GPU Programming EE 4702-1

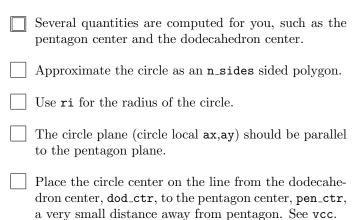
Midterm Examination

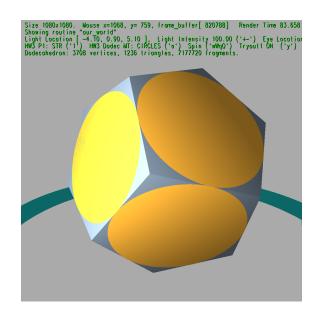
Friday, 31 October 2025, 9:30-10:20 CDT

	Problem 1	_ (35 pts)
	Problem 2	(15 pts)
	Problem 3	(15 pts)
	Problem 4	_ (20 pts)
	Problem 5	_ (15 pts)
F	vam Total	(100 pts)

Alias

Problem 1: [35 pts] Appearing to the right is a dodecahedron with gold circles just above its faces. The code below, based on the Homework 3 solution, draws the dodecahedron but the circle code is incomplete. Complete it.



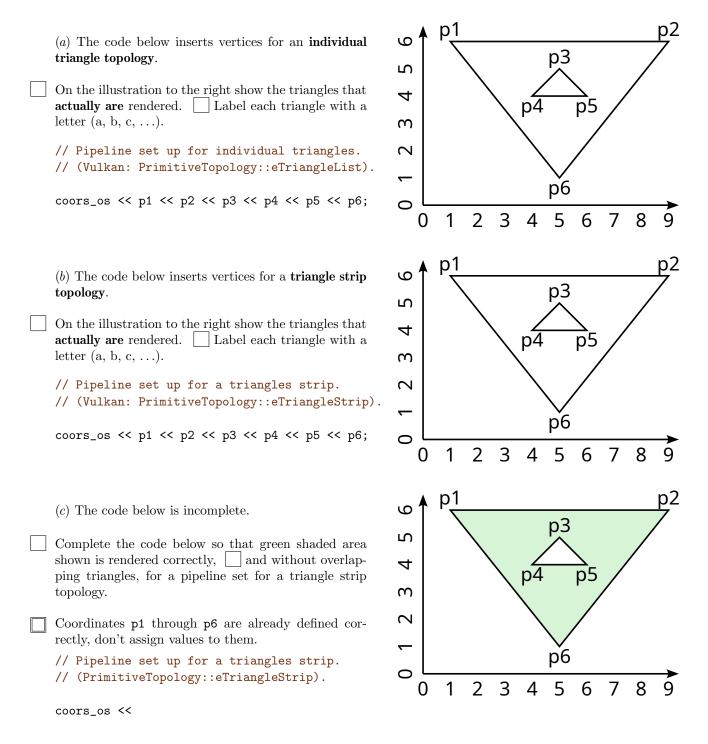


```
Just emit circle coordinates, don't emit colors.
 case MT_Circles: {
   pCoor dod_ctr = cyl_center + pVect(0,1.5,0);
                                                              // Dodecahedron Center
   float ri = len_edge / ( 2 * tanf(numbers::pi/5) );
                                                              // Circle Radius
   int n_{sides} = 100;
                                                              // Number of "circle" sides
   float delta_theta = 2 * numbers::pi / n_sides;
   for ( size_t i=0; i < coors.size(); i+=5 ) {</pre>
     for (int j=1; j<4; j++) coors_os<<coors[i]<<coors[i+j]<<coors[i+j+1]; // Emit pentagon.</pre>
     pVect vi(0,0,0); for ( int j=1; j<5; j++ ) vi += pVect(coors[i],coors[i+j]);</pre>
     // Dodecahedron Face (Pentagon) Coords in coors[i] to coors[i+4];
     pCoor pen_ctr = coors[i] + 0.2 * vi;
                                                            // Pentagon Center
     pVect vcc( dod_ctr, pen_ctr );
                                                            // Should be useful.
```

```
for ( int j = ; j < n_sides; j++ ) { // \square Finish this line. float theta = j * delta_theta;
```

```
coors_os <<
}}
gc.topology_set(Topology_Individual);</pre>
```

Problem 2: [15 pts] Below are two unsuccessful attempts to render a triangle-in-a-triangle shape using the Our_3D demo code from class, part (c) is your shot at success.



