
Scientific Programming 21 (2013) 1–16 1
DOI 10.3233/SPR-130360
IOS Press

From physics model to results: An optimizing
framework for cross-architecture code
generation

Marek Blazewicz a,b,∗, Ian Hinder c, David M. Koppelman d,e, Steven R. Brandt d,f, Milosz Ciznicki a,
Michal Kierzynka a,b, Frank Löffler d, Erik Schnetter d,g,h and Jian Tao d

a Applications Department, Poznań Supercomputing & Networking Center, Poznań, Poland
b Poznań University of Technology, Poznań, Poland
c Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Potsdam, Germany
d Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA
e Division of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA, USA
f Division of Computer Science, Louisiana State University, Baton Rouge, LA, USA
g Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada
h Department of Physics, University of Guelph, Guelph, ON, Canada

Abstract. Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation,
the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute
architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an effi-
cient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-
threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strate-
gies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem
characteristics. The discretization is based on higher-order finite differences on multi-block domains. Chemora’s capabilities
are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein
equations contain hundreds of variables and thousands of terms.

Keywords: Automatic parallelization, hybrid computing, GPU computing, parallel application frameworks, numerical methods

1. Introduction

High performance codes are becoming increasingly
difficult to program, despite a proliferation of success-
ful (but incremental) efforts to increase programmabil-
ity and productivity for high performance computing
(HPC) systems. The reasons for this range over several
layers, beginning with the need for large, international
collaborations to combine expertise from many differ-
ent fields of science, to the need to address a wide va-
riety of systems and hardware architectures to ensure
efficiency and performance.

As heterogeneous and hybrid systems are becom-
ing common in HPC systems, additional levels of par-

*Corresponding author: Marek Blazewicz. E-mail: marqs@
man.poznan.pl.

allelism need to be addressed, and the bar for attain-
ing efficiency is being raised. Three out of ten, and 62
of the top 500 of the fastest computers in the world
use accelerators of some kind to achieve their per-
formance [46]. More large heterogeneous systems are
scheduled to be set up, especially including new Intel
Xeon Phi and Nvidia K20x co-processors.

In this paper we present Chemora, using an inte-
grated approach addressing programmability and per-
formance at all levels, from enabling large-scale col-
laborations, to separating physics, numerical analysis,
and computer science portions, to disentangling ker-
nel implementations from performance optimization
annotations. Chemora is based on the Cactus frame-
work [10,17], a well-known tool used in several sci-
entific communities for developing HPC applications.
Cactus is a component-based framework providing key

1058-9244/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved

2 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

abstractions to significantly simplify parallel program-
ming for a large class of problems, in particular solv-
ing systems of partial differential equations (PDEs) on
block-structured grids – i.e. adaptive mesh refinement
(AMR) and multi-block systems (see Section 2.1).

Chemora enables existing Cactus-based applications
to continue scaling their scientific codes and make ef-
ficient use of new hybrid systems, without requiring
costly re-writes of application kernels or adopting new
programming paradigms. At the same time, it also pro-
vides a high-level path for newly developed applica-
tions to efficiently employ cutting-edge hardware ar-
chitectures, without having to target a specific archi-
tecture.

We wish to emphasize that the present work is
merely the next step in the currently fifteen year-
long history of the Cactus framework. While finding
ways to exploit the power of accelerators is perhaps
the largest current challenge to increased code perfor-
mance, it is really only the latest advance in an ever-
changing evolution of computer architectures. Support
for new architectures is typically added to the lower-
level components of frameworks (such as Cactus) by
the framework developers, allowing the application
scientist to take advantage of them without having to
significantly rewrite code.

To create the Chemora framework, we have built on
top of a number of existing modules that have not been
written specifically for this project, as well as creating
new modules and abstractions. The main research and
development effort has been the integration of these
modules, especially as regards accelerator interfaces,
their adaptation for production codes as well as auto-
matic optimizations to handle complicated Numerical
Relativity codes. The result is that this framework al-
lows the use of accelerator hardware in a transparent
and efficient manner, fully integrated with the existing
Cactus framework, where this was not possible before.
The full contribution to the described research work
has been described in the Section 1.3. The framework,
along with introductory documentation, will be made
publicly available [12].

1.1. Scientific motivation

Partial differential equations are ubiquitous through-
out the fields of science and engineering, and their nu-
merical solution is a challenge at the forefront of mod-
ern computational science. In particular, our applica-
tion is that of relativistic astrophysics. Some of the
most extreme physics in the universe is characterised

by small regions of space containing a large amount
of mass, and Newton’s theory of gravity is no longer
sufficient; Einstein’s theory of General Relativity (GR)
is required. For example, black holes, neutron stars,
and supernovae are fundamentally relativistic objects,
and understanding these objects is essential to our un-
derstanding of the modern universe. Their accurate de-
scription is only possible using GR. The solution of
Einstein’s equations of GR using computational tech-
niques is known as numerical relativity (NR). See [36]
for a recent review, and see [27] for a detailed descrip-
tion of an open-source framework for performing NR
simulations.

One of the most challenging applications of NR is
the inspiral and merger of a pair of orbiting black holes.
GR predicts the existence of gravitational waves: rip-
ples in spacetime that propagate away from heavy, fast-
moving objects. Although there is indirect evidence,
these waves have not yet been directly detected due
to their low signal strength. The strongest expected
sources of gravitational waves are binary black hole
and neutron star mergers, and supernova explosions–
precisely those objects for which GR is required for ac-
curate modeling. Several gravitational wave detectors
[16] are presently under construction and they are ex-
pected to see a signal within the next few years. The
detection of gravitational waves will lead to an en-
tirely new view of the universe, complementary to ex-
isting electromagnetic and particle observations. The
existence and properties of expected gravitational wave
sources will dramatically extend our knowledge of as-
tronomy and astrophysics.

NR models the orbits of the black holes, the wave-
forms they produce, and their interaction with these
waves using the Einstein equations. Typically, these
equations are split into a 3 + 1 form, breaking the
four dimensional character of the equations and en-
abling the problem to be expressed as a time evolution
of gravitational fields in three spatial dimensions. The
Einstein equations in the BSSN formulation [6,32,42]
are a set of coupled nonlinear partial differential equa-
tions with 25 variables [1,2], usually written for com-
pactness in abstract index form. When fully expanded,
they contain thousands of terms, and the right hand
side requires about 7900 floating point operations per
grid point to evaluate once, if using eighth order finite
differences.

The simulations are characterised by the black hole
mass, M , a length, GM/c2, and a time, GM/c3. Usu-
ally one uses units in which G = c = 1, allowing
both time and distance to be measured by M . Typical

M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation 3

simulations of the type listed above have gravitational
waves of size ∼10M , and the domain to be simulated
is ∼100–1000M in radius. For this reason, Adaptive
Mesh Refinement (AMR) or multi-block methods are
required to perform long-term BBH simulations.

Over 30 years of research in NR culminated in a
major breakthrough in 2005 [4,11,38], when the first
successful long-term stable binary black hole evolu-
tions were performed. Since then, the NR community
has refined and optimized their codes and techniques,
and now routinely runs binary black hole simulations,
each employing hundreds or thousands of CPU cores
simultaneously of the world’s fastest supercomputers.
Performance of the codes is a critical issue, as the sci-
entific need for long waveforms with high accuracy is
compelling. One of the motivations of the Chemora
project was taking the NR codes into the era of com-
puting with the use of accelerators (in particular GPUs)
and improving their performance by an order of mag-
nitude, thus enabling new science.

