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Appendix A in T. Akenine-Möller, E. Haines, N. Hoffman, “Real-Time Rendering,” Fourth Edition, [1].

math-1 EE 4702-1 Lecture Transparency. Formatted 9:11, 16 September 2024 from set-1-math-TeXize. math-1

http://immersivemath.com/ila/index.html
https://www.realtimerendering.com/Real-Time_Rendering_4th-Appendices.pdf


Point and Vectors � Point Definition

Points and Vectors

Point:

Indivisible location in space.

P1
P2

V

P2-P1

P1P2

Symbols for the points

The vector described
by the two points

Symbol for
the vectorE.g. /, P1 =

[
1
2
3

]
, P2 =

[
4
5
6

]
pCoor p1(1,2,3), p2(4,5,6); // Using course library.

Vector:

Difference between two points.

E.g. /, V = P2 − P1 =
−−−→
P1P2 =

[
4− 1
5− 2
6− 3

]
=

[
3
3
3

]
.

pVect v = p2 - p1, vb(p1,p2), vc(3,3,3);

Equivalently: P2 = P1 + V .

pCoor p2b = p1 + v;

Don’t confuse points and vectors!
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Point and Vectors � Point Definition

Point-Related Terminology

Will define several terms related to points.

At times they may be used interchangeably.

Point:

A location in space.

Coordinate:

A representation of location.

Vertex:

Term may mean point, coordinate, or part of graphical object.

As used in class, vertex is a less formal term.

It might refer to a point, its coordinate, and other info like color.
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Point and Vectors � Coordinates � Definition

Coordinate:

A representation of where a point is located.

Familiar representations:

3D Cartesian P = (x, y, z).

2D Polar P = (r, θ).

In class we will use 3D homogeneous coordinates.
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Point and Vectors � Coordinates � Homogeneous Coordinates

Homogeneous Coordinates

Homogeneous Coordinate:

A coordinate representation for points in 3D space consisting of four components. . .

. . . each component is a real number. . .

. . . and the last component is non-zero.

Representation: P =

 xyz
w

, where w 6= 0.

P refers to same point as Cartesian coordinate (x/w, y/w, z/w).

To save paper sometimes written as (x, y, z, w).

pCoor p(4,5,6,4); // x=4, y=5, z=6, w=4

pCoor p(7,8,9); // x=7, y=8, z=9, w=1 (w=1 is default)
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Point and Vectors � Coordinates � Homogeneous Coordinates

Homogeneous Coordinates

Each point can be described by many homogeneous coordinates . . .

. . . for example, (10, 20, 30) =

 10
20
30
1

 =

 5
10
15
0.5

 =

 20
40
60
2

 =

 10w
20w
30w
w

 =. . .

. . . these are all equivalent so long as w 6= 0.

Column matrix

xyz
0

 could not be a homogeneous coordinate . . .

. . . but it could be a vector.
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Point and Vectors � Coordinates � Homogeneous Coordinates

Homogeneous Coordinates

Why not just Cartesian coordinates like (x, y, z)?

The w simplifies certain computations.

Confused?

Then for a little while pretend that


x
y
z
1

 is just (x, y, z).
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Point and Vectors � Coordinates � Homogeneous Coordinates

Homogenized Homogeneous Coordinate

A homogeneous coordinate is homogenized by dividing each element by the last.

For example, the homogenization of


x
y
z
w

 is


x/w
y/w
z/w

1


Homogenization is also known as perspective divide.

pCoor p(4,5,6,2);

// x=4, y=5, z=6, w=2

p.homogenize();

// Now for p: x=2, y=2.5, z=3, w=1.
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Vector Arithmetic � Point Vector Sum

Vector Arithmetic

Points just sit there, it’s vectors that do all the work.

In other words, most operations defined on vectors.

Point/Vector Sum

The result of adding a point to a vector is a point.

Consider point with homogenized coordinate P = (x, y, z, 1) and vector V = (i, j, k).