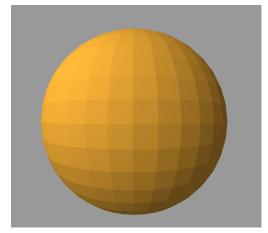
Problem 3: [15 pts] Answer the following questions about spheres rendered using rasterization. (a) The sphere shown to the right consists of $T=1600$ triangles. (Not all are visible.) How many vertices would be needed to render the sphere using a individual triangles (a triangle list)? \square Answer in terms of T .	
How many vertices would be needed to render the sphere using a triangle strip? \square Answer in terms of T .	Original Sphere
To render the original sphere using a triangle list about $F=50$. About how many fragments would be generated if the sphere we in terms of F .	
(b) Suppose for the original sphere above the eye were at distance d from the nearest point on the surface of the sphere. Let V_o denote the number of vertices used to render the original sphere using triangle strips and F_o denote the number of fragments generated rendering the original sphere. In the otherwise identical far sphere to the right the eye is at distance $2d$ from the nearest point. Both the original and far spheres have T triangles. Note: In the original exam F_o was not mentioned, and it was not clear whether V should denote the number of vertices in the near or far sphere.	
How many vertices in the far sphere? \square Answer in terms of T, V_o, F_o , and d .	Far Sphere
Approximately how many fragments in the far sphere? (The question exactly, don't try.) \square Answer in terms of T, V_o, F_o ,	

(c) The **only difference** between the two spheres below on the right is in the normal associated with each vertex. The normals for the smooth sphere were chosen to make it look more like a sphere.

Complete the code below so that it inserts normals that will result in the faceted sphere.

```
// Center of sphere at sp_ctr_os;

// Coordinates of a triangle approximating
// the surface of a sphere.
//
coors_os << p1 << p2 << p3;</pre>
```



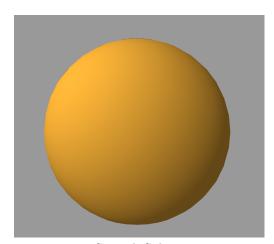
Faceted Sphere

normals_os <<

Complete the code below so that it inserts normals that will result in the smooth sphere.

```
// Center of sphere at sp_ctr_os;

// Coordinates of a triangle approximating
// the surface of a sphere.
//
coors_os << p1 << p2 << p3;</pre>
```



Smooth Sphere

normals_os <<

Problem 4: [20 pts] Answer each question below.
(a) Answer each question about the amount of computation needed for common operations. All vectors have three components and all coordinates have four components.
How many multiplies are needed to compute a dot product such as dot(v1,v2)?
How many multiplies are needed to compute a cross product such as cross(v1,v2)?
How many multiplies are needed to perform a coordinate transformation $ m * p1 $, where $ m $ is a transformation
matrix and p1 is a coordinate?
How many multiplies are needed to compute a matrix product $\mbox{m1} \mbox{*m2}$ where $\mbox{m1}$ and $\mbox{m2}$ are transformation matrices?
(b) Given coordinate P and vector v , we can easily compute $Q = P + v$. Show a transformation matrix,
M, that achieves the same result by computing a matrix/homogeneous coordinate product, $Q = \mathbf{M}P$. (For example, with $v = (v_x, v_y, v_z) = (1, 2, 3)$ and $P = (10, 20, 30, 1)$ we would compute $Q = (11, 22, 33, 1)$).
Show the transformation matrix:
Describe a situation in which it would make more sense to compute $Q = P + v$ rather than $Q = \mathbf{M}P$.
Describe a situation in which it would make more sense to use a translation matrix rather than just adding a vector. <i>Hint:</i> we do it all the time in our code.

Problem 5: [15 pts] Answer the questions below.

(a) The code below inserts the coordinates and colors for a cylinder:

```
for ( int i=0; i<=n_segs; i++ ) {</pre>
    // Some code omitted.
```

<pre>coors_os << c + cyl_axis << c; colors << color_cyan << color_cyan; }</pre>
What would the cylinder look like if the frame buffer were written with the color color_cyan?
What should the frame buffer be written with, if not exactly color_cyan?
(b) The $\mathtt{Our_3D}$ C++ class in the course CPU-only code is modeled very loosely on a Vulkan implementation, and \mathtt{World} is modeled on something like an application (such as a game) a developer would write.
Who writes Vulkan and OpenGL implementations?
(c) Rasterization and ray tracing in $\mathtt{Our_3D}$ differ in what their outer loops iterate over.
What kind of an object does the outer loop of Our_3D rasterization code iterate over?

What kind of an object does the outer loop of Our_3D ray tracing code iterate over?