1.2. Related work

To achieve sustained performance on hybrid super-
computers and reduce programming cost, various pro-
gramming frameworks and tools have been developed,
e.g., Merge [26] (a library based framework for hetero-
geneous multi-core systems), Zippy [15] (a framework
for parallel execution of codes on multiple GPUs),
BSGP [20] (a new programming language for gen-
eral purpose computation on the GPU), and CUDA-
lite [48] (an enhancement to CUDA that transforms
code based on annotations). Efforts are also underway
to improve compiler tools for automatic paralleliza-
tion and optimization of affine loop nests for GPUs [5]
and for automatic translation of OpenMP parallelized
codes to CUDA [25]. Finally, OpenACC is slated to
provide OpenMP-like annotations for C and Fortran
code.

Stencil computations form the kernel of many sci-
entific applications that use structured grids to solve
partial differential equations. This numerical problem
can be characterised as the structured grids “Berkeley
Dwarf” [3], one of a set of algorithmic patterns iden-
tified as important for current and near-future compu-
tation. In particular, stencil computations parallelized
using hybrid architectures (especially multi-GPU) are
of particular interest to many researchers who want
to leverage the emerging hybrid systems to speed up
scientific discoveries. Micik [31] proposed an optimal
3D finite difference discretization of the wave equa-

tion in a CUDA environment, and also proposed a way
to minimize the latency of inter-node communication
by overlapping slow PCI-Express (interconnecting the
GPU with the host) data exchange with computations.
This may be achieved by dividing the computational
domain along the slowest varying dimension. Thibault
[45] followed the idea of a domain division pattern
and implemented a 3D CFD model based on finite-
difference discretization of the Navier–Stokes equa-
tions parallelized on a single computational node with
4 GPUs.

Jacobsen [22] extended this model by adding inter-
node communication via MPI. They followed the ap-
proach described in Micik [31] and overlapped the
communication with computations as well as GPU-
host with host-host data exchange. However, they did
not take advantage of the full-duplex nature of the PCI-
Express bus, which would have decreased the time
spent for communication. Their computational model
also divides the domain along the slowest varying di-
mension only, and this approach is not suitable for all
numerical problems. For example, for large computa-
tional domains, the size of the ghost zone becomes no-
ticeable in comparison to the computed part of the do-
main, and the communication cost becomes larger than
the computational cost, which can be observed in the
non-linear scaling of their model.

Notable work on an example stencil application was
selected as a finalist of the Gordon Bell Prize in SC
2011 as the first peta-scale result [43]. Shimokawabe et
al. demonstrated very high performance of
1.017 PFlop/s in single precision using 4,000 GPUs
along with 16,000 CPU cores on TSUBAME 2.0. Nev-
ertheless, a set of new and more advanced optimiza-
tion techniques introduced in the Chemora framework
as well as its capabilities to generate highly efficient
multi-GPU stencil computing codes from a high-level
problem description make this framework even more
attractive for users of large-scale hybrid systems.

Physis [28] addresses the problem of dividing the
domain in all dimensions, and is these days seen as one
of the most efficient frameworks for stencil compu-
tations over regular multidimensional Cartesian grids
in distributed memory environments. The framework
in its current state, however, does not divide the do-
main automatically; this has to be done manually at
launch time. Nevertheless, Physis achieves very good
scaling by taking advantage of memory transfers over-
lapped with computations. Stencil computations are
defined in the form of C-based functions (or kernels)
with the addition of a few special macros that allow

4 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

accessing values at grid points. The framework also
uses CUDA streams that allow for parallel execution
of multiple kernels at the same time; e.g. regular and
boundary kernels may be executed in parallel. Data
dependencies between stencil points are resolved stat-
ically, hence must be known beforehand, at compile
time. The authors put a special emphasis on ease of
use, and indeed the time needed to write an application
in Physis is relatively short. This framework was eval-
uated using three benchmark programs running on the
TSUBAME 2.0 supercomputer, and proved to gener-
ate scalable code for up to 256 GPUs. Below, we com-
pare Chemora with its dynamic compilation and auto-
tuning methods to Physis, and show that Chemora out-
performs Physis in the area of automatically generated
code for GPU clusters.

1.3. Contributions

This paper makes the following contributions:

• An overview of the Chemora framework for gen-
erating hybrid CPU/GPU cluster code from PDE
descriptions is presented and its performance is
characterized.

• A language for expressing differential equation
models of physical systems suitable for generat-
ing hybrid cluster simulation code (based on the
existing Kranc code-generation package), was de-
veloped.

• Model-based GPU tile/thread configuration opti-
mization techniques were developed, enabling the
exploration of a large search space and the use
of dynamic compilation (performed once on the
chosen configuration).

• Automatic hybrid execution GPU/CPU data stag-
ing techniques were developed (the accelerator
module).

• GPU tuning techniques were developed for large
kernel codes, such as register-pressure sensitive
configuration.

• The first demonstration binary black hole simu-
lations using GPUs in full GR were presented.
Since Chemora has not yet been applied to the
Carpet AMR driver, these are not suitable for
production physics, but prove that existing codes
used in numerical relativity can be adapted to
Chemora.

2. Chemora framework

Chemora takes a physics model described in a high
level Equation Description Language (EDL) and gen-
erates highly optimized code suitable for parallel exe-
cution on heterogeneous systems. There are three ma-
jor components in Chemora: the Cactus-Carpet com-
putational infrastructure, CaKernel programming ab-
stractions, and the Kranc code generator. Chemora
is portable to many operating systems, and adopts
widely-used parallel programming standards (MPI,
OpenMP and OpenCL) and models (vectorization and
CUDA). An architectural view of the Chemora frame-
work is shown in Fig. 1. We describe the individual
components below.

2.1. Cactus-carpet computational infrastructure

The Cactus computational framework is the foun-
dation of Chemora. Cactus [10,17] is an open-source,
modular, highly-portable programming environment
for collaborative research using high-performance com-
puting. Cactus is distributed with a generic computa-
tional toolkit providing parallelization, domain decom-
position, coordinates, boundary conditions, interpola-
tors, reduction operators, and efficient I/O in different
data formats. More than 30 groups worldwide are us-
ing Cactus for their research work in cosmology, astro-
physics, computational fluid dynamics, coastal mod-
eling, quantum gravity, etc. The Cactus framework is
a vital part of the Einstein Toolkit [14,27], an NSF-
funded collaboration enabling a large part of the world-
wide research in numerical relativity by providing nec-
essary core computational tools as well as a com-
mon platform for exchanging physics modules. Cac-
tus is part of the software development effort for Blue
Waters, and in particular the Cactus team is work-
ing with NCSA to produce development interfaces and
paradigms for large scale simulation development.

One of the features of Cactus relevant in this con-
text is that it externalizes parallelism and memory
management into a module (called a driver) instead
of providing it itself, allowing application modules
(called thorns) to function mostly independently of
the system architecture. Here we employ the Carpet
driver [30,40,41] for MPI-based parallelism via spatial
domain decomposition. Carpet provides adaptive mesh
refinement (AMR) and multi-block capabilities,1 and

1We do not use these capabilities in the examples below.

M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation 5

Fig. 1. An architectural view of Chemora. Chemora consists of three major components: The Cactus-Carpet computational infrastructure, Ca-
Kernel programming abstractions, and the Kranc code generator. Chemora takes a physics model described in a high level Equation Description
Language and produces highly optimized code suitable for parallel execution on heterogeneous systems. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-130360.)

has been shown to scale to more than 16,000 cores on
current NERSC and XSEDE systems.

In the typical Cactus programming style for appli-
cation modules, these modules consist either of global
routines (e.g. reduction or interpolation routines), or
local routines (e.g. finite differencing kernels). Local
routines are provided in the form of kernels that are
mapped by the driver onto the available resources. At
run time, a schedule is constructed, where Cactus or-
chestrates the execution of routines as well as the nec-
essary data movement (e.g. between different MPI pro-
cesses). This execution model is both easy to under-
stand for application scientists, and can lead to highly
efficient simulations on large systems. Below, we re-
fine this model to include accelerators (e.g. GPUs) with
separate execution cores and memory systems.

