cycle mispre-
diction recovery time.
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Table 2. Block Tree Node Fields

Name,
Size

Description

Type,
4

Type of control transfer at end of block. Five
bits needed to distinguish minor CTI varia-
tions, such as annulled branches.

Length,
10

Number of instructions in basic block.

Target,
30

Target address of control transfer at end of
block.

Table 3. Base Con£guration Parameters

Common Parameters Value

Decode Width 8-way Superscalar
Reorder Buffer 256 instructions
Return-Address Stack 8 entries
L1 ICache 256-B Line
L1 DCache Hit Latency 1 cycle
L2 DCache 8-way,64-B Line, 256 KiB
L2 Hit Latency 10 cycles
L2 DCache Miss Latency ≈ 100 cycles
L1 ICache Ports 4.
ID to EX 9 cycles.
Global History 16 branches
Integer Units 8
Floating-Point Units 4
Memory Units 4

Base Configuration Value

L1 ICache (MBP,super) 4-way, 64 KiB
L1 ICache (Conv) 7-way, 112 KiB
FTB,BAC 213 nodes
L1 DCache (Conv) 4-way, 64 KiB

Large Configuration Value

L1 ICache (MBP and super) 4-way, 256 KiB
L1 ICache (Conv) 7-way, 448 KiB
FTB,BAC 215 nodes
L1 DCache (Conv) 4-way, 256 KiB

4. Comparison Conventional System

The MBP systems are compared to a system that
uses a conventional instruction supply mechanism.
Misprediction recovery is slightly faster on this system.
The conventional system uses a next-line predictor to
provide instruction cache lines to the decode logic and a
YAGS [1,4,6] branch predictor to predict branch direc-
tions. As long as predictions are correct this system can
fetch instructions each cycle (no branch bubbles). The
next-line predictor is not particularly sophisticated.

The next-line predictor works by maintaining, in ef-
fect, a linked list of decode groups. A decode group is
a group of n contiguous instructions, where n is the de-
code width. The pointers to the next group are stored
in the instruction cache along with the lines; also stored
is a two-bit counter used to predict whether the link
should be modified. Using these predictions the fetch

mechanism buffers two lines, and passes the correct
one, if any, to decode.

Branch direction is predicted in decode using a
YAGS predictor [4]. Indirect jumps are predicted in
ID and there is a one-cycle bubble before the target
is available (ID to ID). Like the MBP system, indirect
jumps are predicted using a GHR-indexed jump target
buffer. The timing is identical to the MBP systems
starting at the ID stage.

5. Evaluation
5.1. Simulator

The systems were analyzed using RSIM [9], a de-
tailed microarchitecture simulator. Modifications were
made to simulate multiple branch prediction and other
unrelated modifications were made; that is, they im-
pact the reported performance of systems.

RSIM is a microarchitecture simulator which sim-
ulates a dynamically scheduled superscalar processor
and memory system. The processor implements a sub-
set of the SPARC V8 ISA [16]. Benchmark programs
are compiled exactly as they are for a real system.
Linking is identical except for the use of static libraries
(though still the system’s libraries, not specially pre-
pared versions) and a special startup file. System calls
are not simulated, though their impact on the execu-
tion of the chosen benchmarks should be small.

Dynamic execution is aggressive: The register map
used for renaming is checkpointed when branches or
jumps are decoded so that recovery can start when
mispredicted instructions resolve. Exception recovery
is initiated when the faulting instruction is ready to
commit. See the previous sections for timing.

5.2. Benchmark Programs

The simulated programs come from the SPEC suites,
though using reduced input sizes to reduce simulation
time. The six programs used are bzip2, gcc (cc1), gzip,
mcf, perl, and TEX. Benchmark bzip2 is used to com-
press a copy of the GNU General Public License; gcc is
used to compile (with O3 optimization) a program for
finding hidden words in text, gzip is used to compress
text, mcf uses the SPEC2000 test input (though is lim-
ited to committing 125,000,000 instructions), perl runs
a script that analyzes a Web server log, and TEX is run
on the GNU Emacs quick reference card. The num-
ber of committed instructions ranges from about 23
million for bzip2 to 125 million for mcf. Benchmarks
gzip and mcf are compiled using the SPEC CPU2000
makefiles, using code from that suite. The code for the
other benchmarks was obtained from their standard
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Figure 1. Performance of the base con£guration, shown
by (a) fetch and commit rates with speedup along the
top, (b) fetch slot usage with mispredict rate ×10 along
the top, and ( c) commit slot usage with reorder buffer
occupancy along the top.

distributions, compiled with optimization. Optimiza-
tion was targeted to an UltraSPARC II processor, so

scheduling would not perfectly match the wider-issue
systems simulated here.

