
Demonstration Programs Used in Class

Classroom Demonstration Programs

Demonstration Programs Used in Class

Simulate an imaginary world.

Bouncing ball, balloon, etc.

Based on simple physical models.

−→
F = m−→a , and not much more.

Programs make use of:

CPU graphics programming (Vulkan).

GPU graphics programming (OpenGL shader language).

CPU and GPU physics programming (CUDA on GPU).

2s-1 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-1

Bouncing Ball Simulation

Bouncing Ball Simulation

Simulates a ball bouncing over a platform.

Purpose is to show overall program structure . . .

. . . and simple physical simulation.

These Notes

First, we’ll describe the simulation physics.

Then the overall program structure will be described.

2s-2 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-2

Bouncing Ball Simulation � Representation of Ball

Simulation of a Bouncing Ball

Representation of Ball

Position: p, a three-element vector:

 px
py
pz

.

Velocity: v, a three-element vector:

 vx
vy
vz

.

Representation in demo-1-simple.cc:

class Ball {

public:

pCoor position;

pVect velocity;

};

2s-3 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-3

Bouncing Ball Simulation � Model for Ball Free Motion

Model for Ball Free Motion

We should already know that under constant acceleration a:

v(t) = v(0) + at

p(t1) = p(0) +

∫ t1

0

v(t) dt

= p(0) +

∫ t1

0

(v(0) + at) dt

= p(0) + v(0)t1 +
1

2
at21

In demo-1-simple.cc:

ball.position +=

ball.velocity * delta_t + 0.5 * gravity_accel * delta_t * delta_t;

What about the platform?

2s-4 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-4

Bouncing Ball Simulation � Model for Platform Collision

Model for Platform Collision

Let’s keep things simple:

The platform is at y = 0.

If there is a collision with the platform . . .

. . . the y component of the velocity will be multiplied by −0.9.

The ball will bounce off more slowly than it hit.

The factor −0.9 is not special, just a typical non-ideal bounce.

v(t) =

{
v(0) + at if t ≤ tc
−0.9 [v(0) + atc] + a(t− tc) if t > tc

where tc is the time of collision.

The equation above only considers the first bounce.

2s-5 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-5

Bouncing Ball Simulation � Closed-Form Doability

Closed-Form Doability

Closed-Form Equations for v(t) and p(t)?

Should we re-write the equations for v(t) and p(t) for any t?

The discontinuity (platform collision) makes things tedious.

But it is still doable for an undergraduate.

But, what if there were two balls?—or three?

Then, a closed-form expression would be impossible.

2s-6 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-6

Discrete Interval Simulation

Discrete Interval Simulation

Idea: Consider short time periods called time steps.

The overall simulation will occur over many time steps.

Within a time step separately consider:

Free motion (without collisions).

Collisions.

for (double time = 0; time < end_of_time; time += delta_t)

{

// Each iteration computes one time step.

simulate_free_motion();

detect_and_resolve_collisions();

}

2s-7 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-7

Discrete Interval Simulation

Simulation of Free Motion

Determine forces on object.

Gravity.

Contact.

From forces and mass determine acceleration.

From acceleration update velocity.

Update position.

2s-8 EE 4702-1 Lecture Transparency. Formatted 9:21, 4 September 2024 from lsli2-simple-TeXize. 2s-8

	Demonstration Programs Used in Class
	Bouncing Ball Simulation
	Representation of Ball
	Model for Ball Free Motion
	Model for Platform Collision
	Closed-Form Doability

	Discrete Interval Simulation