2.2. CaKernel programming abstractions

The Chemora programming framework uses the
CaKernel [7,8,44], a set of high level programming
abstractions, and the corresponding implementations.
Based on the Cactus-Carpet computational infrastruc-
ture, CaKernel provides two major sets of program-
ming abstractions: (1) Grid Abstractions that represent
the dynamically distributed adaptive grid hierarchy and
help to separate the application development from the
distributed computational domain; (2) Kernel Abstrac-

tions that enable automatic generation of numerical
kernels from a set of highly optimized templates and
help to separate the development, scheduling, and exe-
cution of numerical kernels.

2.2.1. Grid abstractions
The Cactus flesh and the Cactus computational

toolkit contain a collection of data structures and
functions that can be categorized into the following
three grid abstractions, which commonly appear in
high level programming frameworks for parallel block-
structured applications [35]:

• The Grid Hierarchy (GH) represents the dis-
tributed adaptive GH. The abstraction enables ap-
plication developers to create, operate and de-
stroy hierarchical grid structures. The regridding
and partitioning operations on a grid structure are
done automatically whenever necessary. In Cac-
tus, grid operations are handled by a driver thorn
which is a special module in Cactus.

• A Grid Function (GF) represents a distributed
data structure containing one of the variables in an
application. Storage, synchronization, arithmetic,
and reduction operations are implemented for the
GF by standard thorns. The application develop-
ers are responsible for providing routines for ini-
tialization, boundary updates, etc.

6 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

• The Grid Geometry (GG) represents the coordi-
nates, bounding boxes, and bounding box lists of
the computational domain. Operations on the GG,
such as union, intersection, refine, and coarsen are
usually implemented in a driver thorn as well.

2.2.2. Kernel abstractions
The kernel abstractions enable automatic code gen-

eration with a set of highly optimized templates to sim-
plify code construction. The definition of a kernel re-
quires the following three components:

• A CaKernel Descriptor describes one or more nu-
merical kernels, dependencies, such as grid func-
tions and parameters required by the kernel, and
grid point relations with its neighbors. the infor-
mation provided in the descriptor is then used to
generate a kernel frame (macros) that performs
automatic data fetching, caching and synchro-
nization with the host.

• A Numerical Kernel uses kernel-specific auto-
generated macros. The function may be generated
via other packages (such as Kranc), and operates
point-wise.

• The CaKernel Scheduler schedules CaKernel
launchers and other CaKernel functions in exactly
the same way as other Cactus functions. Data de-
pendencies are evaluated and an optimal strategy
for transferring data and performing computation
is selected automatically.

These kernel abstractions not only enable a simple way
to write and execute numerical kernels in a heteroge-
neous environment, but also enable lower-level opti-
mizations without modifying the kernel code itself.

2.2.3. Hardware abstraction
CaKernel provides an abstraction of the hardware

architecture, and Chemora code is generated on top of
this abstraction. The high level problem specification
in the Chemora framework may thus remain indepen-
dent of the architecture. The support for new architec-
tures is the responsibility of the Chemora developers,
and thus it is transparent to the end-user, who should
not need to significantly modify their code once the un-
derlying CaKernel implementation has been modified.

2.3. Describing a physics model

Programming languages such as C or Fortran offer
a very low level of abstraction compared to the usual
mathematical notation. Instead of requiring physicists
to write equations describing PDEs at this level, we

introduce EDL, a domain-specific language for speci-
fying systems of PDEs as well as related information
(initial and boundary conditions, constraints, analysis
quantities, etc.) EDL allows equations to be specified
independent of their discretization, allows abstract in-
dex notation to be used as a compact way to write
vectors and tensors, and does not limit the options
for memory layout or looping order. For Chemora,
we designed EDL from scratch instead of piggyback-
ing it onto an existing language such as Mathematica,
Haskell, or C++ so that we could choose a syntax that
is easily understood by domain scientists, i.e. physi-
cists and engineers.

EDL has a very simple syntax, similar to C, but ex-
tended with a LaTeX-like syntax for abstract index no-
tation for vectors and tensors. Sample 1 shows as an
example the main part of specifying the scalar wave
equation in a fully first order form (assuming, for sim-
plicity, the propagation speed is 1). In addition to spec-
ifying the equations themselves, EDL supports con-
stants, parameters, coordinates, auxiliary fields, and
conditional expressions.

In addition to describing the system of equations,
EDL makes it possible to specify a particular dis-
cretization by specifying sets of finite differencing
stencils. These stencil definitions remain independent
of the equations themselves.

The Kranc code-generation package (see
Section 2.4), written in Mathematica and described be-
low, has been enhanced in Chemora to accept EDL as

Sample 1. Example showing (part of) the scalar wave equation writ-
ten in EDL, a language designed to describe PDEs. A LaTeX-like
syntax allows a compact notation for vectors and tensors. Addi-
tional annotations (not shown here) are needed to complete the de-
scription. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130360.)

M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation 7

its input language. Via a J/Link interface to the Piraha
PEG [9] Java parsing library, the EDL is parsed into
Mathematica expressions equivalent to those tradition-
ally used as input to Kranc. The formal grammar which
defines the syntax of the language is available as part of
the Kranc distribution, should other tools need to parse
EDL files.

In spite of its apparent simplicity, the high-level de-
scription in EDL captures everything that is needed to
create a complete Cactus module. Metadata such as
variable declarations, schedule items, and parameter
definitions are extracted from EDL, and implementa-
tion choices such as memory layout and loop traversal
order are made automatically or even dynamically at
run time (see below).

Kranc is written in Mathematica, and prior to
Chemora was used by writing a script in the Mathe-
matica language to set up data structures containing
equations and then call Kranc Mathematica functions
to generate the Cactus module. This allowed great flex-
ibility, but at the same time required users to know
the Mathematica language, which in several ways is
idiosyncratic and is unfamiliar to many users. Addi-
tionally, the use of an imperative language meant that
Kranc was unable to reason about the input script
in any useful manner (for example for the purpose
of reporting line numbers where errors were found).
A new, simple, declarative domain-specific language
was therefore created which allowed a concise expres-
sion of exactly the information needed by Kranc. Exist-
ing languages familiar to the majority of scientists (C,
Fortran, Perl, Python) introduce a wide variety of fea-
tures and semantics unnecessary for our application,
and none of these are suitable for expressing equa-
tions in a convenient manner. The block structure of
EDL was inspired by Fortran, the expression syntax
by C, and the index notation for tensors by LaTeX. We
feel that the language is simple enough that it can be
learned very quickly by reference to examples alone,
and that there is not a steep learning curve.

By providing a high-level abstraction for an appli-
cation scientist, the use of EDL substantially reduce
the time-to-solution, which includes: learning the soft-
ware syntax, development time from a given system
of equations to machine code, its parallelization on a
heterogeneous architecture, and finally its deployment
on production clusters. It also eliminates many poten-
tial sources of errors introduced by low level language
properties, and thus reduces testing time. For further
information about the total time-to-solution, see [19].

2.4. Automated code generation with Kranc

Translating equations from a high-level mathemat-
ical notation into C or Fortran and discretizing them
manually is a tedious, error-prone task. While it is
straightforward to do for simple algorithms, this be-
comes prohibitively expensive for complex systems.
We identify two levels of abstraction. The first is be-
tween the continuum equations and the approximate
numerical algorithm (discretization), and the second
is between the numerical algorithm and the computa-
tional implementation.

We employ Kranc [21,23,24] as a code-generation
package which implements these abstractions. The
user of Kranc provides a Kranc script containing a
section describing the partial differential equations to
solve, and a section describing the numerical algorithm
to use. Kranc translates this high-level description into
a complete Cactus module, including C++ code im-
plementing the equations using the specified numerical
method, as well as code and metadata for integrating
this into the Cactus framework.