5.3. Configurations

The performance results are presented for two main
configurations, base and large. The base configuration
is the most realistic; the instruction cache and BAC
suffer a significant miss rate for the three larger bench-
marks, gcc, perl, and TEX. The conventional system
has a larger instruction cache so that the combined
storage for the instruction cache and BAC are the same
in the advanced fetch systems. Configuration parame-
ters appear in the tables below.

The simulated systems were sized to represent a sys-
tem realizable in the next ten years. A large instruction
cache was chosen to focus attention on the fetch mech-
anism itself; the icache hit ratio is near 100%. The
level-1 and level-2 data caches are 64 KiB (216 B) and
256 KiB, respectively. Though they may seem small,
for the problem sizes used they produce hit ratios of
about 70% for level 1 and over 95% for level 2. There
are an ample number of functional units and a 256-
entry reorder buffer, see the tables below.

All systems use a 16-bit global history register. The
YAGS predictors use 216-entry tables for the choice and
direction tables; the direction tables use 8-bit tags. All
systems have four cache ports (though the conventional
system can only use one).

Superblock and Y-MBP systems of different orders
but using the same amount of storage will be compared.
The amount of storage will be given in nodes. An order-
d Y-MBP BAC entry uses 2d nodes (one node stores
the BAC entry tag), an FTB entry uses two nodes. An
order-d Y-MBP with a 2m-entry BAC uses 2d+m nodes.
A KiB is 1024 bytes.

6. Experiments

Up to six systems were evaluated, the conventional
one, the superblock system, and order 1 to 4 Y-MBP
systems. In the figures’ key an order-d Y-MBP system
is labeled MBP-d. The Y-MBP and superblock systems
are collectively called advanced supply mechanisms.

6.1. Base Set

The speedups of the advanced supply mechanisms
on the base configuration are shown along the top of
the plot area in Figure 1(a). The results show some
performance improvement on the base configuration,
MBP-2 provides the best average speedup, 10%, fol-
lowed by MBP-3, super and MBP-1, at 9%, 8% and
4%, respectively. Running TEX the speedup was as
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high as 24% for MBP-2. Assuming MBP-1 and su-
per are of similar cost (they both predict one branch
per cycle) the superblock predictor is the better of the
two. Though table storage is the same for all systems
(except the conventional system) MBP-2 and MBP-3
would be more costly because of the need to predict
multiple branches per cycle. Ignoring that cost MBP-2
is best, with MBP-3 suffering due to BAC misses.

Though performance improvement is modest the
MBP systems are effectively fetching instructions, as
can be seen in the top series, Ftch (All), which shows
the fetch rate, the number of instructions reaching de-
code divided by the number of cycles in which the re-
order buffer is not full. MBP-2 comes close to the max-
imum fetch rate, eight instructions per cycle on mcf
and bzip2. The rate is lower on TEX, gcc, and perl
due to instruction cache misses and the large number
of indirect branches. The fetch rate of super falls be-
tween MBP-1 and MBP-2, indicating that the average
superblock size is less than two blocks.

The bottom line in Figure 1 (a) shows the execution
rate in instructions per cycle; it does not enjoy nearly as
much improvement as fetch rate. Suspended between
the fetch rate and the execution rate is the effective
fetch rate, labeled Eff. Ftch, the number of committed
instructions divided by the number of cycles the reorder
buffer is not full.

Its distance below the fetch rate is determined by
the number of squashed instructions, which in turn is
determined by prediction accuracy, fetch rate and the
time to resolve mispredicted control transfers. The dis-
tance between the effective fetch rate and the execution
rate is determined by the fraction of time the reorder
buffer is full, which is in turn a function of the com-
mit rate. The commit rate, Commit, is the number of
committed instructions divided by the number of cy-
cles the reorder buffer holds ripe instructions. (Instruc-
tions that have been decoded long enough ago to have
reached a functional unit, assuming they were ready to
execute.)

The difference between commit rate and effective
fetch rate and the sensitivity of commit rate to window
size determine where the advanced supply mechanisms
are effective. They help those benchmarks in which
the commit rate exceeds the effective fetch rate, as one
would expect. Briefly, the reason for the improved per-
formance is the larger window size (more items in the
reorder buffer). In the three well-performing bench-
marks the increase in effective fetch rate is matched by
an increase in commit rate and so they are limited by
control transfer prediction accuracy. The other bench-
marks are limited by insensitivity of commit rate to
further increases in window size.