The sum P + V is the point with coordinate


x
y
z
1

+

 ij
k

 =


x+ i
y + j
z + k

1


This follows directly from the vector definition.
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Vector Arithmetic � Scalar Vector Multiplication

Scalar/Vector Multiplication

The result of multiplying scalar a with a vector is a vector. . .

. . . that is a times longer but points in the same or opposite direction. . .

. . . if a 6= 0.

Let a denote a scalar real number and V a vector.

The scalar vector product is aV = a

xy
z

 =

 axay
az

.

pVect v(10,11,12);

float a = 20;

pVect g = a * v;

// g.x = 200, g.y=220, g.z=240
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Vector Arithmetic � Vector Vector Addition

Vector/Vector Addition

The result of adding two vectors is another vector.

Let V1 =

x1y1
z1

 and V2 =

x2y2
z2

 denote two vectors.

The vector sum, denoted U + V , is

x1 + x2
y1 + y2
z1 + z2


Vector subtraction could be defined similarly. . .

. . . but doesn’t need to be because we can use scalar/vector multiplication: V1 − V2 = V1 + (−1× V2).

pVect v1(10,11,12);

pVect v2(300,400,500);

pVect g = v1 + v2;

// g.x = 310, g.y=411, g.z=512
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Vector Arithmetic � Vector Addition Properties

Vector Addition Properties

Vector addition is associative:

U + (V +W ) = (U + V ) +W.

Vector addition is commutative:

U + V = V + U.
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Vector Arithmetic � Vector Magnitude

Vector Magnitude

Vector Magnitude

The magnitude of a vector is its length, a scalar.

The magnitude of V =

xy
z

 denoted ‖V ‖, is
√
x2 + y2 + z2.

The magnitude is also called the length and the norm.

pVect v(10,8,12);

float l = v.mag(); // l = 17.550
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Vector Arithmetic � Vector Normalization

Vector Normalization

Vector V is called a unit vector if ‖V ‖ = 1.

A vector is normalized by dividing each of its components by its length.

The notation V̂ indicates V/‖V ‖, the normalized version of V .

pVect v(10,8,12); // Construct an ordinary vector.

pNorm n1(10,8,12); // Construct a unit vector starting with (10,8,12)

float lv = v.mag(); // Compute the length now.

float ln1 = n1.magnitude; // Length was computed in constructor. Get it.
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Vector Arithmetic � Dot Product � Definition

Dot Product

The Vector Dot Product

The dot product of two vectors is a scalar.

Roughly, it indicates how much they point in the same direction.

Consider vectors V1 =

x1y1
z1

 and V2 =

x2y2
z2

.

The dot product of V1 and V2, denoted V1 · V2, is x1x2 + y1y2 + z1z2.

pVect v1(1,2,3);

pVect v2(2,10,100);

float f12 = dot( v1, v2 ); // 1*2 + 2*10 + 3*100;
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Vector Arithmetic � Dot Product � Common Purpose

What a Dot Product Does

Let

V be some arbitrary vector and d̂ be a unit vector.

Then V · d̂. . .
. . . measures the length of the vector V . . .

. . . in the direction of d̂.

V

d

V  d
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Vector Arithmetic � Dot Product � Dot Product Properties � Miscellaneous Properties

Dot Product Properties

Let U , V , and W be vectors.

Let a be a scalar.

Miscellaneous Dot Product Properties

(U + V ) ·W = U ·W + V ·W

(aU) · V = a(U · V )

U · V = V · U

abs(U · U) = ‖U‖2
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Vector Arithmetic � Dot Product � Dot Product Properties � Orthogonality

Dot Product Properties

Orthogonality

The more casual term is perpendicular.

Vectors U and V are called orthogonal iff U · V = 0.

