LSU EE 4702-1 Homework 4 Due: 21 November 2025
Formatted 10:15, 18 November 2025

All of the code for this assignment is in the course repo. HTMLized versions of the assignment file
are at https://www.ece.lsu.edu/koppel/gpup/2025/hw04-shdr.cc.html.

Problem 0: Follow the instructions on the
https://www.ece.lsu.edu/koppel/gpup/proc.html
page for account setup and programming homework
work flow. Compile and run the homework code un-
modified. It should initially show a canopy constructed
from dodecahedra and links. (This is scene 2 from the
links demo code, but with the balls replaced by dodec-
ahedra.) See the screenshot to the upper right. When
Problem 1 is correctly solved each dodecahedron face
has a yellow dot and shows text from the Wikipedia
article on dodecahedra. See the middle screenshot to
the right. When Problem 2 is correctly solved the do-
decahedra are stellated, meaning that the pentagon on
each face is replaced by a five-sided pyramid. See the
screenshot to the lower right.

User Interface

The code can display several scenes, numbered 0 through
7. The currently displayed scene is identified in the
penultimate line of green text. For this assignment any
scene can be used, Scene 1 is the default because the
eye is positioned close to a large dodecahedron. Press
0 to select scene 0, 1 for scene 1, etc. Scene 3 shows
a crude corona virus particle, Scene 4 shows a wheel,
scene 5 a top (as in a spinning child’s toy), scene 6 is
a very crude parachute. The code for scenes 0 < x <7
are in routine World: :ball_setup_zx.

Press Ctrl= to increase the size of the green text
and Ctrl- to decrease the size. Press F12 to gener-
ate a screenshot. The screenshot will be written to
file hwO4 .png or hwO4-debug.png. Press F10 to start
recording a video, and press F10 to stop it. The video
will be in file hwO4-1.webm or hwO4-debug-1.webm.

Initially the arrow keys, PageUp, and PageDown,
can be used to move around the scene. Using the Shift
modifier when pressing one of these keys increases the
amount of motion, using the Ctrl modifier reduces the
amount of motion. Use Home and End to rotate the eye
up and down, use Insert and Delete to rotate the eye
to the sides.

After pressing 1 the motion keys will move the light instead of the eye, after pressing b the
motion keys will move the head ball around, and after pressing e the motion keys operate on the
eye.

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2025/hw04-shdr.cc.html
https://www.ece.lsu.edu/koppel/gpup/proc.html

The simulation can be paused and resumed by pressing p or the space bar. Pressing the space
bar while paused will advance the simulation by 1/30s. Gravity can be toggled on and off by
pressing g.

The + and - keys can be used to change the value of certain variables. Normally, these variables
specify things such as the gravitational acceleration, and dynamic friction, and variables that may
be needed for this assignment.

The variable currently affected by the + and - keys is shown in the bottom line of green text.
Pressing Tab and Shift-Tab cycles through the different variables. To locate variables which can be

set this way, and to see how they were set, search for variable_control.insert in the assignment
file.

Assignment-Specific User Interface

Variables and the Ul for setting them have been provided for features to be coded in the problems.
Pressing d will toggle the value of Boolean opt_hw0O4_dot. When correctly solved the gold dot
will be shown only when opt_hw0O4_dot is true. Pressing D will toggle the value of Boolean
opt_hw04_tex. When correctly solved textures will be shown on the dodecahedron faces only
when opt_hw04_tex is true. Pressing ¢ will toggle the value of Boolean variable opt_hw04_stel.
When correctly solved the dodecahedra faces will be stellated when opt_hw04_stel is true. Also
available for stellation is float variable opt_hw04_height_stel, which indicates the height of the
stellation pyramid in dodecahedron local space units. A value of 0 indicates no stellation. The
value can be changed using the Ul for changing variables described above, it will be labeled using
the variable name, opt_hw04_height_stel. The values of the Boolean variables are shown on the
penultimate line of green text. See the screenshots on the first page of this assignment.

The balls can be rendered using three different sets of shaders, labeled HW4-Tri, HW4-Clean,
and Balls, pressing v cycles between these shaders. Shader set Balls are the ones used in the
links code, they show the links attached to balls. Shader sets HW4-Tri and HW4-Clean render
dodecahedra instead of balls. Shaders for both of these are in file hwO4-shdrs.cc. The HW4-Tri
shaders, vs_main, gs_main, and fs_main are to be used for the solution to this assignment. The
HW4-Clean shaders, vs_main_clean, gs_main_clean, and fs_main_clean, are there for reference
or for light experimentation.