Figure 1 (b) shows the fate of instructions that

passed through a fetch slot or reasons why an instruc-
tion did not; the plot is scaled to instructions per cycle.
Segment Co shows instructions that passed through
and were committed; its height is the execution rate,
the same as Exec in (a). Segment Un (unfilled) shows
slots that are unfilled because the fetch mechanism re-
turned less than eight (in this case) but more than
zero instructions that later ripen. This segment clearly
shows the effectiveness of the advanced supply mecha-
nisms.

Slots holding wrong-path instructions that ripen
(and are later squashed) are shown by MP (mispre-
dict). The number of squashed instructions should in-
crease faster than fetch rate. The amount of time be-
tween when a branch is fetched and when it ripens is
fixed by the pipeline length, so the number of fetched
instructions during this time is proportional to the
fetch rate. The time to resolve the branch increases
with fetch rate since instructions the branch depends
upon arrive closer to when the branch arrives. For that
reason much of the additional fetch rate is wasted. For
the systems simulated the mispredict and nonpredict
rate is roughly the same for the different instruction
supply mechanisms. That misprediction rate is shown
in the segments along the top of the plot in (b). A full
box indicates a 10% mis/non-predict rate (including
indirect jumps, returns, and branches), an empty box
indicates perfect prediction.

Slots holding wrong-path instructions that never
ripen are labeled SC; also under this category are un-
filled slots fetched with the wrong-path instructions
and delays due to unpredicted jumps and next-line-
predictor mispredictions. The slight increase with fetch
rate is due to the same number of mispredictions oc-
curring in fewer cycles.

Segment IC shows slots unfilled due to instruction
cache misses. These are significant for gcc and perl,
and also present for TEX, they partially explain why
their fetch rates are lower than the ideal, (a) Ftch (All),
while filling most fetch slots, Un.

Finally, segment St shows the cycles in which the
contents of a fetch slot did not advance due to a full
reorder buffer or some other resource limit.

Potential speedup due to the higher fetch rate is not
realizable when commit rate is not sensitive to further
increases in window size, resulting in a more frequently
full reorder buffer. This occurs for three of the bench-
marks, bzip2, gzip, and mcf; but for the others there is
a significant increase in commit rate, and so much of
the potential speedup is realized.

Factors affecting commit rate are available ILP, load
latency, and window size. The impact of a higher fetch
rate on these factors can be seen in Figure 1(c) where
commit slot usage is plotted. (The commit slots can
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be thought of as the n [possibly empty] entries at the
head of the reorder buffer.) As with (b) the height of
the lowest bar indicates IPC. The average number of
instructions in the reorder buffer when a correct-path
instruction arrives is plotted in the rectangles along
the top. Segment Co (commit) indicate instructions
that commit and Em (empty) indicate empty commit
slots (as when there are less than n instructions in the
reorder buffer), and segment PS indicate commit slots
filled with instructions that are not yet ripe.

Segment IL (for available ILP limit delay) shows
commit slots that are either filled with an instruction
that uses a value produced by another instruction com-
pleting in the same cycle, or the instructions follow-
ing that instruction. For example, suppose the reorder

buffer in a 4-way system held the following four instruc-
tions in some cycle:

add r1, r22, r33 ! Co:
sub r44, r1, r55 ! IL:
xor r66, r77, r88 ! IL:

! Em:

The add completes and commits in the cycle, but
sub waits because of the data dependency, it is counted
as an ILP delay. Note that all instructions in commit
slots following the sub are also counted as having ILP
delays, regardless of their disposition.

Segment IM (in memory) shows load blocking, that
is, an instruction that cannot commit because it’s an
unfinished load, or an instruction in a commit slot
blocked by such a load. Also included are instructions
in other functional units, but these contribute only a
tiny amount.

The performance gain due to increased fetch rate
on the base configuration is realized primarily by an
increase in commit rate as the instruction window
is enlarged, as can be seen from the IL segments.
The increase in reorder buffer occupancy of the well-
performing benchmarks serves a useful purpose; for
bzip2 and mcf it is a symptom of insufficient ILP.

Less of a factor is a reduction in the number of empty
commit slots and reduction in miss latency impact.
Empty commit slots are more of a problem in gcc, perl,
and TEX because of their heavy use of indirect branches
and instruction cache misses.