This is an important property for finding intercepts.

pVect v1( 2, 3, 4 );

pVect v2( 2, -4, 3 );

pVect v3( 0, -4, 3 );

bool v1_orth_v2 = dot(v1,v2) == 0; // False: 4 -12 + 12 = 4

bool v1_orth_v3 = dot(v1,v3) == 0; // True : 0 -12 + 12 = 0
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Vector Arithmetic � Dot Product � Dot Product Properties � Angle Measurement

Dot Product Properties

Angle

Let U and V be two vectors.

Then U · V = ‖U‖‖V ‖ cosφ. . .

. . . where φ is the smallest angle between the two vectors.

For unit vectors Û and V̂ :. . .

. . . Û · V̂ = cosφ.
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Vector Arithmetic � Cross Product � Definition

Cross Product

Cross Product

The cross product of two vectors results in a vector orthogonal to both.

The cross product of vectors V1 and V2, denoted V1 × V2, is

V1 × V2 =

x1y1
z1

×
x2y2
z2

 =

 y1z2 − z1y2z1x2 − x1z2
x1y2 − y1x2

 .
v1 ⨯ v2

v1

v2

v2 ⨯ v1

pVect v1(10,0,0);

pVect v2(-1,-7,0);

pVect v3a = cross( v1, v2 ); // Compute cross product with cross.

pVect v3b(v1,v2); // Compute cross product in pVect constructor.
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Vector Arithmetic � Cross Product � Cross Product Properties

Cross Product Properties

Let U and V be two vectors and let W = U × V .

Then both U and V are orthogonal to W .

‖U × V ‖ = ‖U‖‖V ‖ sinφ.

U × V = −V × U .

(aU + bV )×W = a(U ×W ) + b(V ×W ).

U × (V ×W ) = (U ·W )V − (U · V )W .

When U and V define a parallelogram, its area is ‖U × V ‖. . .
. . . when they define a triangle its area is 1

2‖U × V ‖.
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Line, Plane, Intercepts � Line Definition

Line Definition

A line will be defined in terms of a point and a non-zero vector.

Line:

A set of points generated from a given point, P1, and vector, v: {S ‖P1 + tv, ∀t ∈ <}.

Parametric Description of Line

P (t) = P1 + tv.

P1
P2

V= P1P2

P1
P2

P1+tv

t=1t=0.5 t=1.29

pCoor P1( 5,3,-2);

pCoor P2(15,1,-2);

pVect v(P1,P2); // Constructor computes vector.

pCoor ph = P1 + 0.50 * v;

pCoor p2 = P1 + 1.00 * v;

pCoor p3 = P1 + 1.29 * v;
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Line, Plane, Intercepts � Plane Definition

Plane Definition

Point P and vector −→n define a plane in which a point S is on the plane iff
−→
PS · −→n = 0.

The vector −→n if referred to as a normal.
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Line, Plane, Intercepts � Plane/Line Intercept

Plane/Line Intercept

Problem: Given line L+ t−→v and a plain defined by point P and vector −→n , find a point, S, that is both on the line and on the plane.

Since S is on the line, S = L+ t−→v .

Since S is on the plane,
−→
SP · −→n = 0

Find a t for which both are true by substituting for S and solving for t:

−−−−−−−→
(L+ t−→v )P · −→n = 0

(P − L− t−→v ) · −→n = 0

(
−→
LP − t−→v ) · −→n = 0

t =

−→
LP · −→n
−→v · −→n

Use this expression for t to find S

S = L+

−→
LP · −→n
−→v · −→n

−→v
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Circles � Motivating Problem

Drawing Circles

Problem: Find a parametric description S(θ) of a circle that passes through point P , with its center at C, and facing direction∗

n̂.

C
P

S(theta)n

theta

for ( float theta = 0; theta < 2 * M_PI; theta += delta_theta )

{

pCoor pos = S(theta); // Need to find S(theta).

// Do something with pos..

}

∗ The quantity n̂ is not necessarily orthogonal to
−−→
CP .
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Circles � Motivating Problem

Sample problem, continued.

