LSUEE 4702-1 Note Set: Vulkan and the Course Library
Formatted 13:49, 5 December 2023 David M. Koppelman

Intfroduction

This note set provides some background on Vulkan and describes how to use the course library for GPU
Programming at LSU. As of this writing, this set includes a brief description of Vulkan buffers and the
course classes for working with them. That is followed by a description of Vulkan pipelines and the course
library VPipeline object.

Rendering Pipeline

Generally speaking a rendering pipeline is a system consisting of a sequence of stages that process pipeline
inputs arriving at the first stage and typically result in the writing of a frame buffer with an image cor-
responding to the inputs. Vulkan and OpenGL both provide APIs that allow CPU code to prepare and
use rendering pipelines. The discussion here is of Vulkan and OpenGL pipelines intended for rasterization.
(Both Vulkan and OpenGL also support ray tracing and compute pipelines.) Vulkan and OpenGL rendering
pipelines are in some ways very similar, though the mechanisms to set them up are very different.

For the discussion below, suppose that one needs to render a scene consisting of triangles, and that the
coordinates of the vertices of those triangles have been placed into an array. In some cases other arrays
are provided that hold triangle vertex colors and surface normals. Here the term vertex will refer to all the
attributes associated with a triangle vertex, in this example its coordinate, color, and surface normal. For a
scene consisting of T' triangles the array might consist of 37 vertices.

Programmable Stages and Shaders

A shader is a programmable stage of a rendering pipeline, the term shader can also refer to the shader
program associated with the shader. Vulkan and OpenGL define several types of shaders. In fact there is no
such thing as a generic shader. A simple rendering pipeline might have just a vertex shader and a fragment
shader plus fixed-function stages. In this course we will often also consider geometry shaders in rendering
pipelines. Compute pipelines have compute shaders, and ray tracing pipelines have their own set of shaders.

In OpenGL, shader programs are written in OpenGL Shading Language (GLSL), a C-like language.
Though some aspects of GLSL will be covered in this course, students are expected to read the GLSL 4.6
specification for additional information. In Vulkan, shader programs are written in SPIR-V, which is more
like a compiler intermediate language (which itself resembles in some ways an assembly language). There
are compilers that compile GLSL to SPIR-V, and that is what will be used in this course.

When a pipeline is created one specifies which programmable stages to include, and a shader program
for each programmable stage. The mechanisms for creating a pipeline will be described elsewhere. Here the
discussion will be focused on writing the shader programs themselves.

A shader is stage of a pipeline, and a defining characteristic of a pipeline is that data passes through
the pipeline’s stages in order. The first stage of a rendering pipeline is typically a vertex shader. A vertex
shader reads one input vertex, does some computation, and then writes the result, which is also called a
vertex (though it can contain different data). The input vertex consists of the attributes sent by the CPU,
for the example above that would include a coordinate, color, and surface normal. The output vertex may
contain different data. Each shader must define the format of its input data and output data, and the output
data from one shader must match the input data expected by the next shader in the pipeline (if any) and
the next fixed function stage (if any).

For further discussion of rendering pipeline see the Course Library VPipeline Object section.

https://www.ece.lsu.edu/koppel/gpup/

Vulkan Buffers

In Vulkan, buffer refers to a piece of memory, perhaps not yet allocated, and information about that memory.
Almost all data provided to Vulkan or retrieved from Vulkan is read or written from buffers. For example,
one buffer might store the location of light sources needed by a rendering pipeline and another buffer might
hold the vertex coordinates used as the inputs to the rendering pipeline. In typical use these buffers might
be written on the CPU, moved to the GPU, and then used. A buffer can also be written on the GPU then
moved to the CPU and read by CPU code, or a buffer can be written by one piece of GPU code (say, a
compute shader), and read by another.