Disappointing perhaps is the small drop in blocking
due to load latency. On average load instructions start
over 20 reorder buffer entries higher up on order-2 MBP
systems, providing at least a 2.5 cycle head start over
the conventional system. That’s only a small part of
a 10-cycle L2 hit latency in the base system. Also,
because of the faster order-2 MBP commit rate loads
do not have that much more time before reaching the
ROB head.

Address prediction is one way of getting loads to
start earlier; load instructions on the base configuration
on average moved down 30 entries from their time of ar-
rival to when their source operands were ready; address
prediction would provide another 33

4 cycles, or more if
squashed loads are included. Reinman, in describing
his supply mechanism, notes that predicted fetch ad-
dress can be used by an address predictor to predict
loads (before the load instructions are even fetched)
[14].

6.2. BAC Size

The impact of varying the size of the BAC (and
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Figure 4. Performance with different decode widths of
systems running bzip2, gcc, gzip, perl, and T EX.

FTB) sizes can be seen in Figure 2 where execution
rates have been plotted for gcc, perl, and TEX for ta-
ble sizes from 29 nodes to 219 nodes. Data for the base
configuration of the conventional system is plotted sev-
eral times for reference. At the base size of 213 nodes
MBP-3 suffered because it had fewer BAC entries. At
217 nodes it finally outpaces MBP-2, but by a small
margin. This is to be expected since at a basic block
size of 5 two blocks are sufficient to feed the eight in-
struction wide decode width.

At smaller table sizes the advanced systems suffer
a slowdown over the conventional system, which has
an unaffected next-line predictor. Interestingly MBP-
2 and superblock predictors perform about the same
despite the fact that MBP-2 must be suffering more
misses.

6.3. Level-2 Cache Size

The impact of level-2 cache size is shown in Figure 3
where execution rates for two representative bench-
marks, bzip2 and gcc, are shown. The advanced fetch
mechanisms do little to reduce load latency and so at
smaller cache sizes they have a low impact on perfor-
mance. The small amount of available ILP in bzip2
limits the advanced fetch mechanisms to only a tiny
performance gain at larger cache sizes. In contrast
gzip2 at the largest cache sizes is fetch limited, as can
be seen in the small gap between effective fetch rate
and execution rate. (A small gap indicates that the
ROB is rarely full.)

The gap between commit rate and execution rate is
determined by how frequently CTIs are mispredicted
and their position in the reorder buffer when resolved.
The gap is small at small cache sizes for gzip2, indicat-
ing that CTIs resolve far enough from the ROB head

to fetch, decode, and schedule correct path instructions
before the CTI reaches the head.

6.4. Decode Width

On the eight-way advanced fetch systems exam-
ined performance was limited by prediction accuracy
or available ILP. Moving to wider systems would
do nothing to help prediction accuracy and would
only marginally increase the window size (since branch
prediction limited window size in eight-way systems).
Performance improvement would come primarily from
those portions of the code with a large amount of ILP
and good branch prediction, such portions exist but
occur to rarely to have much of a performance impact.

Experiments were run using superblock, order-3
MBP, and the conventional systems in 4-way, 8-way,
and 16-way superscalar configurations. (In another set
of 16-way experiments order 1,2, and 4 were also sim-
ulated.) The limited performance impact can be seen
in Figure 4.

On wider machines the conventional system can also
fetch more instructions per cycle, and so the relative
advantage of the advanced fetch mechanisms dimin-
ishes. This is perhaps ironic since multiple branch pre-
diction is seen as necessary for super-wide machines
and yet provides the most relative benefit for narrower
machines where it makes most efficient use of the lim-
ited number of fetch slots.

Figure 5 (a) shows the performance of MBP systems
from order 1 to 4 on 16-way systems for the large con-
figuration parameters. In (b) fetch slot usage is shown.
The results show that for 16-way systems order-3 is
best, on 8-way systems order-2 worked best. The su-
perblock predictor averages only 3% speedup, outper-
forming MBP-1 which offers no speedup, but not doing
nearly as well as MBP-2 to 4.