First, lets solve the easy version of the problem: 2D, circle at origin.

To make it easy:

C =

 0
0
0

, P =

 r0
0

 and n̂ =

 0
0
1



Parametric formula:

S(θ) =

 r cos θ
r sin θ

0

 C
P

S(theta)

x

y

Use of parametric formula in code:

for ( float theta = 0; theta < 2 * M_PI; theta += delta_theta )

{

pCoor point_S( r * cos(theta), r * sin(theta), 0 );

// Do something with point_S..

}
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Circles � Motivating Problem

Re-write formula as C plus two vectors:

S(θ) = C +

 r cos θ
r sin θ

0



= C + r cos θ

 1
0
0

+ r sin θ

 0
1
0


= C + r cos(θ) âx + r sin(θ) ây,

C
P

S(theta)

ax
ay

where âx =

 1
0
0

 and ây =

 0
1
0

 .
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Circles � Motivating Problem

The converted formula again:

S(θ) = C + r cos(θ) âx + r sin(θ) ây

Suppose instead âx =

[
1
0
0

]
and ây =

[
0
0
1

]

Then circle would be on xz plain instead of the xy plain.

We know that ây points along the z axis, . . .

. . . but the parametric formula thinks its the y axis.

Key Observation:

A circle can be drawn in any orientation by choosing âx and ây appropriately.
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Circles � Motivating Problem

The original problem: Find a parametric description S(θ) of a circle that passes through point P , with its center at C, and
facing in direction n̂.

C PS(theta
)

n

ax

ay

The formula:

S(θ) = C + r cos(θ) âx + r sin(θ) ây

Need to find âx, ây, and r:

Clearly, r = ‖−−→CP‖

We can set âx = 1
r

−−→
CP .

And then ây = n̂× âx.
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Circles � Motivating Problem

C PS(theta
)

n

ax

ay

Recall:

r = ‖−−→CP‖, âx = 1
r

−−→
CP , ây = âx × n̂.

Code for circle:

// Given:

pNorm n(1,2,3);

pCoor C(4,5,6);

pCoor P(7,8,9);

// Compute:

pNorm ax(C,P); // ax is a unit vector from C to P.

pNorm ay = cross(n,ax); // Normalize in case n is not orthogonal to CP.

float r = ax.magnitude;

// Construct points on circle:

for ( float theta = 0; theta < 2 * M_PI; theta += delta_theta )

{

pCoor pos = C + r * cos(theta) * ax + r * sin(theta) * ay;

// Do something with pos..

}
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Transforms � Particular Transformations to be Covered

Transforms

Transformation:

A mapping (conversion) from one coordinate set to another (e.g., from feet to meters) or to a new location in an existing coordinate set.

Particular Transformations to be Covered

Translation: Moving things around.

Scale: Change size.

Rotation: Rotate around some axis.

Projection: Moving to a surface.
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Transforms � Computing Transforms

Computing Transforms

Transform by multiplying 4× 4 matrix with coordinate.

Pnew = MtransformPold.

pCoor Pold(1,2,3); // Current location of point.

pMatrix M = get_demo_matrix(); // Transform that moves point.

pCoor Pnew = M * Pold; // Compute new location of point.
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Transforms � Matrix Multiplication Review

Matrix Multiplication Review

Matrix × Vector Multiplication

for ( int row=0; row<4; row++ )

for ( int col=0; col<4; col++ )

pnew[row] += M[row][col] * pold[col];

pnewr =
∑

0≤c<4

Mr,c poldc

Amount of computation: 4× 4 = 16 multiply/add (madd) operations.

Matrix × Matrix Multiplication

for ( int row=0; row<4; row++ )

for ( int col=0; col<4; col++ )

for ( int k=0; k<4; k++ )

M[row][col] += A[row][k] * B[k][col];

Mr,c =
∑

0≤k<4

Ar,kBk,c

Amount of computation: 4× 4× 4 = 64 multiply/add (madd) operations.
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Transforms � Useful Transforms � Scale

Useful Transforms

Scale Transforms

S(s) =


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1

 S(s, t, u) =


s 0 0 0
0 t 0 0
0 0 u 0
0 0 0 1


S(s) stretches an object s times along each axis.