As mental scaffolding, one might think of a buffer as a dynamically allocated array of one or more
elements. Like a dynamically allocated array, one needs to allocate a buffer before using it, and one should
free it when done. But unlike storage in most languages, Vulkan requires that the intended usage of a buffer
be specified in advance, and that the size of a buffer cannot change. Those used to languages with managed
memory and lax rules, such as scripting languages like Python, might feel that Vulkan’s requirements for
creating and managing a buffer are absurdly complicated and place an undo burden on the programmer.

A Vulkan buffer has the following major life events:
o Creation
Done once. Note: memory allocation is done after creation in a separate step.

o Bind buffer to device memory.
Done once. This associates the buffer with device memory. The device memory must have already been
allocated.

o Map to CPU memory.
This is done to read or write buffer from CPU.

o Bind to a pipeline.
When a buffer is bound to a pipeline its contents can be run by the pipeline’s shaders. A buffer can be
bound as a uniform or as a storage buffer.

o Destroy
Done once, of course.

The steps of buffer creation and binding demand a substantial amount of code. No assignment in this
course will require understanding and modifying this code, instead course-specific VBuffer classes will be
used. Those who are curious about Vulkan buffer creation without the VBuffer classes can look at the
07_InitUniformBuffer sample in the Vulkan-Hpp package. The code for the VBuffer classes in the course
libraries can be found in gp/include/vutil-buffer.h.

Overview of Course Library Buffer Classes

The course library has several classes for managing Vulkan buffers. These classes take care of allocating
and binding memory, and the details of reading and writing the buffer contents from the CPU. Class
VBufferV<T> manages a buffer that can hold a single value of type T and has CPU storage for T, making
it easier to read and write the value from the CPU. Class VBufferVV<T> manages storage for an array of
elements of type T. These can be conveniently written or read from the CPUas though it were a C++ std
vector. Class VBuffer<T> manages an array of elements of type T but without managing the CPU storage.

Declaration Example
Here are some examples of how to declare the various buffers.

VBufferV<float> buf_f; // Just one float.
struct My_Struct { int a,b,c,pad4; vecd v; pCoor p[5]; };
VBufferV<My_Struct> buf_ms;
VBufferVV<float> buf_af; // An array of floats, with convenient CPU access.
VBuffer<float> buf_rf; // An array of floats.
VBuffer<pCoor> buf_rc; // An array of pCoor. (Accessed as vec4 in GLSL.)

These can be declared to hold any type, but one should avoid using structures for the array classes
VBufferVV<T> and VBuffer<T> when being used for storage buffers, because structure access in storage
buffers is inefficient.

Initialization and Usage

When a Vulkan buffer is initialized one must specify its intended usage or usages (how it will be used). It
is possible to specify more than one usage, perhaps even all possible usages, but one should assume that
execution will be more efficient if one only specifies the usages that are needed. Here are the common usages,
shown using the Vulkan enumeration constants that signify them:

eUniformBuffer: The buffer will be used to hold uniforms in a pipeline. The shader code will have a
corresponding layout (binding = X) uniform FOO declaration.

eStorageBuffer: The buffer will be used to hold storage buffer for a pipeline. layout (binding = X
) buffer FOO {...}; declaration.

eVertexBuffer: The buffer will be used to hold vertex shader inputs. (This won’t be needed when
using the course library since VVertex_Buffer_Set provides those buffers.)

eIndexBuffer: The buffer will be used to hold vertex shader input indices. This is needed for indexed
draws.

eRayTracingNV: The buffer will be used to hold acceleration structures needed for ray tracing. Such
buffers are managed by VRaytrace and should not need to be explicitly declared by user code.