7. Related Work
7.1. Multiple Branch Predictors

The multiple branch predictor of Yeh, Marr, and
Patt [18] was an early method of supplying instruc-
tions spanning multiple basic blocks to a superscalar
processor. Their analysis focused on branch predic-
tor performance and the prediction of indirect jumps
was not considered. (Indirect jumps are handled by a
single-block fetch mechanism in an earlier work [17].)
The multiple branch predictor of Dutta and Franklin
[3] also stores blocks reachable from an address, which
they call a tree-like subgraph, but their predictor makes
greater use of local history. Neither Yeh et al nor Dutta
and Franklin simulate equal-cost systems to determine
optimal tree depth nor do they provide performance
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Figure 5. Performance on sixteen way machines.

numbers that accounts for the rate at which instruc-
tions can be executed.

Patel, Friendly, and Patt analyze several multiple
branch predictors for a trace cache. The predictions
are correlated with the start address of a trace: a PHT
is indexed gshare-style, with the exclusive or of branch
history and the trace start address. Several variations
on what the PHT stores were analyzed, the best in the
cost-equalized comparisons used the fewest counters, a
counter for branches at distance 1, 2, 3, etc. (Rather
than a tree of counters for all reachable blocks.)

Conte, Menezes, Mills, and Patel [2] analyze var-
ious dual-port instruction cache configurations; they
find that the most flexible, using what they call a col-
lapsing buffer, yields significant performance improve-
ment. Such flexible multi-ported caches are assumed
for the multiple branch prediction schemes discussed
here.

Reinman, Calder, and Austin [13,14] describe an in-
struction fetch mechanism, the Fetch Target Queue,
which is similar to an order-1 MBP, except that the
single BAC node per entry stores information on sev-
eral contiguous basic blocks, separated by highly biased
not-taken branches. They show roughly 20% speedup
over Yeh et al Basic Block Target Buffer [17] for small
table sizes on 8-way systems, the speedup shrinks to
a few percent when larger tables are used, indicating
that the advantage is in compact table size. Similar re-
sults are obtained here over the order-1 Y-MBP which
is similar to a BBTB.

Like the MBP as implemented here, Reinman et al’s
FTQ is decoupled, allowing the predictor to run ahead
of the fetch mechanism. They use the queued predic-
tions to prefetch the cache.

7.2. Path-Based Trace Predictors

The path-based next trace predictor of Jacobson,
Rotenberg, and Smith is, in effect, a multiple branch
and indirect jump predictor [5]. A trace, in this
context, is a segment of the dynamic instruction se-
quence that has been encountered and cached for later
use. Traces are identified by a trace ID, the address
of the first instruction and the outcome of contained
branches. (An indirect jump must be the last instruc-
tion in a trace.) Traces are predicted by using a hash of
the last several trace IDs to index a table that returns a
predicted trace ID. Thus, both branch directions and
indirect jump targets are being correlated with path
history. The prediction accuracies attained, which also
use variable history length and saved histories for calls,
are very high [5].

Perhaps one disadvantage of this next-trace pre-
diction mechanism is in the size of the history table
needed. Each entry must store a trace ID, which must
contain a substantial portion of an instruction address.
A BAC also stores instruction addresses, however the
number of times an address might appear in the table
depends on the tree depth, which is small, whereas in
a next-trace predictor the number of places a trace ID
appears depends on the number of encountered paths
which lead to it, which can be large. Multiple branch
predictors predict only branch direction, and so can
use compact pattern history tables. A JTB can be
added, as in the systems analyzed here, without hav-
ing to shrink the number of entries in the PHT.

Trace caches can also use multiple branch predictors
[11], and there are many differences between the two
unrelated to prediction. For example, systems using
trace caches can have simpler instruction caches and
decode units.
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8. Conclusions

Multiple branch prediction mechanisms can attain
higher performance than conventional instruction sup-
ply mechanisms on dynamically scheduled superscalar
processors. The higher fetch rates presented in [18]
lead to improved performance rather than running up
against an ILP limit. Further, newer, more accurate
branch prediction techniques can be used without sac-
rificing the ability to predict multiple branches.

The superblock predictor of Reinman et al is in-
tended to get some of the benefit of a multiple branch
predictor without the complexity of multi-read-ported
prediction tables. Results here show that its perfor-
mance is roughly half way between a single block pre-
dictor (MBP-1) and an order-2 multiple branch predic-
tor.

An obvious tradeoff in tree type multiple branch pre-
dictors is the height of the tree (MBP order) v. the size
of the forest (number of BAC entries). Results here
show that the best size, when BAC storage is limited,
is enough to fill the decode slots (decode width divided
by basic block size), as one might guess. With a large
BAC higher order yields only tiny improvements.

With the advanced fetch mechanisms, some of the
benchmarks tested are limited by prediction accuracy,
others by available ILP.
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