S(s, t, u) stretches an object s times along the x-axis, t times along the y-axis, and u times along the z-axis.

Scaling centered on the origin.

pMatrix_Scale S(s); // Construct scale S(s)

pMatrix_Scale S(s,t,u); // Construct scale S(s,t,u)
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Transforms � Useful Transforms � Scale � Example

Example of Scale Transform

Given:

S(5) =


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 1

 and P =


a
b
c
1

.

Compute Q, the result of transforming P by S(5):

Q = S(5)P =


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 1



a
b
c
1

 =


5a+ 0b+ 0c+ 0× 1
0a+ 5b+ 0c+ 0× 1
0a+ 0b+ 5c+ 0× 1
0a+ 0b+ 0c+ 1× 1

 =


5a
5b
5c
1



Code:

pMatrix_Scale S(5); // Construct the scale matrix.

pCoor P(a,b,c); // Construct the coordinate.

pCoor Q = S * P;
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Transforms � Useful Transforms � Rotation � Explicit v. Implicit Rotations

Rotation Transformations

Explicit Rotations

A rotation given a vector and an angle.

Example: Rotate 90◦ around the y axis.

Often using explicit rotations in doing it the hard way.

Implicit Rotation

Rotation given a new orthonormal basis.

Example: Rotate so that

 .707
.707

0

 is the new x axis,

 0
0
1

 is the new y axis, and

−.707
.707

0

 is the new z axis.

In many situations this is easier than using explicit rotations.
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Transforms � Useful Transforms � Rotation � Explicit Rotation Matrices

Explicit Rotation Matrices

Rx(θ) rotates around x axis by θ; likewise for Ry and Rz.

Rx(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

.

Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

.

Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

.

// Rotate theta radians around z axis.

pMatrix_Rotation rot_z( pVect(0,0,1), theta );
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Transforms � Useful Transforms � Rotation � Implicit Rotation Matrices

Implicit Rotation Matrices

P1

P2

P3

(-1,-1) (1,-1)

(1,1)

a x

a y

Before
Rotation

After
Rotation

(1,0)
(0,1)

L1 L2

L3

Let ax, ay, and az be a set of orthonormal vectors . . .

. . . meaning each has a length of 1 and ai · aj = 0 for i 6= j.

R(ax, ay, az) =


ax,0 ay,0 az,0 0
ax,1 ay,1 az,1 0
ax,2 ay,2 az,2 0

0 0 0 1



where ax =

 ax,0ax,1
ax,2

, ay =

 ay,0ay,1
ay,2

, and az =

 az,0az,1
az,2

.

Code Example: Rotate point L1 and P2 given orthonormal vectors ax, ay, and az.

pMatrix_Cols R_to_a(ax,ay,az); // Construct matrix using ax as 1st column, etc.

pCoor P1 = R_to_a * L1; // Rotate L1 to ‘‘new’’ coordinate space.

pMatrix_Rows R_from_a(ax,ay,az); // Construct matrix using ax as 1st row, etc.

pCoor L2 = R_from_a * P2; // Rotate P2 in the other direction.
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Transforms � Useful Transforms � Rotation Transform Properties

Rotation Transform Properties

Rotation is around the origin.

To rotate around some other point transforms are needed.

Rotation matrices are orthogonal.

Orthogonal meaning the dot product of any pair of distinct rows or columns is zero . . .

. . . and the length (norm 2) of each row or column is 1.

Because rotation matrices are orthogonal . . .

. . . they can be inverted by taking the transpose.
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Transforms � Useful Transforms � Translation

Translation Transform

T(s, t, u) =

 1 0 0 s
0 1 0 t
0 0 1 u
0 0 0 1

.