The enumeration constants above can be ORed together. See the example below. Initialization of all
classes is done using the init member function. The first argument is always vh.qgs, something like a
context, and the second argument is a bit vector of usage constants (or just one constant).

buf_f.init(vh.qgs, vk::BufferUsageFlagBits::eUniformBuffer);
buf_mf.init(vh.qs, vk::BufferUsageFlagBits::eUniformBuffer);

// An array of floats, with convenient CPU access.
buf_af.init(vh.qs, vk::BufferUsageFlagBits::eStorageBuffer);

// Allocate 100 elements.
buf_rf.init(vh.qs, vk::BufferUsageFlagBits::eStorageBuffer, 100);

VBufferV Example

As an example of how a VBufferV might be used, consider an application that would like to provide a small
set of front and back colors for shader code to use. On the CPU those colors are kept in the following
structure:

constexpr int ncolors = 10;
struct HWO3_Colors {
pColor front[ncolors], back[ncolors];
};
A VBufferV object to hold the colors is d

Course Library VPipeline Object

The course library VPipeline class is used to prepare and use Vulkan rasterization pipeline. A VPipeline
object is created from shader code, and also a specification of what the shader code will read and write, plus
details on what the fixed-function hardware needs to do. That’s what’s needed to create the pipeline. To
use it one binds the pipeline and its resources to what’s called the graphics pipeline bind point, and then
executes one or more draw commands. The VPipeline Simple Example section further below shows how all
of this works.

Those reading this should understand the general concept of a rendering pipeline and the role of the
rendering pipeline stages defined by Vulkan (and OpenGL), especially the vertex shader and fragment shader.
Readers should also be able to write at least simple shaders in OpenGL Shading Language, and understand
the difference between uniform variables and vertex shader inputs.

Rendering Pipeline Review

Recall that when a vertex shader is invoked (something like a procedure call) it reads one vertex (the input),
which can consist of zero [sic] or more attributes, does some computation, and then writes one vertex,
consisting of zero or more attributes (not necessarily the same as the input attributes). A vertex shader is
invoked for each input vertex sent from the CPU (host).

The vertex shader can read the input attributes, and can also read uniform variables and storage buffers.
The total size of uniform variables is limited, and it’s a good idea to keep the size below 2 kiB. Storage buffers
can be much larger.

The outputs of the vertex shader are assembled into primitives and used as input to the geometry shader
if present, or the rasterizer otherwise. The type of primitive (triangle, line, point, etc) and how vertices are
grouped is determined by the primitive topology that was set for the pipeline on the CPU. A geometry
shader writes zero or more (but not too many) output primitives. The type of output primitive is specified
in the shader code.

The fixed function rasterizer operates on the primitives emitted by the geometry shader, or if there is
no geometry shader, the primitives assembled from the output of the vertex shader. For each primitive, the
rasterizer determines which pixels it covers. For each pixel, a set of interpolated attributes is computed,
called a fragment. The kind of attribute interpolation is determined by how fragment shader inputs are
declared. By default, integer attributes are not interpolated, they are set to the value of the provoking
vertex, which is usually the last vertex in the primitive. Other attributes are interpolated based on their
position in eye space, by default. (For example, if the vertices have color attributes, red, green, and blue,
and a fragment is in the middle of the triangle it will be white, if it is on the edge between the red and
blue vertex it will be purple.) To reduce the amount of computation attributes can be interpolated by their
position in clip space. The fragment shader is invoked on each fragment that is within the window (and
which also passes what are called early fragment tests).

The fragment shader typically will read texture images, through an opaque handle of type samplerXX
(say, sampler2D) and combine the texels with the lighted color. The result will then be written to the output
attribute. Fixed functionality applies late tests to the fragment (the fragment shader output), and if these
all pass the fixed-function blending (also called frame-buffer update) stage writes the fragment to the frame
buffer.

VPipeline Overview
The VPipeline class helps with creating and using a Vulkan graphics rasterization pipeline. (The course
library also a VCompute class for compute “pipelines” and a VRaytrace class for ray tracing “pipelines”.) A
VPipeline object is used in conjunction with one or more VVertex_Buffer_Set objects to manage vertex
shader inputs, zero or more VBufferV<T> objects to manage uniform values, zero or more VVBufferV<T>
objects to manage storage buffers, plus a VTransform object to manage transformations. (Samplers and
texture images can also be specified.)