Code Generation and Debug Support

The compiler generates an optimized version of the code, hw04, and a debug-able version of the
code, hwO4-debug. The hwO4-debug version is compiled with optimization turned off, which makes
it easier to debug. When needed, you are strongly encouraged to run hwO4-debug under the GNU
debugger, gdb. See the material under “Running and Debugging the Assignment” on the course
procedures page. You must learn how to debug. If not, you will be at a severe disadvantage for
the rest of your life, if that’s how long you stubbornly resist learning!

To help you debug your code and experiment in one way or another, the user interface lets
you change tryout variables. There are three Boolean tryout variables, opt_tryoutl through
opt_tryout3, and one floating-point tryout variable opt_tryoutf. You can use these variables in
your code (for example, if (opt_tryoutl) { x += opt_tryoutf; }) to help debug, to help
familiarize yourself with how the code works, or to experiment with new ideas. Keys x, y and Y
to toggle the values of the Boolean variables; their values are shown in the green text at the label
Tryout 1:, 2:, and 3:. The user interface can also be used to modify host floating-point variable
opt_tryoutf using the Tab, +, and - keys, see an earlier section.

Code Overview
For this assignment only shader code, in file hwO4-shader.cc, is to be modified. That said, the
description here starts in the host code, which may be the subject of the next homework assignment.

2

This assignment is based on the links demo code, in directory proj-base/v-1links. It has
been modified so that the balls, by default, will be rendered using newly inserted dodechedron
code. That code is in routine World::render_doda. (Pressing v will switch between the ball
shader and the dodecahedron shader(s).)

Routine World: :render_doda is called when the frame buffer (actually surface) is to be writ-
ten, normally 60 times a second. The routine does any required pipeline setup, populates a buffer
set to show each ball as a dodecahedron, and then records a draw with the buffer set providing
vertex shader inputs to the pipeline. Be warned: the use of the pipeline is inefficient, something
that will be fixed in a follow-up assignment.

Pipeline pipe_doda is set up by:

if (!'pipe_doda)
pipe_doda

.init(vh.gs)
.ds_follow(puni_light_curr)
.ds_follow(transform)
.ds_uniform_use("BIND_UNI_COMMON", buf_uni_common)
.ds_use(sampler, texid_hw)
.shader_inputs_info_set<pCoor, pColor, pMatrix>()
.shader_code_set
("hwO4-shdr.cc",
"vs_main();",

"gs_main();",

"fs_main();", "#define HW4_TRI\n")

.topology_set(vk::PrimitiveTopology::eTriangleList)
.create();

This sets up a Vulkan rasterization pipeline as follows. Call shader_code_set specifies that
the shader code is to be read from from file hwO4-shdr.cc and that the names of the vertex, ge-
ometry, and fragment shaders are executed using vs_main() ;, gs_main() ;, and fs_main() ;. The
.topology_set call specifies that the inputs to the geometry shader are formed using a triangle list
topology. The shader_inputs_info_set call specifies that the buffer set will include coordinates,
colors, and 4 x 4 matrices.

The calls starting ds_ specify other data available to shaders. (The “ds” is for descriptor set.)
The puni_light_curr call provides lighting information. The solution to this assignment (Fall
2025 Homework 4) does not involve lighting, but those who are curious might look in shader-
include/light.h and shader-common-generic-lighting.h. Call ds_follow(transform) spec-
ifies that transform is to be bound to a uniform. Look for BIND_UNIFORM in hwO4-shdr.cc. Call
ds_uniform_use("BIND_UNI_COMMON", buf_uni_common) specifies another uniform. See file
links-shdr-common.h for the members of that uniform. Finally, call ds_use(sampler, texid_hw
) sets up a texture unit. Variable sampler indicates how the texture will be filtered, and texid_hw
is the image object holding the texture. For this assignment the texture is constructed from a
screenshot of the Wikipedia regular dodecahedron page. Remember that for this assignment the
host code, including the code above, is not to be modified.

The code that follows writes, if necessary, dodecahedron coordinates to vector dod_coors. The
dodecahedron coordinates are in a local space with the dodecahedron center at the origin and with
an inscribed radius of 1. That is, a sphere of radius 1 would be inside the dodecahedron and touch
the center of each dodecahedron face. This is the same code used in Homework 2 and 3.