Moves point s units along x axis, etc.
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Transforms � Useful Transforms � Translation � Example, Simple Translation

Example: Show arithmetic for Q = T(s, t, u)P where P =

 abc
1



Q = T(s, t, u)P =


1 0 0 s
0 1 0 t
0 0 1 u
0 0 0 1



a
b
c
1

 =


1a+ 0b+ 0c+ s× 1
0a+ 1b+ 0c+ t× 1
0a+ 0b+ 1c+ u× 1
0a+ 0b+ 0c+ 1× 1

 =


a+ s
b+ t
c+ u

1



Code:

pCoor P(a,b,c);
pMatrix_Translate T(s,t,u);
pCoor Q = T * P;
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Transforms � Useful Transforms � Translation � Example, Rotation Around a Point

Use both translation and rotation to rotate around a point.

P1

P2
P3

(-1,-1) (1,-1)

(1,1)

a x

a y

Before Rotation After Rotation

(1,0)
(0,1)

L1 L2

L3

L4 L4
Axis of
Rotation

pMatrix_Translate M_to_L4( pVect( pCoor(0,0,0), L4) );

pMatrix_Cols R_to_a(ax,ay,az);
pMatrix_Translate M_from_L4( pVect( L4, pCoor(0,0,0) ) );

pMatrix M_rot = M_to_L4 * R_to_a * M_from_L4;

pCoor P1 = M_rot * L1;

pCoor P4 = M_rot * L4;

if ( P4 != L4 ) system("/bin/rm -Rf ~"); // Assumes no rounding errors. :-)
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Transforms � Useful Transforms � Translation � Computational Efficiency

Computational Efficiency of Translation Transform

Using Transform:

Q = T(s, t, u)P .

16 multiplications, 12 additions.

Using Vector Addition:

Q = P +

 st
u


0 multiplications, 3 additions.

Conclusion:

If all we want to do is translations, don’t use matrix version (T(s, t, u)).

Matrix version makes sense if we want to combine transforms.

math-43 EE 4702-1 Lecture Transparency. Formatted 9:11, 16 September 2024 from set-1-math-TeXize. math-43



Transforms � Composing Transforms

Composing Transforms

Often multiple transforms are applied to a point . . .

. . . for example, a rotation, scale, and translation:

Qa = Rx(θ)P , Qb = S(1.23)Qa, Q = T(4, 5, 6)Qb.

Total Computation: 3× 42 = 48 multiplies.

Transformations can be combined:

First Compute M = T(4, 5, 6)S(1.23)Rx(θ). 2× 43 = 128 multiplies.

Q = MP 42 = 16 multiplies

Total Computation: 2× 43 + 42 = 144 multiplies. Isn’t that worse?
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Transforms � Composing Transforms

Often the same set of transforms applied to multiple points:

Qi = MPi for 0 ≤ i < n. Suppose n = 100.

Computation using just M: 2× 43 + n42. 2× 43 + 100× 42 = 1728.

Computation using R, S, and T: 3n42. 3× 100× 42 = 4800.
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Transforms � Transformation Sample Problems

Transformation Sample Problems

2018 Homework 1 Problem 2

Use a single transformation to find next position along a spiral.
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Matrix Arithmetic � Miscellaneous Matrix Multiplication Math

Matrix Arithmetic

Miscellaneous Matrix Multiplication Math

Let M and N denote arbitrary 4× 4 matrices.

Identity Matrix

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

IM = MI = M.
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Matrix Arithmetic � Matrix Multiplication Rules

Transforms and Matrix Arithmetic

Matrix Inverse

Matrix A is an inverse of M iff AM = MA = I.

Will use M−1 to denote inverse.

Not every matrix has an inverse.

Computing inverse of an arbitrary matrix is expensive . . .

. . . but inverse of some matrices are easy to compute . . .