By separating mathematical, numerical, and compu-
tational aspects, Kranc allows users to focus on each of
these aspects separately according to their specializa-
tion. Although users can write Kranc scripts directly
in Mathematica, making use of the EDL shields them
from the (sometimes arcane) Mathematica syntax (be-
cause they are required to follow a strict pattern for
specifying PDEs) and provides them with much more
informative (high-level) error messages. Either the tra-
ditional Mathematica language, or the new EDL lan-
guage, can be used with Chemora for GPU code gen-
eration.

Kranc is able to:

• accept input with equations in abstract index no-
tation;

• generate customized finite differencing operators;
• generate codes compatible with advanced Cac-

tus features such as adaptive mesh refinement or
multi-block systems;

• check the consistency with non-Kranc generated
parts of the user’s simulation;

• apply coordinate transformations, in particular of
derivative operators, suitable for multi-block sys-
tems (e.g. [37]);

• use symbolic algebra based on the high-level de-
scription of the physics system to perform opti-
mizations that are inaccessible to the compiler of
a low-level language;

8 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

• implement transparent OpenMP parallelization;
• explicitly vectorize loops for SIMD architectures

(using compiler-specific syntaxes);
• generate OpenCL code (even independent of the

CaKernel framework described below);
• apply various transformations and optimizations

(e.g. loop blocking, loop fission, multi-threading,
loop unrolling) as necessary for the target archi-
tecture.

2.4.1. Optimization
It is important to note that Kranc does not simply

generate the source code for a specific architecture that
corresponds 1 : 1 to its input. Kranc has many of the
features of a traditional compiler, including a front-
end, optimizer, and code generator, but the code gen-
erated is C++/CaKernel/CUDA rather than machine
code.

The high-level optimizations currently implemented
act on discretized systems of equations, and include the
following:

• Removing unused variables and expressions;
• Transforming expressions to a normal form ac-

cording to mathematical equivalences and per-
forming constant folding;

• Introducing temporaries to perform common sub-
expression elimination;

• Splitting calculations into several independent
calculations to reduce the instruction cache foot-
print and data cache pressure (loop fission);

• Splitting calculations into two, the first evaluating
all derivative operators (using stencils) storing the
result into arrays, the second evaluating the actual
RHS terms but not using any stencils. This allows
different loop optimizations to be applied to each
calculation, but requires more memory bandwidth
(loop fission).

Note in the above that a calculation is applied to all
grid points, and thus either loops over or uses multiple
threads to traverse all grid points. Also note that both
the high-level and the low-level optimizations could in
principle also be performed by an optimizing compiler.
However, none of the currently available compilers for
HPC systems are able to do so, except for very sim-
ple kernels. We surmise that the reason for this is that
it is very difficult for a compiler to abstract out suffi-
cient high-level information from code written in low-
level languages to prove that these transformations are
allowed by the language standard. A programmer is
forced to make many (ad-hoc) decisions when imple-
menting a system of equations in a low-level language

such as C or C++, and the compiler is then unable to
revert these decisions and fails to optimize the code.

It is surprising to see that these optimizations –
which are in principle standard transformations among
compiler builders – are (1) able to significantly im-
prove performance, are (2) nevertheless not applied by
current optimizing compilers, and are yet (3) so easily
implemented in Mathematica’s language, often requir-
ing less than a hundred lines of code.

Kranc is a developed and mature package. Since
its conception in 2002, it has been continually devel-
oped to adapt to changing computational paradigms.
Kranc is not just a theoretical tool. In the Einstein
Toolkit [27], Kranc is used to generate a highly ef-
ficient open-source implementation of the Einstein
equations as well as several analysis modules. All of
the above features are used heavily by users of the
Toolkit, and hence have been well-tested on many
production architectures, including most systems at
NERSC or in XSEDE.

2.4.2. Debugging the numerical code
It is also important to note that Chemora signifi-

cantly reduces the time required to debug the appli-
cation. The recommended approach for development
using Chemora is that the user’s Kranc script is consid-
ered the canonical source, and only this should be mod-
ified during development. The generated code should
not be modified, as it will be completely regenerated
each time Kranc is run, so any hand-modifications of
the generated code will be lost. Unlike when writing
a C++ program, every successfully-compiled Kranc
script should lead to correct computational (though not
necessarily physical) code. Hence the errors are lim-
ited to the application domain, for example an incor-
rect equation is solved. Similarly, use of a source-code
level debugger is not typical when working with Kranc,
as the “debugging” happens at the level of the scientific
results (e.g. convergence tests and visualisation) rather
than at the level of programmatic bugs in the generated
code. As such, Kranc is treated as a black box by the
application scientist, much as a compiler would be.

2.4.3. Code generation for CaKernel
In order to use Kranc as a component of Chemora,

the code-generation backend was modified, and CaK-
ernel (see Section 2.2) was added as an output tar-
get. This change is essentially invisible to the applica-
tion developer; there is merely an additional option to
generate CaKernel code rather than C++ or OpenCL
code. Each calculation is then annotated with whether
it runs on the host (CPU) or the device (GPU). Kranc

M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation 9

also creates all metadata required by CaKernel. Addi-
tionally, the new EDL language frontend was added to
Kranc.

2.4.4. Hybrid codes
since GPU accelerators have to be governed by

CPU(s), it is natural to attempt to exploit them by em-
ploying hybrid codes. In this case, Kranc, generates
both CPU and CaKernel codes from the same script.
At run time, each MPI process checks whether to at-
tach itself to a GPU and perform its calculations there,
or whether to use the CPU for calculations.

This mechanism works in principle; however, as
the Cactus driver currently assigns the same amount
of work to each MPI process (uniform load balanc-
ing), the large performance disparity between CPU and
GPU has led to only minimal performance gains so far.
We expect this issue to be resolved soon.

2.5. CaKernel GPU code optimization

The CaKernel code generated by Kranc consists of
numerical kernels, routines that operate on a single
grid point. The CaKernel parts of Chemora use Kranc-
provided and run time information to generate effi-
cient GPU executables from the numerical kernels,
without requiring the user to set tuning parameters. At
build time, numerical kernels are wrapped with ker-
nel frames, code that implements data staging and it-
eration, producing a source code package that is com-
pressed and compiled into the Cactus executable. At
run time, CaKernel makes use of information about
the kernels provided by Kranc as well as user param-
eters and information on the problem size to choose
tiling, etc. With this information, the code package is
extracted, edited, compiled, loaded to the GPU, and
run. This dynamic process results in lightweight GPU
code that makes efficient use of GPU resources, includ-
ing caches. CaKernel uses several techniques to gener-
ate efficient GPU code which we shall elaborate in the
following subsections.

2.5.1. Stencils and dynamic tile selection
CPU and GPU tiling has been extensively studied,

though often limited to specific stencils [13,29,39,49].
The goal for CaKernel was to develop an automatic tile
selection scheme that would work well not just for a
few specific stencils, but any stencil pattern the user
requested. The tile selection is based not just on the
stencil shape but also on the number of grid variables
and on the shape of the local grid. The resulting tile
makes best use of the cache and potentially registers

for minimizing data access. The discussion below pro-
vides highlights of the scheme; details will be more
fully reported elsewhere.

The following discussion uses CUDA terminology,
see [33,34] for background. The term tile will be used
here to mean the portion of the grid assigned to a
CUDA block. In GPUs, higher warp occupancy means
better latency hiding introduced by common memory
access. That can be achieved with multiple blocks, but
to maximize L1 cache reuse CaKernel will favor a sin-
gle large block, the maximum block size determined by
a trial compilation of a numerical kernel. Within that
block size limit a set of candidate tile shapes are gen-
erated using simple heuristics, for example, by divid-
ing the x dimension of the local grid evenly (by 1, 2,
3, . . .), and then for each tile x length find all pairs of
ty and tz lengths that fit within the block limit, where
tx, ty , and tz are the tile shape in units of grid points.