To create a pipeline one needs to specify the following information:
Shader Code The Vulkan API requires a compiled shader, but VPipeline just needs a file name plus the
names of the main shader stage routines. These are provided by the shader_code_set member function.
See the simple example below.

Vertex Shader Input Format A Vulkan pipeline needs to know the format of the vertex shader input
attributes. (The input consists of a stream of vertices, each vertex consists of zero or more attributes).
Vulkan expects a detailed format, such as vk::Format: :eR32G32B32A32Sfloat (a four-element vector of
floats). The VPipeline objects makes this considerably easier by enabling the common input types to
be specified by the using the shader_inputs_info_set<T1,T2,...>() member function. The Ti are
must be one of pCoor, pColor, pNorm, pTCoor, int, ivec2, ivec4, or mat3x4. FEach input type speci-
fied in shadser_inputs_info_set is assigned a location, and that location must be specified in the inputs
layout declaration. Macros LOC_IN_POS, LOC_IN_COLOR, LOC_IN_NORMAL, LOC_IN_TCOOR, LOC_IN_INT1,
LOC_IN_INT2, LOC_IN_INT4, and LOC_IN_ROT are assigned to the location for these types. See the Shader
Code step in the Simple Example below.

Uniforms Buffers and Storage Buffers A Vulkan pipeline needs information on the uniform buffer and
storage buffers that will be accessed. The VPipeline object uses member functions starting in ds_ to
provide these. The ds_ calls must be made before the pipeline create member function is called. They can
be used to update the buffer at a later time. See the Simple Example below for some uses.

Primitive Topology The primitive topology must also be specified. This is specified using the topology_set
member function.

VPipeline Simple Example

The following is an example of a simple use of a VPipeline object, it is based on the code in demo-
03-vulkan-one.cc. In this example a VPipeline object will be set up to use shader code placed in file
demo-03-shdr.cc. The shader code includes a vertex shader and a fragment shader. The vertex shader
expects three input attributes: a coordinate (type pCoor on the CPU), a normal (type pNorm on the CPU),
and a color (type pColor on the CPU). The shader reads two uniform values, the built-in transform uniform,
and a custom uniform named uni_light_simple on the CPU code. (See the Shader Code step below for
more details.)

The vertex shader inputs are managed by the VVertex_Buffer_Set class. It is discussed in the Prepare
Input Buffer Set step, below. The custom uniform, uni_light_simple, is managed by the VBufferV class,
and the transformation matrix is handled by VTransform. The VBufferV<TYPE> class manages a Vulkan
buffer holding a value of type TYPE. Here, TYPE is Uni_Light_Simple, a structure holding some information
about a light source. The VTransform class keeps track of coordinate transformations. It will be discussed
at length elsewhere.

This example shows how to declare, create, use, and destroy a pipeline that will execute the shader
code. (The shader code itself is in file demo-03-shdr.cc.)

Declare Pipeline and Supporting Objects

A VPipeline object along with supporting objects are declared below. The object bset_plain is an object
which will hold the vertex shader inputs. The VTransform object holds the coordinate space transform and
uni_light_simple is a buffer that holds light information.

// This is part of the World class in demo-03-vulkan-one.cc.
VPipeline pipe_plain;

VVertex_Buffer_Set bset_plain;

VTransform transform;

VBufferV<Uni_Light_Simple> uni_light_simple;

Initialize Buffers
Each VBufferV object must be initialized. The initialization for this example is shown below. The first
argument, vh.qs, is a context. The second, indicates that the buffer will be used to hold uniform values.

uni_light_simple.init(vh.qs, vk::BufferUsageFlagBits::eUniformBuffer);
Create Pipeline
The code below creates the pipeline.

pipe_plain
.init(vh.qgs)

.ds_follow(transform)

.ds_uniform_use("BIND_LIGHT_SIMPLE", uni_light_simple)
.shader_inputs_info_set<pCoor,pNorm,pColor>()
.shader_code_set