Next, the code inserts vertices to render a dodecahedron for each ball. The code starts by
computing a transformation matrix that will map a coordinate in the dodecahedron local space to

3

the global space used by ball (such as for b->position). The transformation translates the center
of the dodecahedron to the ball center, scales the dodecahedron to the same radius as the ball, and
rotates it to the same orientation:

for (Ball* b: balls)
{
pMatrix_Translate tra(b->position);
pMatrix_Scale sca(b->radius) ;
pMatrix rot(b->omatrix);
pMatrix m = tra * sca * rot;

Next the code inserts dodecahedron vertex coordinates, colors, and the transformation matrix
for this ball into the buffer set. It does so using the local-space coordinates in dod_coors, emitting
three triangles for each face (just as in the solution to Homework 3 Problem 2):

for (size_t i=0; i<dod_coors.size(); i+=5)
for (int j=1; j<4; j++)
bset_doda
<< dod_coors[i]
<< dod_coors[i + j]
<< dod_coors[i + j + 1 1;

Note that in the code above each i loop iteration emits the three triangles for one face. All
three of those triangles start with the same vertex, dod_coors[i]. This fact is important for
solving this assignment.

Remember that the values in dod_coors are in the dodecahedron local space. We leave it to
the shaders to transform them into global coordinates using m. The code for this assignment uses
an inefficient method to send m to the shaders: as a vertex shader input. The next lines put m and
also the color into the buffer set:

for (int i=0; i<3*3%12; i++) bset_doda << b->color << m;

The loop above iterates 108 times (three vertices per triangle, three triangles per face, twelve
faces per dodecahedron). For each iteration it inserts the exact same data. That’s wasteful!, why
not send it just once? We will, but not in this assignment.

Resources

A good reference for C++ is https://en.cppreference.com/w/. For an examples on how to

insert coordinates into vertex lists (e.g., coors_os, colors) see 2024 Midterm Exam Problem 1.
Information on OpenGL Shading Language can be found in the reference, OpenGL Shading

Language 4.60, linked to the course references page, https://www.ece.lsu.edu/koppel/gpup/ref .html.
Like Problem 1 in this assignment, texture coordinates are the subject of 2023 Homework 4

Problem 3 and 2024 Homework 5 Problems 1 and 2. Unlike those past assignments, in this one

the texture coordinates are to be computed in the shaders (rather than being provided as vertex

shader inputs).

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of C++ syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out programming and graphics resources.
It is okay to make use of AI LLM tools such as ChatGPT and Copilot to generate sample code.

4

https://en.cppreference.com/w/
https://www.ece.lsu.edu/koppel/gpup/ref.html

(Do not assume LLM output is correct. Treat LLM output the same way one might treat legal
advice given by a lawyer character in a movie: it may sound impressive, but it can range from sage
advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for C++ programming and to seek out any additional help and
resources that might be needed. (Of course this doesn’t mean asking someone else to solve it for
you.) Students are expected to experiment to learn how graphics work, and how to code C++
sequences. Experimentation might be done on past homework assignments. Students are also
expected to learn what error messages mean by consulting documentation and by asking others
(including Dr. Koppelman), and also to develop debugging skills. It is the students’ responsibility
to resolve frustrations and roadblocks quickly. (Just ask for help!)

This assignment cannot be solved by blindly pasting together code fragments found in class
notes or past assignments. Solving the assignment is a multi-step learning process that takes effort,
but one that also provides the satisfaction of progress and of developing skills and understanding.

Problem 1: As described below, modify the code to
show the gold dot (top right screenshot) and the tex-
ture (lower right screenshot). These two tasks may
seem unrelated, but they’re not. In both cases one
needs to provide the fragment shader with a face-local
coordinate of the fragment. (Consider a fragment at
the center of a face. Its face-local coordinate, which
has two dimensions, might be (0,0). That face-local
coordinate would be (0,0) for a fragment at the cen-
ter of any dodecahedron face.) For the gold dot, the
face-local coordinate could be used to determine the
distance from the center (and so whether to use gold
or the default color). For the texture, the face-local
coordinate could be used to compute texture coordi-
nates.

The code in the geometry shader computes quan-
tities that might be useful for computing face-local co-
ordinates. This includes ctr_pentagon_e, the center
of the face. Also useful, is the fact that In[0] is the
same vertex for all three triangles and so could be used,
along with tn, the normal, for finding a face-local a,
and a,. Let L. be the origin of local space in eye-space
coordinates (perhaps ctr_pentagon_e), and a, and a,
be the local space axes (in eye space). Let P, be an
eye-space coordinate. Then the x component in local
space would be (P, — L) - a,, where v - u is the dot
product of v and wu.