Given a candidate tile shape, the number of cache
lines requested during the execution of the kernel
is computed. Such a request size is computed un-
der the ordering assumption that memory accesses are
grouped by grid function and dimension (for stencil
accesses). As an illustration, if the assumption holds
a possible access pattern for grid functions g and h is
g0,1,0, g0,2,0, g1,0,0, h0,0,0, while the pattern g0,1,0, h0,0,0,
g1,0,0, g0,2,0 violates the assumption because h is be-
tween g’s accesses and for g a dimension-x stencil ac-
cess interrupts dimension-y accesses.

Request sizes are computed under different cache
line survival assumptions, and the one or two that most
closely match the cache are averaged. One survival as-
sumption is that all lines survive (no line is evicted)
during an iteration in which case the request size is the
number of distinct lines the kernel will touch, after ac-
counting for many special cases such as alignment. An-
other survival assumption is that data accessed using
stencils along one dimension (say, x) will not survive
until another dimension access (say, y) (e.g., common
lines might be evicted). The particular assumption to
use is based on the size of the tile and cache.

Skipping details, let r denote the overall request
size. An estimated cost is computed by first normaliz-
ing r to the number of grid points, r/Itxtytz , where I
is the number of iterations performed by threads in the
tile. To account for the lower execution efficiency with
smaller tiles, a factor determined empirically as 1/(1+
256/txtytz) is used. The complete expression for the
estimated cost is σ = (r/Itxtytz)/(1 + 256/txtytz).
The tile with the lowest estimated cost is selected.

Tiles chosen using this method are often much
longer in the x direction than other dimensions, be-
cause the request size includes the effect of partially

10 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

used cache lines. If a stencil extends in all three di-
mensions and there are many grid functions, the tile
chosen will be “blocky”. If there are fewer grid func-
tions, the tile will be plate-shaped, since the request
size accounts for cache lines that survive iterations in
the axis orthogonal to the plate. The tile optimization
is performed for the tile shape, but not for the number
of iterations which so far is chosen empirically.

2.5.2. Lightweight Kernel generation
A number of techniques are employed to minimize

the size of the GPU kernels. Dynamic compilation us-
ing program parameters and tile shape, seen by the
compiler as constants, was very effective. Another par-
ticularly useful optimization given the large size of the
numerical kernels is fixed-offset loads, in which a sin-
gle base address is used for all grid functions. Nor-
mally, the compiler reserves two 32-bit registers for
the base address of each grid function, and uses two
additional registers when performing index arithmetic
since the overhead for indexing is significant. Fortu-
nately, the Fermi memory instructions have a particu-
larly large offset, at least 26 bits based on an inspection
of Fermi machine code (which is still not well docu-
mented). (An offset is a constant stored in a memory
instruction, it is added to a base address to compute the
memory access address.) With such generous offsets, it
is possible to treat all grid functions (of the same data
type) as belonging to one large array.

2.5.3. Fat Kernel detection
Some numerical kernels are extremely large, and

perform very poorly using standard techniques, pri-
marily due to very frequent register spill/reload ac-
cesses. CaKernel identifies and provides special treat-
ment for such kernels. The kernels can be automat-
ically identified using CaKernel’s integrated perfor-
mance monitoring code by examining the number of
local cache misses. (Currently, they are automatically
identified by examining factors such as the number of
grid functions.) Such fat kernels are handled using two
techniques: they are launched in small blocks of 128
threads, and source-level code restructuring techniques
are applied. Launching in small blocks relieves some
pressure on the L1 cache. (A dummy shared memory
request prevents other blocks from sharing the mul-
tiprocessor.) The source code restructuring rearranges
source lines to minimize the number of live variables;
it also assigns certain variables to shared memory.

2.5.4. Integrated performance monitoring
CaKernel provides performance monitoring using

GPU event counters, read using the NVIDIA Cupti

API. If this option is selected, a report on each kernel
is printed at the end of the run. The report shows the
standard tuning information, such as warp occupancy
and execution time, and also cache performance data.
To provide some insight for how well the code is per-
forming, the percentage of potential instruction execu-
tion and memory bandwidth used by the kernel is out-
put. For example, a 90% instruction execution poten-
tial would indicate that the kernel is close to being in-
struction bound. We plan to use these data for auto-
matic tuning, e.g. to better identify fat kernels.

2.5.5. Effectiveness of low-level optimizations
Most of the optimizations are highly effective, in-

cluding dynamic compilation and fixed-offset loads.
There are two areas where some potential has been left
unexploited: tile shape, and the handling of fat kernels.

Automatic tile size selection greatly improves per-
formance over manually chosen tile sizes, however
kernels are still running at just 20% of execution uti-
lization while exceeding 50% of available memory
bandwidth, suffering L1 cache miss ratios well above
what was expected. The primary weakness in tile selec-
tion is assuming an ordering of memory accesses that
does not match what the compiler actually generates.
(The compiler used was NVIDIA ptxas release 4.1
V0.2.1221.) For example, for a kernel with a 5× 5× 5
stencil and a 102×3×3 tile, the compiler interleaves n
accesses along the y and z axes. The cache can hold all
grid points along one axis (273 cache lines would be
needed in this example) but not along two (483 cache
lines). Several solutions have been identified, includ-
ing modifying the model to match compiler behavior,
waiting for a better compiler, restructuring the code to
obtain a better layout, or rescheduling the loads at the
object-file level.

One of the kernels performing the last step in the
time evolution has over 800 floating point instructions
in straight-line code. This executes at only 14% in-
struction utilization, suffering primarily from L1 cache
misses on register spill/reload accesses. We address
this via fixed offsets and other dynamic compilation
techniques that reduce register pressure. A combina-
tion of source-level scheduling and shared memory use
yielded from 5% to 10% better performance, and there
seems to be a large potential for further improvement.

2.6. Accelerator framework

In large, complex applications based on component
frameworks such as Cactus, GPUs and other acceler-

M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation 11

ators are only useful to those components which per-
form highly parallel arithmetic computations. As such,
it is neither necessary nor useful to port the entire
framework to run on GPUs – in fact, much of the code
in Cactus-based applications is not numerical, but pro-
vides support in the form of organizing the numerical
data.

One approach to porting a component to run on a
GPU is to identify the entry and exit points of that com-
ponent, copy all required data to the GPU beforehand,
and copy it back after the GPU computation. Unfortu-
nately, such data transfer is prohibitively slow, and the
performance of this approach is not acceptable.

Instead, we track which data (and which parts of
the data) is read and written by a particular routine,
and where this routine executes (host or GPU). Data is
copied only when necessary, and then only those por-
tions that are needed. Note that data is not only ac-
cessed for computations, but also by inter-process syn-
chronization and I/O.

The metadata available for each Cactus component
(or thorn) already contains sufficient information in
its schedule description for such tracking, and during
Chemora we refined the respective declarations to fur-
ther increase performance. This metadata needs to be
provided manually for hand-written thorns, but can be
deduced automatically e.g. by Kranc in auto-generated
thorns.

In keeping with the Cactus spirit, it is a Cactus com-
ponent (thorn Accelerator) that tracks which parts of
what grid functions are valid where, and which trig-
gers the necessary host–device copy operations that are
provided by other, architecture-specific thorns.

3. Case studies

3.1. Computing resources

We tested our framework on different computational
systems. Unfortunately, clusters available to us at the
time this paper was written were insufficient for the
purpose of challenging scaling tests.