("demo-03-shdr-code.cc", "vs_main();", nullptr, "fs_main();")
.topology_set(vk::PrimitiveTopology::eTriangleList)
.create();

Pipeline creation starts with a call to init and ends with a call to create. The argument to init, vh.qgs,
is a context object which is provided by the course library. The member functions starting with ds_, here
they are ds_follow and ds_uniform_use, specify that the pipeline’s descriptor set will include a transform
and the buffer uni_light_simple. The follow suffix in ds_follow indicates that the pipeline should check
for changes in transform before each draw. The VTransform class is something VPipeline recognizes. The
ds_uniform_use member function tells the pipeline to include a descriptor for uni_light_simple in the
descriptor set and to put the location in BIND_LIGHT_SIMPLE (see the discussion of the shader code).

The shader_code_set line specifies the file in which the shader code can be found, and the names of
the vertex, geometry, and fragment shaders’ entry points. In this case entry point for the vertex shader is
vs_main() and the entry point for the fragment shader is fs_main(). The nullptr indicates that there is
no geometry shader. The shader_inputs_info_set indicates the types of the pipeline vertex shader inputs.
The VPipeline object recognizes only a limited number of input types. The location for input pCoor is
associated with location LOC_IN_POS, pNorm is associated ith location LOC_IN_NORMAL, and pColor with
LOC_IN_COLOR. (There are several other recognized inputs.) See the descriptor of the shader code to see how
the LOC_IN_ symbols are used.

The topology_set member function specifies how the vertices entering the pipeline need to be grouped
to form primitives. The value is a Vulkan vk: :PrimitiveTopology enumeration constant. In this case the
value indicates that a triangle will be formed with each group of three vertices. (That is, the first triangle
will be formed from vertex 1, 2, and 3; the second from 4, 5, and 6; and so on.)

The create call creates the pipeline. Since creation is time consuming it should not be done more often
than necessary. In the demo-03-vulkan-one code the pipeline is created just once but used every frame.

Shader Code

The shader_inputs_info_set call used in creating the pipeline specifies the input types. The vertex shader
code must have matching declarations for those inputs. The data types must be compatible and the locations
must be set using the appropriate LOC_In_ symbols. The shader code for the pipeline_plain in this example
is in demo-03-shdr-code.cc. The declarations for the three inputs are:

#ifdef _VERTEX_SHADER_

layout (location = LOC_IN_P0S) in vec4 in_vertex_o; // From pCoor
layout (location = LOC_IN_NORMAL) in vec3 in_normal_o; // From pNorm
layout (location = LOC_IN_COLOR) in vec4 in_color; // From pColor

The location for a pCoor must be LOC_IN_POS and the data type must be vecd, but the variable name,
in_vertex_o can be whatever is useful.

Two uniforms were bound to the pipeline, one a built-in (transform), the other a user-defined uniform,
uni_light_simple. Here is the shader code declaration corresponding to uni_light_simple:

layout (binding = BIND_LIGHT_SIMPLE) uniform Uni_Light
{

vec4 pos;

vec4d color;
} uni_light;

The binding must be set to the same symbol used in the ds_uniform_use call. The arrangement of

the data items in the layout declaration must be compatible with the structure used in the CPU. The CPU
structure in this case is:

struct Uni_Light_Simple {
pCoor position;

pColor color;

};

// ... further down..
VBufferV<Uni_Light_Simple> uni_light_simple;

};

These two are compatible because both a vec4 and a pCoor consist of four floating-point members. The
names do not have to match, so it is not a problem that the shader code abbreviates the first member pos
while the CPU code names it position. Obviously, one order in which the members appear must be the
same in both cases.

Prepare Input Buffer Set
The shader_inputs_info_set call prepared the pipeline to expect each vertex to consist of attributes pCoor,
pNorm, and pColor. It did not specify anything about where those inputs would come from. The inputs to
a pipeline are conveniently managed by the VVertex_Buffer_Set class. The term input buffer set or buffer
set will be used for refer to an instance of this class.