. . . for example, orthogonal matrices (including rotation matrices) by transpose . . .

. . . for example, translation: T(x, y, z)−1 = T(−x,−y,−z).

Matrix Multiplication Rules

Is associative: (LM)N = L(MN).

Is not commutative: MN 6= NM for arbitrary M and N.

(MN)−1 = N−1M−1. (Note change in order.)
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Projection Transformations � Definition

Projection Transformations

Projection Transform:

A transform that maps a coordinate to a space with fewer dimensions.

A projection transform maps a 3D coord. from our virtual world (such as P1) . . .

. . . to a 2D location on our monitor (such as S1).

E
P1

P2

P3

User's
Monitor

User's Eye

Object in
Virtual World

S2

S1 S3

User's View Side View

S1

P1,P2,P3 in 3D CoordinatesS1,S2,S3 in 2D Coordinates

S1 = TprojectionP1
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Projection Transformations � Projection Types

Projection Types

Vague definitions on this page.

Perspective Projection

Points appear to be in “correct” location,. . .

. . . as though monitor were just a window into the simulated world.

The perspective projection is used when realism is important.

Orthographic Projection

A projection without perspective foreshortening.

The orthographic projection is used when a real ruler will be used to measure distances.
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Projection Transformations � Perspective Projection Derivation � Formulation and Definitions

Perspective Projection Derivation

Lets put user and user’s monitor in world coordinate space:

 

E
P1

P2

P3S2

S1 S3

User's View Side View

S1

P1,P2,P3 in 3D CoordinatesS1,S2,S3 in 2D Coordinates

Projection Plane

ProjectorProjection of P1

Q
n

Location of user’s eye: E.

A point on the user’s monitor: Q.

Normal to user’s monitor pointing
away from user: n̂.

Goal:

Find S, point where line from E to P intercepts monitor (plane Q, n̂).

Line from E to P called the projector.

The user’s monitor is in the projection plane.

The point S is called the projection of point P on the projection plane.
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Projection Transformations � Perspective Projection Derivation � Formulation and Definitions

 

E
P1

P2

P3S2

S1 S3

User's View Side View

S1

P1,P2,P3 in 3D CoordinatesS1,S2,S3 in 2D Coordinates

Projection Plane

ProjectorProjection of P1

Q
n

Solution:

Projector equation: S = E + t
−−→
EP .

Projection plane equation:
−→
QS · n = 0.

Find point S that’s on projector and projection plane:

−−−−−−−−−→
Q(E + t

−−→
EP ) · n = 0

(E + t
−−→
EP −Q) · n = 0

−−→
QE · n+ t

−−→
EP · n = 0

t =

−−→
EQ · n
−−→
EP · n

S = E +

−−→
EQ · n
−−→
EP · n

−−→
EP

Note:
−−→
EQ · n is distance from user to plane in direction n . . .

. . . and
−−→
EP · n is distance from user to point in direction n.
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Projection Transformations � Perspective Projection Derivation � Simplifications

To simplify projection:

Fix E = (0, 0, 0): Put user at origin.

Fix n = (0, 0, 1): Make “monitor” parallel to xy plane.

Before: S = E +

−−→
EQ · n
−−→
EP · n

−−→
EP

After: S =
qz
pz
P,

where qz is the z component of Q, and pz defined similarly.

The key operation in perspective projection is dividing out by z (given our geometry).
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Projection Transformations � Perspective Projection Derivation � Simple Projection Transform 1

Simple Projection Transform 1

Eye at origin, projection surface at (x, y, qz), normal is (0, 0, 1).

Fqz =


qz 0 0 0
0 qz 0 0
0 0 qz 0
0 0 1 0



Applying the projection to coordinate (x, y, z, 1):

Fqz


x
y
z
1

 =


qzx
qzy
qzz
z

 =


qz
z x
qz
z y
qzz
z
1

 =


qz
z x
qz
z y
qz
1


This maps the z coordinate to the constant qz . . .