3.1.1. Cane
Cane is a heterogeneous cluster located at the

Poznań Supercomputing and Networking Center. Al-
though it consists of 334 nodes, at the time we per-
formed the tests only 40 of them were available as the
cluster was still being set up. Each node is equipped
with two AMD Opteron™ 6234 2.7 GHz processors
(with two NUMA nodes each; 12 cores per CPU),

64 GB of main memory, and one NVIDIA M2050
GPU with 3 GB of RAM. The computational nodes
are interconnected by InfiniBand QDR network with
the fat-tree topology (32 Gbit/s bandwidth). CUDA 4.1
and gcc 4.4.5 were used for GPU and CPU code com-
pilation, respectively.

3.1.2. Datura
Datura is an CPU-only cluster at the Albert-

Einstein-Institute in Potsdam, Germany. Datura has
200 nodes, each consisting of two Intel Westmere
2.666 GHz processors with 6 cores and 24 GB of
memory. The nodes are connected via QDR InfiniBand
(40 Gbit/s bandwidth). We used the Intel compilers
version 11.1.0.72.

3.2. CFD with Chemora and Physis

We employed a simple CFD (Computational Fluid
Dynamics) benchmark application to compare the per-
formance of Chemora and Physis. This code solves the
Navier–Stokes equations; for details about the prob-
lem and its discretization see [18,47], and for its im-
plementation in Cactus and CaKernel see [7,8,44]. The
setup consists of three stencil kernels: one that explic-
itly updates velocity values, one that iteratively solves
the conservation of mass (updating velocity and pres-
sure), and one that updates the boundary conditions.
For simplicity, we ran 4 iterations of the mass conser-
vation kernel, and applied the boundary condition af-
ter each iteration. Although the CFD code was writ-
ten directly in CaKernel native language and its per-
formance was already reported along with our previ-
ous work [7,8,44], we used CaKernel’s new optimiza-
tion facilities in this work. These allowed us to obtain
improved performance compared to our previous re-
sults as well as compared to similar, publicly available
frameworks (e.g. Physis).

To obtain statistically stable performance results, as
many as 1000 iterations were executed in each run. The
CFD benchmark uses single-precision floating-point
data, which provides sufficient accuracy for this test
case. Both frameworks use the GPUs only for compu-
tation, and use CPUs only for data transfer and man-
agement.

Figure 2 compares the scalability of the frameworks
in this CFD benchmark. The problem size of the weak
scaling test for each GPU was fixed at 2563, and the
performance was evaluated using 1 to 36 GPUs with
two-dimensional domain decompositions along the y
and z directions. We present results for the best do-

12 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

Fig. 2. Weak and strong scaling test comparing Chemora and Ph-
ysis running on multiple nodes for the same CFD application.
Smaller numbers are better, and ideal scaling corresponds to a
horizontal line. Chemora achieves a higher per-GPU performance,
whereas Physis shows a higher strong scalability. Details in the
main text. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130360.)

main decompositions for each framework. The perfor-
mance of both implementations increases significantly
with increasing number of the GPU nodes. Numerous
optimizations in Chemora such as dynamic compila-
tion and auto-tuning allowed us to find the best GPU
block size for the domain size, and execute on the cor-
rect number of warps to limit the number of L1 cache
misses. As a result, for a single GPU, Chemora ob-
tained 90.5 GFlop/s, whereas Physis only obtained 43
GFlop/s. This gap may be also due to the fact that Ph-
ysis does not make any use of shared memory on the
GPUs.

Figure 2 also compares the performance of the two
frameworks in a strong scaling test. The problem size
for this test was fixed at 6563. Both implementations
scale up very well; Chemora achieved 270 GFlop/s and
1055 GFlop/s for 4 and 36 GPUs, respectively, whereas
Physis achieved 170 GFlop/s and 965 GFlop/s in the
same configurations. The parallel efficiency (when in-
creasing the number of GPUs from 4 to 36) is 43% and
63% for Chemora and Physis, respectively.

3.3. Binary black hole simulations with Chemora

We demonstrate the integration of Chemora tech-
nologies into our production-level codes by performing
a Numerical Relativity (NR) simulation. This simula-
tion of a binary black hole (BBH) merger event shows
that our GPU-accelerated main evolution code can be
seamlessly integrated into the pre-existing CPU frame-

work, and that it is not necessary to port the entire
framework to the GPU. It also demonstrates the use of
the data management aspect of Chemora, showing how
data is copied between the host and the device on de-
mand. Analysis modules running on the CPU can make
use of data generated on the GPU without significant
modification.

Our production simulations differ from this demon-
stration only in their use of adaptive mesh refinement
(AMR), which allows a much larger computational
domain for a given computational cost. This allows
the simulation of black hole binaries with larger sep-
arations, many more orbits before merger, and hence
longer waveforms when AMR is used.

The initial condition consists of two black holes on a
quasi-circular orbit about their common center of mass
(“QC-0” configuration). This is a benchmark config-
uration; in a production simulation, the black holes
would have a much larger separation. This configura-
tion performs approximately one orbit before the en-
ergy loss due to gravitational wave emission cause
the black holes to plunge together and form a single,
highly-spinning black hole.

Gravitational waves are emitted from the orbiting
and merging system. These are evaluated on a sphere
and decomposed into spherical harmonics. It is this
waveform which is used in gravitational wave detec-
tion.

We use a 3D Cartesian numerical grid xi ∈ [−6.75,
6.75]3 with 2703 evolved grid points. To ensure a bal-
anced domain decomposition we run on 27 processes,
corresponding to 903 evolved points per process. This
is the largest grid that fits in the 3 GB of GPU mem-
ory on Cane, given the large number of grid variables
required. All calculations are performed in double pre-
cision. We evolve the system using the McLachlan
code (see Section 1.1 above), using 8th order finite dif-
ferencing and a 3rd order Runge–Kutta time integrator.

Any production Cactus simulation makes use of
a large number of coupled thorns; e.g. this simula-
tion contains 42 thorns. Most of these do not need
to be aware of the GPU, CaKernel, or the Accelera-
tor infrastructure. In our case, only McLachlan and
the WeylScal4 gravitational wave extraction thorns
were running on a GPU. Additional thorns, e.g. track-
ing the location or shape of the black holes, were run
on the CPU.

We use 27 nodes of the Cane cluster (see Sec-
tion 3.1.1) with one GPU per node. We do not run any
CPU-only processes.

Figure 3 shows the numerical simulation domain.
On the x − y plane we project the Ψ4 variable which

M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation 13

Fig. 3. Visualization of a binary black hole system. (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-130360.)

represents gravitational waves. The black hole trajec-
tories are shown as black curves near the center of
the grid; they end when the black holes merge into
a single black hole located at the center. The sphere
on which the multipolar decomposition of the gravi-
tational waves is performed is also shown. In the in-
sets, we show (a) the time evolution of the (dominant)
� = 2,m = 2 mode of the gravitational radiation com-
puted on the sphere at r = 4M , and (b) the (highly dis-
torted) shape of the common apparent horizon formed
when the two individual black holes merge.

Table 1 shows a break-down of the total run time
of the BBH simulation. The routines labeled in bold
face run on the GPU. The times measured are averaged
across all processes. The Wait timer measures the time
processes wait on each other before an interprocessor
synchronization. This encapsulates the variance across
processes for the non-communicating routines.

We see that the interprocess synchronization is a sig-
nificant portion (38%) of the total run time on this clus-
ter. One reason for this is that the large number of ghost
zones (5) needed for partially-upwinded 8th order sten-
cils require transmitting a large amount of data. This
could likely be improved by using a cluster with more
than one GPU or more GPU memory per node, as this
would reduce the relative cost of inter-process commu-
nication relative to computation.

Table 1

Timer breakdown for the binary black hole simulation

Timer Percentage of total

evolution time (%)

Interprocess synchronization 39

RHS advection 13

RHS evaluations 12

Wait 11

RHS derivatives 6

Compute Psi4 5

Multipolar decomposition 3

File output 3

BH tracking 3

Time integrator data copy 2

Horizon search 2

Boundary condition 1

BH tracking (data copy) 1

Notes: Routines in bold face (48%) are executed on the GPU.