A face-local coordinate would need to be computed for each triangle vertex and written to a
new geometry shader output, fragment shader input.

To use your own image(s) edit the lines:

texid_syl.init

(vh.gs, P_Image_Read(vh.gp_root_get() / "vulkan" / "gpup.png", 255));

texid_emacs.init(vh.qs, P_Image_Read("mult.png",-1));

texid_hw.init(vh.qs, P_Image_Read("wiki-dod.png",255));
and change the file names, such as wiki-dod.png, to files containing your own images. The dodeca-
hedron faces use texture id texid_hw, the balls (when not shown as dodecahedra) use texid_emacs,
and the checkered platform uses texid_syl. The images are read from files by the Image Magick
library. The library can read many formats, including JPEG, PNG, and PDF. Use the command
magick -list format to get the list.

Those who are just not satisfied guessing their own RGB components for gold have mul-
tiple options to procrastinate. For more information on the old X11 colors used in the course
/gp/include/colors.hsee https://en.wikipedia.org/wiki/X11_color_names. Those who want
to strike just the right balance when choosing a color that will be adjacent to others might visit
https://www.sessions.edu/color-calculator/. Those who want to reflect on our understand-
ing of color might visit https://xkcd.com/1882/.

(a) Modify the code in hwO4-shdr.cc so that when opt_hw04_dot is true a gold circle is shown
centered on the face of each dodecahedron. Do this by changing the color in the fragment shader,

6

https://en.wikipedia.org/wiki/X11_color_names
https://www.sessions.edu/color-calculator/
https://xkcd.com/1882/

O oot

N

[]
O

not by emitting new primitives. The radius, r, should be exactly % the pentagon inscribed circle
radius. That is, the smallest distance from the circle circumference to a pentagon edge should be
r.

Show the circle centered on each face.
Do not emit new primitives, instead |:| change the color in the fragment shader.
Add new geometry shader output(s) and fragment shader inputs(s).

The circle radius should be half the pentagon inscribed radius for each dodecahedron, regardless of
size.

For help in figuring out the radius look at the code computing ctr_pentagon_e.

(b) Modify the code in hwO4-shdr.cc so that when opt_hwO4_tex is true the texture bound to
tex_unit_0 is mapped to each dodecahedron face. The texture should be sized so that its corners
touch the pentagon inscribed circle. Show exactly one copy on each face.

In the unmodified code a texel is retrieved using a constant coordinate and nothing is done
with the texel. Use this as a starting point:

void fs_main()
{
vec2 tc = vec2(0.5,0.5);
vecd texel = texture(tex_unit_0,tc);

Show the texture on a dodecahedron face.
Show one copy per face, the edges should touch the inscribed circle.

The image should not be distorted (when stellation is off).

Problem 2: Solve part (a) below for partial credit,
part (b) for full credit. If part (b) is solved there is no
need to solve part (a). If you solve both and just can’t
bring yourself to leave your work on part(a) dormant
use opt_tryout3 to switch between the two.

(a) For partial credit solve this part instead of part b:
Modify the code in gs_main so that when opt_hw04_stel
is true the pentagon is shrunk by about 10%. That
is, each of the pentagon vertices moves 10% toward
the pentagon center. Note that the coordinates of the
pentagon center are already computed in the geometry
shader. Also recall that the vertices provided to the ge-
ometry shader are pentagon vertices (none of them are
inside the pentagon). See the screenshot to the upper
right.

Render a shrunken pentagon.

This part can be skipped of the subpart below is solved.

7

(b) Solve instead of (or in addition to part a), for Full
Credit: Modify the code in gs_main so that when
opt_hw04_stel is true stellated dodecahedra with local-
space height opt_hw04_height_stel are rendered. A
stellated dodecahedron is obtained from a regular do-
decahedron by putting a five-sided pyramid on each
face. See the screenshot to the lower right.

Note that the coordinates of the pentagon center are already computed in the geometry shader.
Another handy variable is is_pentagon_edge. It is true when coordinates pt_i_e and pt_n_e
form a pentagon edge. (One or two edges of each triangle seen by the geometry shader are not
pentagon edges.) To solve this the geometry shader may have to emit more than one triangle.

D Modify gs_main and surrounding code to emit a stellated dodecahedron.
D Update max _vertices if necessary.
D Make sure that normal_e written by the geometry shader is correct.

D The edges between the faces of the pyramid should be sharp (not blurry).