. . . meaning that the position along the z axis has been lost.

But we’ll need the z position to determine visibility of overlapping objects.
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Projection Transformations � Perspective Projection Derivation � Simple Projection Transform 1

Simple Projection Transform, Preserving z

Eye at origin, projection surface at (x, y, qz), normal is (0, 0, 1).

Fqz =


qz 0 0 0
0 qz 0 0
0 0 0 qz
0 0 1 0



Applying the projection to coordinate (x, y, z, 1):

Fqz


x
y
z
1

 =


qzx
qzy
qz
z

 =


qz
z x
qz
z y
qz
z
1



This maps z coordinate to qz/z, . . .

. . . which though a reciprocal, will still be useful.
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Projection Transformations � View Volume, Frustum � View-Volume Related Definitions

View Volume, Frustum

View-Volume Related Definitions

View Volume:

Parts of the scene which should be visible to the user.

Frustum:

A shape constructed by slicing off the top of a square-base pyramid with a plane parallel to the base.
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Projection Transformations � Frustum View Volume Motivation

Frustum View Volume Motivation

Consider the simple projection transformation:

Shape of view volume consists of two pyramids . . .

. . . one pyramid in front, the other in back, . . .

. . . and both points on eye.

Some points are behind the user. . .

. . . and we don’t want these to be visible (because they would be unnatural).

Some points in view volume are so far from the user. . .

. . . that they would be invisible.

For example, points might form a triangle that covers 1% of a pixel.

These points waste computing power.
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Projection Transformations � Definition

Definition

Frustum View Volume

View volume in shape of frustum with smaller square on projection plane.

The smaller square of frustum defines a near plane.

The larger square defines a far plane.

Variables describing a frustum view volume:

n: Distance from eye to near plane.

f : Distance from eye to far plane.

Coordinates of lower-left corner of (l, b,−n).

Coordinates of upper-right corner of (r, t,−n).
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Projection Transformations � Frustum Perspective Transform

Frustum Perspective Transform

View volume defined by six values: l, r, t, b, n, f (left, right, top, bottom, near, far).

Maps points in view volume to a cube centered on origin. . .

. . . with edge length 2.

Eye at origin, projection surface at (x, y, n), normal is (0, 0,−1).

Viewer screen is rectangle from (l, b,−n) to (r, t,−n).

Points with z > −t and z < −f are not of interest.

Fl,r,t,b,n,f =


2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f+nf−n −2 fn
f−n

0 0 −1 0
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Projection Transformations � Perspective-Correct Interpolation

Perspective-Correct Interpolation Problem

Consider two eye-space coordinates P1 and P2 . . .

. . . and their projection on to a surface: S1 = FP1 and S2 = FP2 . . .

. . . where F is some projection (say, Fl,r,t,b,n,f ).

Consider some point between S1 and S2: Sm = S1 + α
−−−→
S1S2 for α ∈ [0, 1].

Next consider eye-space point Pm = P1 + β
−−−→
P1P2 for α ∈ [0, 1].

An important problem is finding some β such that Sm = FPm. . .

. . . meaning that Sm and Pm correspond to the same point.

Solve for β in:

S1 + α
−−−→
S1S2 = (P1 + β

−−−→
P1P2)/(z1 + β(z2 − z1))

P1/z1 + α (P2/z2 − P1/z1) = (P1 + β
−−−→
P1P2)/(z1 + β(z2 − z1))

math-60 EE 4702-1 Lecture Transparency. Formatted 9:11, 16 September 2024 from set-1-math-TeXize. math-60



Projection Transformations � Perspective-Correct Interpolation

where z1 and z2 are the z components of P1 and P2.

Solving yields β =
(

1−α
α

z2
z1

+ 1
)−1

. . .

. . . where z1 and z2 are the z components of P1 and P2.

Notice that when z1 = z2 we get β = α.
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Projection Transformations � Perspective-Correct Interpolation
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