3.4. McLachlan benchmark

We used part of the binary black hole simulation
as a weak-scaling performance benchmark. We chose
a local problem size that fitted into the GPU mem-
ory of Cane (see Section 3.1.1), corresponding to 1003

evolved points plus boundary and ghost zones. We
ran the benchmark on Cane (on GPUs) and Datura
(on CPUs; see Section 3.1.2), using between 1 and 48
nodes. Figure 4 shows results comparing several con-
figurations, demonstrating good parallel scalability for
these core counts. One of Cane’s GPUs achieved about
twice the performance of one of its CPUs, counting
each NUMA node as a single CPU.

As a measurement unit we use time per grid point
update per GPU (or CPU). The best performance was
achieved for a single GPU: 25 GFlop/s, which is 5% of
the M2050 GPU’s peak performance of 515 GFlop/s.
On 40 nodes, we observed 50% scaling efficiency due
to synchronization overhead, and achieved a total per-
formance of 500 GFlop/s.

CPU performance tests were performed on both
Cane and Datura. The total performance of the paral-
lel OpenMP code, properly vectorized, was similar to
the performance of a single GPU, with similar scaling
factor.

We note that our floating point operation counts con-
sider only those operations strictly needed in a sequen-
tial physics code, and e.g. do not include index calcu-
lations or redundant computations introduced by our
parallelization.

14 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

Fig. 4. Weak-scaling test for McLachlan code performed on the Cane and Datura clusters. (n)p((m)t) stands for n processes per node using
m threads each. (no) x-split stands for (not) dividing domain along the x axis. Smaller numbers are better, and ideal weak scaling corresponds
to a horizontal line. The benchmark scales well on these platforms. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130360.)

4. Conclusion

We have presented the Chemora project, a com-
ponent-based approach to making efficient use of
current and future accelerator architectures for high-
performance scientific codes. Although the examples
we present run on the GPU and use CUDA, our work
is general and will be applied e.g. to OpenCL and other
approaches in future work. Using Chemora, a scien-
tist can describe a problem in terms of a system of
PDEs in our Equation Description Language. A mod-
ule for the Cactus framework is then generated au-
tomatically by Kranc for one or more target archi-
tectures. Kranc applies many optimizations at code-
generation time, making use of symbolic algebra, and
the resulting source code can then be compiled on a
diverse range of machines (taking advantage of the es-
tablished portability of Cactus and the availability of
CUDA as a uniform GPU programming environment).
At run-time, the CUDA code is recompiled dynami-
cally to enable a range of runtime optimizations.

We have presented two case studies. The first is
a Computational Fluid Dynamics (CFD) code, and
we demonstrated weak scaling using our infrastruc-
ture running on GPUs. We also used the Physis frame-
work for this same problem and compared the scal-
ing. Chemora has comparable or higher performance,
a result we attribute to the dynamic optimizations that
we employ. The second case study is a Numerical
Relativity simulation based on the McLachlan code,
a part of the freely available open-source (GPL) Ein-

stein Toolkit (ET). McLachlan solves a significantly
more complex set of equations, and integrates with
many other components of the ET. We performed a
simulation of a binary black hole coalescence using the
same codes and techniques as we would currently use
in production CPU simulations, with the omission of
Adaptive Mesh Refinement (AMR), which is not yet
adapted to Chemora.

We plan to implement AMR and multi-block meth-
ods next. AMR and multi-block are implemented in
Cactus in a way which is transparent to the application
programmer, hence we expect that including AMR in
Chemora will be straightforward using the Accelera-
tor architecture developed in this work (which main-
tains knowledge of which variables are valid on the
host (CPU) and which on the device (GPU)). As with
the time integration, we will implement only the basic
low-level interpolation operators required for mesh re-
finement on the GPU, and the existing AMR code Car-
pet will marshal the required operations to the device.

With AMR and/or multi-block methods, Chemora
will be an even more compelling option for implement-
ing scientific codes, and fields of science (such as Nu-
merical Relativity) requiring the solution of complex
systems of PDEs will be able to reach a new level of
performance. Should the specifics of accelerator de-
vices change in the future, the Chemora framework,
much of which is general, should be easily adaptable to
the new technology, and codes built with Chemora will
have a head start in advancing computational science
on the new platform.

M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation 15

Acknowledgements

The authors would like to thank Gabrielle Allen and
Joel E. Tohline at the CCT and Krzysztof Kurowski at
PSNC for their vision, encouragement, and continuous
support to this project.

This work was supported by the UCoMS project un-
der award number MNiSW (Polish Ministry of Sci-
ence and Higher Education) Nr 469 1 N - USA/2009 in
close collaboration with U.S. research institutions in-
volved in the US Department of Energy (DOE) funded
grant under award number DE-FG02-04ER46136 and
the Board of Regents, State of Louisiana, under con-
tract no. DOE/LEQSF(2004-07) and LEQSF(2009-
10)-ENH-TR-14. This work was also supported by
NSF award 0725070 Blue Waters, NFS awards
0905046 and 0941653 PetaCactus, NSF award
0904015 CIGR, and NSF award 1010640 NG-CHC to
Louisiana State University, and by the DFG grant SFB/
Transregio 7 “Gravitational-Wave Astronomy”.

This work was performed using computational re-
sources of XSEDE (TG-CCR110029, TG-ASC120
003), LONI (loni_cactus), LSU, and PSNC, and on the
Datura cluster at the AEI.

References

[1] M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D. Poll-
ney, E. Seidel and R. Takahashi, Gauge conditions for long-
term numerical black hole evolutions without excision, Phys.
Rev. D 67 (2003), 084023.

[2] M. Alcubierre, B. Brügmann, T. Dramlitsch, J.A. Font, P. Pa-
padopoulos, E. Seidel, N. Stergioulas and R. Takahashi, To-
wards a stable numerical evolution of strongly gravitating sys-
tems in general relativity: The conformal treatments, Phys.
Rev. D 62 (2000), 044034.

[3] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Hus-
bands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf,
S.W. Williams and K.A. Yelick, The landscape of parallel
computing research: A view from Berkeley, Technical Report
UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley, December 2006.

[4] J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz and J. van
Meter, Gravitational wave extraction from an inspiraling con-
figuration of merging black holes, Phys. Rev. Lett. 96 (2006),
111102.

[5] M.M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ra-
manujam, A. Rountev and P. Sadayappan, A compiler frame-
work for optimization of affine loop nests for GPGPUs,
in: Proceedings of the 22nd Annual International Confer-
ence on Supercomputing, ICS’08, ACM, New York, 2008,
pp. 225–234.

[6] T.W. Baumgarte and S.L. Shapiro, On the numerical inte-
gration of Einstein’s field equations, Phys. Rev. D59 (1999),
024007.

[7] M. Blazewicz, S.R. Brandt, P. Diener, D.M. Koppelman,
K. Kurowski, F. Löffler, E. Schnetter and J. Tao, A massive
data parallel computational framework on petascale/exascale
hybrid computer systems, in: International Conference on Par-
allel Computing, Ghent, Belgium, 2011.

[8] M. Blazewicz, S.R. Brandt, M. Kierzynka, K. Kurowski,
B. Ludwiczak, J. Tao and J. Weglarz, CaKernel – A par-
allel application programming framework for heterogenous
computing architectures, Scientific Programming 19(4) (2011),
185–197.

[9] S.R. Brandt and G. Allen, Piraha: A simplified grammar parser
for component little languages, in: 11th IEEE/ACM Interna-
tional Conference on Grid Computing (GRID), IEEE, 2010,
pp. 379–382.

[10] Cactus Computational Toolkit, available at: http://www.
cactuscode.org.