First, a buffer set must be reset:

bset_plain.reset(pipe_plain);

This clears any existing contents of bset_plain, and then sets it to expect the inputs needed by
pipe_plain. A buffer set contains a container (standard C++ vector) for each input type. Inputs are
inserted into a VVertex_Buffer_Set using the << operator. The operator is overloaded so that inputs are
placed in the appropriate container. Consider:

pCoor px(-4,2,-2);

bset_plain << pCoor(-2,0,-2) << pCoor(-2,2,-2) << px;

bset_plain << color_green << color_green << pColor(0,0.8,0);

pNorm snorm = cross(pCoor(-4,0,-2), pCoor(-4,2,-2), pCoor(-2,0,-2));
bset_plain << snorm << snorm << snorm;

bset_plain << color_green << color_green << color_green;

bset_plain << pCoor(-2,0,-2) << snorm << pCoor(-2,2,-2) << snorm;
pset_plain << snorm << pCoor(-4,2,-2);

The second line above writes three coordinates. The first two are specified using constructors (such as
pCoor(-2,0,-2)), the last px, is from a variable. They are appended to the coordinate list because all are
of type pCoor. The next line writes three colors, and the last writes three normals. The last three lines write
another set of three attributes. This times colors first and with normals and coordinates interspersed.

After the execution of the code above the three containers in bset_plain would have six attributes
each. It is important that the number of attributes of each type must be zero or must match the number of
coordinates (pCoor), an error message will be issued if this is not the case.

After all of the attributes are inserted into a buffer set they must be moved to the GPU. That is done
by member function to_dev. If the coordinates or other attributes change each frame, then the buffer set
must be reset and re-populated each from. But, if some part of a scene does not change, say an object that
does not move, then a buffer object describing it can be prepared just once, including one call to to_dev().

Record the Draw
A buffer set holds inputs to a pipeline. A pipeline is something like a piece of compiled routine that’s ready
to run. A pipeline is used to draw something by recording a draw command.

pipe_plain.record_draw(cb, bset_plain);

Member function pipe_plain.record_draw(cb,bset_plain) causes a draw command to be recorded
using the buffers managed by bset_plain as an input. The cb argument is a command buffer, which is
provided by the course library. As one might expect, this results in the inputs collected in bset_plain to be
streamed into the shader code compiled into pipe_plain, resulting in the frame buffer being painted with
the image described by the vertices.

But, this does not happen immediately. It will happen when the command buffer is executed, which
is after, in this case, the World: :render routine returns. That means the contents of bset_plain and also

7

uni_light_simple that will be used in the draw are the contents that are present when the command buffer
is executed. So, if, say, bset_plain were reset, re-populated, and to_dev were called five times while in
World: :render, the only values that would be rendered are the ones set the last of those five times. The
same is true for uni_light_simple. If one needs to render five different sets of objects, then five buffer sets
would be needed, though they all could use the same pipeline.

Destroy
At some point Vulkan objects need to be destroyed. For simple pieces of code like the classroom demos, one
can avoid destroying Vulkan objects and the only consequences will be the shame messages printed by the
Vulkan validation layer. But, if many objects are created, used briefly, and not used again, failure to destroy
them can slow and stop the system as resources run low.

The objects in the code example are destroyed by calling the destroy member functions:

uni_light_simple.destroy();
pipe_plain.destroy();
bset_plain.destroy();
transform.destroy();

This is done once, before the program exits. That’s because the pipeline is created once and used many
times.

	Introduction
	Rendering Pipeline
	Programmable Stages and Shaders

	Vulkan Buffers
	Overview of Course Library Buffer Classes
	Declaration Example
	Initialization and Usage
	VBufferV Example

	Course Library VPipeline Object
	Rendering Pipeline Review
	VPipeline Overview
	VPipeline Simple Example