[11] M. Campanelli, C.O. Lousto, P. Marronetti and Y. Zlochower,
Accurate evolutions of orbiting black-hole binaries without ex-
cision, Phys. Rev. Lett. 96 (2006), 111101.

[12] Chemoracode website, http://chemoracode.org/.
[13] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,

L. Oliker, D. Patterson, J. Shalf and K. Yelick, Stencil com-
putation optimization and autotuning on state-of-the-art multi-
core architectures, in: Proc. SC2008: High Performance Com-
puting, Networking, and Storage Conference, 2008.

[14] Einstein Toolkit: Open software for relativistic astrophysics,
available at: http://einsteintoolkit.org/.

[15] Z. Fan, F. Qiu and A.E. Kaufman, Zippy: A framework for
computation and visualization on a GPU cluster, Computer
Graphics Forum 27(2) (2008), 341–350.

[16] P. Fritschel, Second generation instruments for the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO), Proceed-
ings of the Conference on Astronomical Telescopes and Instru-
mentation, Waikoloa, HI, 22–28 August, 2002.

[17] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
E. Seidel and J. Shalf, The Cactus framework and toolkit: De-
sign and applications, in: Vector and Parallel Processing –
VECPAR’2002, 5th International Conference, Lecture Notes
in Computer Science, Berlin, Springer, 2003.

[18] C.W. Hirt and B.D. Nichols, Volume of Fluid (VOF) method
for the dynamics of free boundaries, Journal of Computational
Physics 141 (1981), 304–309.

[19] L. Hochstein, J. Carver, F. Shull, S. Asgari and V. Basili, Par-
allel programmer productivity: A case study of novice paral-
lel programmers, in: Proceedings of the ACM/IEEE SC 2005
Conference Supercomputing, IEEE, 2005, pp. 35–35.

[20] Q. Hou, K. Zhou and B. Guo, Bsgp: bulk-synchronous GPU
programming, ACM Trans. Graph. 27 (2008), 19:1–19:12.

[21] S. Husa, I. Hinder and C. Lechner, Kranc: a Mathematica ap-
plication to generate numerical codes for tensorial evolution
equations, Comput. Phys. Comm. 174 (2006), 983–1004.

[22] D.A. Jacobsen, J.C. Thibault and I. Senocak, An MPI-CUDA
implementation for massively parallel incompressible flow
computations on multi-GPU clusters, American Institute of
Aeronautics and Astronautics, 2010.

[23] Kranc: Kranc assembles numerical code, available at:
http://kranccode.org/.

[24] C. Lechner, D. Alic and S. Husa, From tensor equations to nu-
merical code – Computer algebra tools for numerical relativity,
Analele Universitatii de Vest din Timisoara, Seria Matematica-
Informatica 42(3) (2004).

16 M. Blazewicz et al. / From physics model to results: An optimizing framework for cross-architecture code generation

[25] S. Lee, S.-J. Min and R. Eigenmann, Openmp to GPGPU:
a compiler framework for automatic translation and optimiza-
tion, SIGPLAN Not. 44 (2009), 101–110.

[26] M.D. Linderman, J.D. Collins, H. Wang and T.H. Meng,
Merge: a programming model for heterogeneous multi-core
systems, SIGPLAN Not. 43 (2008), 287–296.

[27] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas,
I. Hinder, B.C. Mundim, C.D. Ott, E. Schnetter, G. Allen,
M. Campanelli and P. Laguna, The Einstein toolkit: A commu-
nity computational infrastructure for relativistic astrophysics,
Class. Quantum Grav. 29(11) (2011).

[28] N. Maruyama, T. Nomura, K. Sato and S. Matsuoka, Ph-
ysis: An implicitly parallel programming model for stencil
computations on large-scale GPU-accelerated supercomputers,
in: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC’11, ACM, New York, 2011, pp. 11:1–11:12.

[29] J. Meng and K. Skadron, Performance modeling and automatic
ghost zone optimization for iterative stencil loops on GPUs,
in: Proceedings of the 23rd international conference on Super-
computing, ICS’09, ACM, New York, 2009, pp. 256–265.

[30] Mesh refinement with Carpet, available at: http://www. carpet-
code.org/.

[31] P. Micikevicius, 3D finite difference computation on GPUs us-
ing CUDA, Technical report, NVIDIA, 2009.

[32] T. Nakamura, K. Oohara and Y. Kojima, General relativistic
collapse to black holes and gravitational waves from black
holes, Prog. Theor. Phys. Suppl. 90 (1987), 1–218.

[33] NVIDIA Corporation, Tuning CUDA Applications for Fermi,
NVIDIA Corporation, 2010.

[34] NVIDIA Corporation, NVIDIA CUDA C Programming Guide,
NVIDIA Corporation, 2011.

[35] M. Parashar and J.C. Browne, Object-oriented programming
abstractions for parallel adaptive mesh-refinement, in: Parallel
Object-Oriented Methods and Applications (POOMA), Santa
Fe, NM, 1996.

[36] H.P. Pfeiffer, Numerical simulations of compact object bina-
ries, Minor corrections, including typos and grammar, 2012.

[37] D. Pollney, C. Reisswig, E. Schnetter, N. Dorband and P. Di-
ener, High accuracy binary black hole simulations with an ex-
tended wave zone, Phys. Rev. D 83 (2011), 044045.

[38] F. Pretorius, Evolution of binary black-hole spacetimes, Phys-
ical Review Letters 95(12) (2005), 121101.

[39] L. Renganarayana, M. Harthikote-matha, R. Dewri and S. Ra-
jopadhye, Towards optimal multi-level tiling for stencil com-
putations, in: 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2007.

[40] E. Schnetter, P. Diener, N. Dorband and M. Tiglio, A multi-
block infrastructure for three-dimensional time-dependent
numerical relativity, Class. Quantum Grav. 23 (2006),
S553–S578.

[41] E. Schnetter, S.H. Hawley and I. Hawke, Evolutions in 3D nu-
merical relativity using fixed mesh refinement, Class. Quantum
Grav. 21(6) (2004), 1465–1488.

[42] M. Shibata and T. Nakamura, Evolution of three-dimensional
gravitational waves: Harmonic slicing case, Phys. Rev. D52
(1995), 5428–5444.

[43] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka,
N. Maruyama, A. Nukada and S. Matsuoka, Peta-scale phase-
field simulation for dendritic solidification on the tsubame 2.0
supercomputer, in: Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, SC’11, ACM, New York, 2011, pp. 3:1–3:11.

[44] J. Tao, M. Blazewicz and S.R. Brandt, Using GPU’s to accel-
erate stencil-based computation kernels for the development of
large scale scientific applications on heterogeneous systems,
in: PPOPP, 2012, pp. 287–288.

[45] J.C. Thibaultl and I. Senocak, CUDA implementation of a
Navier–Stokes solver on Multi-GPU desktop platforms for in-
compressible flows, American Institute of Aeronautics and As-
tronautics, 2009.

[46] Top 500 supercomputer sites, available at: http://www.top500.
org/.

[47] M.D. Torrey, L.D. Cloutman, R.C. Mjolsness and C.W. Hir,
NASA-VOF2D: A computer program incompressible flows
with free surfaces, Technical report, Los Alamos National Lab-
oratory, 1985.

[48] S. Ueng, M. Lathara, S.S. Baghsorkhi and W. Hwu, Cuda-
lite: Reducing GPU programming complexity, in: Languages
and Compilers for Parallel Computing, J. Amaral, ed.,
Lecture Notes in Computer Science, Vol. 5335, Springer,
Berlin/Heidelberg, 2008, pp. 1–15.

[49] D. Unat, X. Cai and S.B. Baden, Mint: realizing cuda perfor-
mance in 3d stencil methods with annotated c. in: Proceedings
of the International Conference on Supercomputing, ICS’11,
ACM, New York, 2011, pp. 214–224.

